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Abstract

In this paper it is described a novel device aiming to control the mechanical
vibrations of plates by means of a set of interconnected piezoelectric actuators.
They are uniformly embedded in the plate and connect every node of an elec-
tric network to ground thus playing the two-fold role of capacitive element in
the electric net and of couple suppliers. A mathematical model is introduced
to describe the behavior of the system the time evolution of which is obtained
‘as the solution of a system of partial differential equations. A self-resonance
criterion is established which assures the possibility of electro-mechanical en-
ergy exchange. Finally the problem of vibration control in simply supported
and clamped plates is addressed: the optimal net-impedance is determined.
The results indicate that the proposed device can improve the performances of
piezoelectric actuation.

1 Introduction

In [1], [2] the problem of controlling truss modular beams has been addressed:
it is proven that the available piezoelectric actuators are in principle able to
dampen their mechanical vibrations. In [3] the concept of continuously dis-
tributed control has been introduced and developed for one-dimensional beams.
Such a control is obtained embedding in these structural members the actuators
which are interconnected by an electric transmission line.

In the present paper it is proposed to control the vibrations in plates dis-
tributing in them a set of actuators continuously interconnected. However,
being the plate a two-dimensional structural member, such an interconnection
must be obtained by the new concept of electrical two-dimensional continuously
distributed network. The mathematical difficulty (in comparison with [3]) to
be confronted concerns the need of changing the kinematical descriptors of the
electric state of the system. This difficulty goes along with the need of con-
ceiving a way of suitably interconnecting the actuators which is intrinsically
two-dimensional. Both these difficulties are circumvented introducing the field
of e-state (the material time derivative of which is the electric potential) and the
conception of a truly two-dimensional interconnection scheme among actuators
the evolution of which parallels those valid for the plate.




1.1 Advantages of proposed continuous net-control sys-
tems

The common features of the already conceived control devices are represented
by the differentiation between the sensing and the actuation systems and the
localization of PZT actuators in few sites of the vibrating structure. Both
are limits to the control efficiency; indeed, the first one implies the need of
a coordinating active system, controlling the actuators actions in response to
the inputs from the sensors, while the latter implies an optimal localization
problem —for both actuators and sensors- the solutions of which depends on
the particular mechanical vibration mode to be considered (see [8]). Moreover
it is difficult to optimize the characteristics of the control system to obtain
low equivalent impedances —these are required to allow for a relevant energy
transformation from the mechanical to the electrical form— and efficiently drive
the PZT actuators (see [6], [9]).

Some efforts to overcome the first of these drawbacks have been made. In
particular, the concept of self-sensing actuator has been introduced (see [5]): an
ad hoc electric circuit is connected to the piezoelectric patch allowing its two-
fold behavior. However every patch remains isolated and its electro-mechanical
action has to be coordinated with the rest of the structure. Also, when a great
number of actuators is used to control the shape of plates (see [7]), it was never
conceived any kind of their interconnection via a circuital network.

Exploiting the concept of “parallelism” between mechanical structures and
electric control systems, it is proposed to control a plate-like structure by means
of a distribution of actuators connected to an electric transmission net: an
internal resonance phenomenon, between structural modes and electric modes,
is induced to obtain the maximum control efficiency.

The net-control system has two practical advantages: it requires lower per-
formances to the PZT actuators and allows for a strong control action and
shorter times to transfer the energy between electrical and mechanical forms.
Moreover the net-control system bypasses the problems of the optimal posi-
tioning (of actuators and sensors) being able to manage all mechanical modes
thought the same distributed configuration of its collocated actuators.

1.2 Coarse description of the system

We propose to control the plate with a distribution of piezoelectric actuators
interconnected by means of electric impedances as shown in Figure 1: gray boxes
represent the actuators while the black ones represent the electric impedances.

A possible electric connection scheme between actuators and the impedances
is reproduced in Figure 2. We remark that the fundamental topological differ-
ence between the considered two-dimensional net and a transmission line: here
a node is grounded by means of an actuation device and is connected to at least
four other nodes. This circumstance mathematically is accounted for introduc-
ing a space partial differential equations governing the evolution of the electric
state descriptors.

Fig. 1

Fig. 2



From an electrical viewpoint the actuators can be considered as capacitances:
one plate is connected to the net while the other is grounded. On the other
hand, from a mechanical viewpoint, the actuators provide mechanical actions
in response to electric inputs and contribute to the structural stiffness.

2 Mathematical model

To describe the main behavior of the proposed electro-mechanical system, a
continuum model is introduced; this choice allows for a accurate description of
vibrations only when the involved wave-lengths are not too small compared with
the dimensions of the single actuator. We obtain a set of partial differential
equations for the fields describing the electric and mechanical states starting
from a postulated balance of power.

2.1 Equation of motion

We deal with a plate body B occupying the region C = S X I, where S is a plane
surface and 7 the real interval [—h, h]. As usual the thickness 24 is supposed to
be small compared with the diameter of S. The following balance of power

s/!(b-ﬁ)+gl!(f—ﬁ)+/(i1/3)+/(x1/}) =

S as

// [S-(symGradﬁ)]+/(I-grad¢),

Sz S

oY)

must hold for every test field (1’1, ¢’) Here u represents the displacement field

while ¥ is the electric potential field: as a consequence 1 is the velocity field
and v is the time-integral of the electric potential between the nodes and the
ground. Moreover b and f are the body and surface external forces, i and x the
body and surface current densities from the ground, S the stress tensor and I
the current vector in the net, Grad and grad mean the gradient operators in C
and S respectively.

According to the geometry of the body, the position vector is decomposed
as:

x=r+(e, (2)

where r is position vector in S, { € 7 and e is the unit vector perpendicular
to S. To deduce from the 3-dimensional Cauchy model of B the behavior of
a bending plate we use the Kirchhoff-Love compatible identification procedure
based on the following kinematical reduction map for displacements:

u(r, ¢) = w(r) e-( grad w(r). ®)




The function w models the transverse displacement of the points of the plate.
It is assumed that the electric potential drop ¥ depends on r only. It follows
that the infinitesimal deformation field is expressed as:

E = sym (Grad u) = —( sym (grad grad w). 4)
Substituting in the eqn. (1) the reduction map (3) we obtain:

/(bzb+B-gradw+i¢)+/(Tu')+m-gradu';+x1j)) =
s

as

/ [M-sym(gradgradu'})+I-grad1/}] @

where )
M:—I/§S|S, B:—I/Cb|s, b:I/b-e, (6)
T=If<f-e), m=[=ctle ()

are the dynamical actions in the reduced plate model. Applying the divergence
theorem, we get:

/ (b~ divB ~ divdivM) 4 + (i + divT) 1/)] +

s

/{[T+(B—diVM)'V+] w+ (m—Mv)-gradw+ (x —1-v) w} -0
as

(8)

that must hold for every admissible velocity field (1, %); this condition leads to
the following balance equations:

divdivM+divB—b=0, divI+i=0, onsS, (9)

and boundary conditions:

/{{T+ (B—divM) - v+] &+ (m ~ Mv) - grad i + (x —1-v) $} =0 (10)
88
for the reduced model of the electro-mechanical plate.
Assuming that the body B is linear isotropic and homogeneous (so that we

do not need to distinguish in the power balance the actual from the reference
configuration) and that the network is linear and dissipative, we get

S=2u,E+ AL (trE)1, b= —pij —gradyy = LyI+ Ry1, (11)




where py and Ap are the Lamé moduli, p the mass density, Ly and Ry are
respectively the net-inductance and net-resistance and 1 means the identity
operator in C. As a consequence the part of reduced constitutive equations
which does not depend on piezoelectro-mechanical coupling (i.e. My, and i.)
read as follows:

w . koo -
M,, = Jr [2prsym (gradgradw) + Ar (laplw) 1], ie = E% ¥,  (12)

where Jr = 2h3/3, lapl means the laplacian operator in S, 1 means the identity
operator in S and k¢ is the purely electric grounded capacitance, while d?
represents the area of influence of the actuator (namely the area of the plate
divided by the number of actuators). For the inertial terms from (11) and (6)
we get

B = —Jrpgrad, b=—-2hpw. (13)

However the piezoelectric actuators have a two-fold behavior: from a me-
chanical viewpoint they enhance the bending stiffness of the plate and produce
bending moments in response to applied voltage; from an electric viewpoint they
enhance the grounded capacitance per unit area of the electric net and produce
a charge in response to applied curvatures.

Let us introduce a orthonormal coordinate system (o, e;, e3) in S. Con-
cerning the part of bending moment tensor induced by the piezoelectric effect
M, we assume that its component expending power on the component w ;2 of
the curvature vanishes so that the following representation holds:

M, = Mj; (e; ®e;1) + Moz (e2 ®es). (14)

In addition we specify the properties of the single PZT actuator used by

My Imm 0 ~Gme w,11
Mpa = 0 Imm —Yme w,22 y (15)
Q/d2 Ime  Gme Gee P

where M;; and w;; are the bending moments and curvatures in the principal
directions while Q/d? and v are the charge per unit area and voltage between
the actuator plates. The constitutive eqn. (15) establishes that the actuators
can exert electrically induced moments only in two orthogonal directions and
that they can not exert “mixed” moments: the orthogonal system introduced
accounts for this directionality. Moreover we have assumed that the piezoelectric
stiffnesses in e; and es are equal; this assumption seems reasonable when using
PZT actuators exploiting Poisson effect.
Therefore the overall constitutive relations for M and i read as follows:

M = My, + gmm [w,11 (€1 @ €1) + w22 (€2 ® €2)] — gme ¥ 1, (16)

i=ie+d§2 = e + Gee ¥ + Gme lapliy, (17




Let us now introduce the bending stiffness and capacitance per unit area of
the plate
k kee + K
Dp=Jr (2pL +AL), CN :=gee + d—§ =: %; (18)

the balance equations in terms of kinematical fields becomes:

{ Dp dlaplw + gmm (w1111 + w,2022) — Jz plapld 4+ 2 h pt — gme laple) = 0,

—laply + Ly Cn ¥ + Rn Cn ¥ + RN gme laplw + Ly gme lapl = 0,
(19)

where lapl and dlapl are the laplacian and double laplacian operators in S.

In order to find the dimensionless form of (19) we introduce as spatial char-
acteristic length the diameter of the plate ¢, and define v := w/¥, ¢ = ¢/V,
/D
the characteristic pulsation! w = il _J\—IE ~being Mp = 2 p £2h the total mass

P

£
of the plate- so that:

Dp Imm h? o Gme V i
Thplha? AN+ Thplic? (v,1111 +’U72222) 37 A+ D Mplw ANp =0,
1 g RN ; Ime . RNgme
- A — A ———— — Av=0.
LNCN€2w2 ¢+¢+LNW¢+CN€LOV U+LNCNV€LJ2 v
(20)

Now A means the dimensionless laplacian operator, () ; and the dot mean the
dimensionless space and time derivative. In the application we will consider, we
have

Imm Dp h?

the last inequality holds when the wave-length is much bigger than the plate
thickness and when one considers only the lower spatial eigenmodes.

The characteristic e-state parameter V := /Mp /Cx is chosen to maintain
the symmetry, so that (20) becomes:

{ aAAv+ i —yAd=0, 22)
—BAp+d+yN+6d+ 6y Av=0.
where

o= -——&-— = -—1— 8= 1 (23)

Mpf2w? g2’ Ly Cy 02w’

Gme 1 RN
—me [ 5= A 24
fw MpCN’ LNOJ) ( )

1This choice implies that the first mechanical mode in the case of a simply supported plate
has a pulsation equal to 27.




are dimensionless numbers. Remark that when the electro-mechanical coupling
parameter 7 vanishes, (22) reduces to the uncoupled system of the Kirchhoff-
Love plate and membrane-like electric network equations

alAAv+9=0,
{ 88 25)
¢+6dp=0A0¢.

2.2 Partitioned modal analysis

In this section we adapt to the set of equations (22) the reasonings developed
in [3].

Let H,, and H,. be the subspaces of L2(S), the space of R-valued square-
integrable functions defined on S verifying suitable homogeneous boundary and
smoothness conditions; let v, 9, % € Hp, and ¢, ¢, ¢ € He. Let Lypm and L, be
linear self-adjoint differential operators on H,, and H, respectively, and G74,
indicate the adjoint of the linear differential operator G,,. from H, to H,,. We
consider the following evolutionary problem:

{ ame('U) +'U - G (¢) = (_)a (26)
BLee(9) + ¢ +7Ghe () + 89+ 871G (v) = O,

starting from initial condition for v and ¢. Remark that eqns. (22) has the
structure of (26). The subscripts m and e stand for mechanical and electrical
respectively.

In order to study the interaction between the electrical and mechanical com-
ponents of state descriptors we introduce in H,,, and H, the eigenbases supplied
by the spectral representations theorem for the self-adjoint operators L,,,, and
L., respectively. Therefore for every v € H,,, ¢ € H, we have:

v= thmh, ¢=Z¢k€k (27)
Linm(v) = Z)\h amh,  Lee(¢) = ZVk P €k (28)

Here A, and vy respectively denote the eigenvalues of Ly, and Lee, mp and eg
are the corresponding eigenfunctions, vy, := (v, mp) 2 and ¢ := (@, ex)r2 are
the time-dependent Fourier coefficients. If we define the scalars:

Chik = (mh, Gme (€x)) 12, (29)
Ckh = (ek, Gﬁe (mh)>L2 = (Gme (ek), mh)Lz = Chk, (30)

and consider that mj, and er are bases of H,, and H. as eigenfunctions of
self-adjoint operators, eqns. (26) can be written:

{ vh+a)\h,vh_’y Zkohk¢k:0’ h,k=1,2,3 (31)

bn+ BUndn +8dn +7 5 Cien (6ve + 0x) =0,



Equations (31) clearly show that the influence on the mode my exerted by
the mode e is measured by the matrix Cjx that we can regard as a modal
e — m coupling matrix. In an absolutely similar way Cg; represents the modal
m — e coupling matrix. It is now easy to formulate the following

Criterion for electro-mechanical coupling

A necessary condition for the presence of electro-mechanical energy exchange
between e, and my modes is

Chi = (mpu, Gpe (ex))r2 # 0. (32)

3 Results

3.1 Analytical solution for the simply supported square
plate

Consider a simply supported square plate of side ¢, connected to an electric net
grounded on the boundary; in this case the boundary conditions for eqns. (22)
become

v=0, Mv=0, ¢=0, (33)

on each side of the square domain S. The eigenvalues of the purely mechanical
and electrical operators

Lom (f) = AAf, Le(9) = —Ag, (34)
are respectively given by
, 212 . .
Me=at (G +58)°,  we=m @R+, (35)

while the corresponding eigenfunctions are
er = sin(ix 7 1) sin(jx w 2), mp = sin(én T x1) sin(jp 7 z2), (36)

being z; = (r-e;) /€. Here i_ and j_ relate the two different mode labeling
according to Table 1.

k=1[2]1314]5|6{7]8]9
ik 1112121113233
Jk 11211121311 (13]2]3

Table 1: Modes labeling

Recalling that in this case G, (9) = Ag, we can compute the matrix Chy
getting:

Chk = /A(ek)mh = -7 (12 + jl%)_/ek ep = —7’ (Zi +j£)5hk) (37)
S



Note that, because the eigenfunctions are mutually orthogonal, the coupling
matrix is diagonal; thus, the coupling exists only between corresponding modes!

The system (22) is decomposed into an uncoupled sequence of 1-1 problems
like the following:

Bh + @Ay vp — ¥ Cha @ = 0,
J : _ h=1,23. (38
{ On+ BVndn+6bn +7Chn (6vn +10,) =0, (38)

or omitting to write the subscript h:
i+Av—-C¢=0, (30)
¢+Bop+Ci+Dp+CDv=0,

where A= aAp, B=Fvh, C=~Chry, and D =4.

Therefore in the case of simply supported rectangular plate the membrane-
like electric network is able to couple one mechanical mode exactly with one
electrical mode so that one can get a self-resonance tuning the electric net pa-
rameters. However the parameters appearing in (38) depend on the considered
mode number: in general the aforementioned tuning will cause self-resonance of
only few pairs of electro-mechanical modes.

3.1.1 Non damped energy exchange

In order to establish the conditions assuring the maximal energy exchange be-
tween the mechanical and electrical states, one could develop the general treat-
ment delineated in the case of one-dimensional electro-mechanical structures in
[3]. However for seek of simplicity we consider here a simplified version of that
treatment, studying the 1-1 coupling through eqns. (39) and then extending
the results to multiple couplings.

First of all we analyze the non-dissipative case (D = 0) of eqns. (39).
Its solution, starting from a purely mechanical initial data vg, is the following
modulated signal:

v(t) = Vi cos(azt) + Vacos(ast), ¢(t) = @, sin(a;t) + Do sin(aqt), (40)



where:

ay

¢
o

% 02+A+B)~\/(02+A+B)2—4ABJ,

[(
[(C2+A+B)+\/(C2+A+B)2—4AB],

N =

C?’-A+B
Vi=—=[1+ , 41
' 2( \/(02+A+B)2—4AB) (41)
Ug C?-A+B
Vo=—11- )
2 V(CZ¥A+B)2—4AB
2 2
q)l——alc Vl, by = a20 V.

In the hypothesis C? <« A, with simple manipulations one can find the low
frequency analogical components of the modulated signal i.e.

o] — o ., 0] —
Inax = (Vi + Vo) cos(=5=21), Iin = (Vi = Va)sin(—=5—21),  (42)

respectively representing the envelops of the maxima and minima, and, as usual,
related to the energy contents.

Since we are interested to the most efficient exchange of energy between
the mechanical and electrical forms, we seek for the values of the parameter B
that minimize the amplitude of I,,;, and the time T}, elapsed to transform the
maximal possible amount of initial energy in electrical form

ngn [Tmin| = mBin Vi — Vo, mgn Tir = max |oy — sl . (43)

These conditions imply respectively
B, =A-C% By =A+C?, (44)

indicating that in the interval (Bi, B2) we get self-resonance. Everywhere in
the following we will assume that the self-resonance condition is B = A.
Let us now consider the ratio
02

g2
k= - _Ime 45
A DpCn’ (45)

which is much smaller than 1 in the applications considered here. This num-
ber plays an important role in determining the pulsation of the low-frequency
analogical components in the chosen self-resonance condition. Indeed the di-
mensionless time interval Ti:|p_ 4 needed to transform the mechanical energy

of the considered mode into electrical is given as a function of k (see Figure 4)
by:
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1
2(\/1+\/1E—\/1—\/§)'

Recall that T}, is a dimensionless time and T}, = 1 represents one period of the
first purely mechanical mode.
The self-resonance condition B = A also implies:

Ttr|B=A = (46)

al . .
B =Lh =24 52 (47)
Vn

Note that 3 depends on the net-inductance Ly that is a tunable parameter.
Thus we can simply tune the net-inductance value to couple two modes which,
verifying the criterion (32), can be made resonant; the optimal value Ly, to
couple the h-th modes is

1 1
Ly, = = - = — - ;
N T @ 1) CN B (@ +52) (kee + ko) Naw?

(48)

here N4 = ¢2/d? is the total number of actuators.

The energy flux related to the solution (40) for B = A, is visualized in
Figure 5 where the thick gray line represents the electric energy.

Note that in Figure 5 there are four different kind of energies involved:

1. the mechanical elastic energy, A v?/2;
2. the mechanical kinetic energy, 2 /2;
3. the electric inductive energy, B ¢?/2;

4. the electric capacitive energy, q'Sz /2;

and that only the total sum of these energies is constant.

3.1.2 Damped energy exchange

The characteristic polynomial of eqns. (39) is now
P(s):=s*C*+sDC*+ (s*+ A) (s*+sD+B) =0, (49)

its complex roots representing the damping ratios (real parts) and the pulsations
(imaginary parts) of the associated eigenfunctions.

In Figure 6 a pair of roots (the other pair is the complex conjugate) are
drawn as functions of the ratio D/C; the gray scale measures the electro-
mechanical coupling of the associated eigenvectors: black means comparable
electro-mechanical contents. Moreover, the projections of the curves on the
planes {D/C, — Re} and {D/C, Im} are drawn.

We observe that:

1. Increasing the ratio D/C (i.e. the net-resistance) definitively leads to the
uncoupling of the electro-mechanical wave-forms.

11
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2. The projections on the plane {D/C, — Re} show a maximum of the damp-
ing ratio of the root relative to wave-form turning to purely mechanical
content when D/C tends to infinity. This circumstance allows for the de-
termination of the critical value for the parameter D proportional to the
net-resistance.

3. The projections on the plane {D/C, Im} show that varying D the eigen-
frequencies attain a minimal distance; when D/C tends to infinity the
mechanical eigenfrequency tends to v/A, the electric one vanishes.

A further description of the locus of the roots of the characteristic polynomial
(49) can be obtained introducing the following one

Q(s) :=8*C*+ (s + A) (s°+sD+A). (50)

As P and @ are real polynomial their roots can be paired by conjugation having
coincident (negative because D is positive) real parts. Let us call these real parts
6pm, 6pe and 6gm, 6ge. It can be proven that

A>0, B>0, D>0, C>0 = (6gm,0qe) C (0pm,bpe). (51)

Therefore an upper bound for the maximum mechanical damping ratio is ob-
tained by the real parts of the roots of @ when D = 2C and its dimensionless
value is 1/2. These considerations are summarized in Figure 7 where the bold
lines represents the real parts of the root of @ and the dashed ones represent
the real parts of the roots of P when B — A.

Using the approximated condition D = 2C obtained by means of ¢ and
recalling the definitions of D, C, Chp, and L} we get the following estimated
values for the optimal net-resistance:

R = 27%me [ 1 272 gme 1 (52)
N CN 302 MPCN (kee +kC)Ni/2 w? Mp(k)ee'f'kc).

Note that R}, is, in this case, independent of the mode number: this fact will
not hold true when a clamped plate will be considered. Remark that both
the values of the optimal inductance L}, and resistance R}, decrease when a
“more distributed” net-control system is considered (namely when the number
of actuators N4 increases).

When a dissipative net is considered —in eqn. (39) D # 0-, the energy, once
transformed in electric form, is now dissipated and only a fraction transforms
back in mechanical form.

In comparing Figures 5 and 8 one should consider that the displayed energy
dissipation is obtained for a value of the net-resistance which is not the optimal
one.

12
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3.2 Numerical solution for the clamped plate

When considering a completely clamped plate a technical difficulty arises in ap-
plying the criterion for electro-mechanical coupling. Indeed there is not a treat-
able closed form for the eigenfunctions of L,.,; however one can use their close
approximation represented by the product of the eigenfunctions of a clamped-
clamped beam (see the first row in Figure 9); on the other side we still consider
an membrane-like net electrically grounded on its boundary so that the eigen-
functions of L., will not change (second row in Figure 9). The labeling of
the basis in L?(S) we have just chosen trivially parallels the previous one (see
Table 1).

We will apply the coupling criterion to this set of approximated eigenfunc-
tions. The coupling matrix C is no more diagonal, however, due to the simi-
larities between the modes, the matrix C is quasi-diagonal. Figure 10 shows a
representation of the matrix C by means of the gray scale (blank cell means a
vanishing value); the first nine mechanical and the first nine electrical modes
are considered.

The novelty in the case of clamped plate is represented by the possibility of
coupling one mechanical modes with different electrical ones (if the correspond-
ing Chy is non vanishing): indeed note that a simple tuning of the net-inductance
allow to make coincident any two frequencies; however all the electric frequencies
are shifted together (see Figure 11).

In order to use the analysis of the previous section in the present case, we
list in Table 2

o the eigenvalues 14, of the spatial operator L..(g) = Ag with g = 0 on 3§,

o the eigenvalues A; of the spatial operator L., (v) = AAv simply sup-
ported on 98,

e the eigenvalues /\ﬁf) of the spatial operator Ly, (v) = AAv clamped on
as,

o the ratios ¢x = Agcc)/)\k.

k=1 2 3 4 5 6 7 8
ve = (2 +52) 2 5 5 8 10 10 13 13

Fig. 9

Fig. 10

Fig. 11

9
18

e = (12 + j2)? 4 25 25 64 100 100 169 169 324
Al 13.4 558 55.8 121.6 180.2 180.2 282.6 282.6 501.0

Ck 3.35 223 223 190 180 180 167 1.67 1.

Table 2: Compared eigenvalues

13
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The eigenvalues AS:) have been obtained estimating the Rayleight ratio on
the approximated eigenfunctions. Table 2 is used to determine the optimal
inductance and resistance values, namely

MP R, = 2gme _]wi (53)
Ch(i%+j,2l)CN7T2Dp’ Nh_ChCNéDPV Cn’

We conclude this section with two plots of the frequency-response functions.
In them the net-inductances and resistances are tuned respectively on the op-
timal values (L}, Ry;) and (L%, RYs). The black and gray lines plot the
norms of the purely mechanical and purely electric part of the response function,
while the dashed one represents the norm of the coupling part of the response

* —
Nh —

function. Fig. 12
The numerical results confirm the validity of the coupling criterion and as

a consequence of the optimal impedance values. Indeed the electro-mechanical

coupling shows maximal peaks with wider frequency bandwidths when these

optimal values are chosen. Fig. 13
In the numerical simulations the values in Table3 were used. The assumed

performances of PZT actuators are realistic: they concern the ACX actuators

QP20W.

f=1m h=1mm Na=TxT7=49 | gme =28. 10> NV~T

p =2700 Kg m™° | Ey =70 10° GPa | k.. = 0.6 uF kc =1 puF

Table 3: Mechanical and electrical parameters.

4 Conclusions

The device which is proposed in this paper is based on the concept of global
synergic response of a set of PZT actuators to a given mechanical modal form.
This global response is obtained by conceiving an electric network interconnect-
ing the single actuators. The single electric signal produced by one of them is
the potential drop between a node of the electric net and the ground. Thus
PZT actuation is accompanied by an electric waveform which evolves together
with the mechanical one. In order to study the performances of the conceived
system a mathematical model of its dynamic behavior has been developed: it
is obtained by means of an homogenization procedure and therefore it gives
only rough predictions when short wavelengths of the electro-mechanical sig-
nals are considered. In the framework of this model it is proven a criterion
assuring electro-mechanical coupling: it allows for the determination of the net-
impedances maximizing the electromechanical energy exchange. The efficiency
of the device is indicated by the very low damping ratios which it shows when
the optimal net impedance is chosen. This is its main advantage when com-
pared with the devices based on the concept of concentrated actuation (see
(10] and [5]). Also a remarkable decrease of the needed impedance for getting
electro-mechanical coupling is obtained.
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Figure Captions

1. Assembled plate and network.

o

Electric connection scheme.
Low-frequency analogical components.
Elapsed time to transfer energy.
Energy exchange.

. Characteristics roots.

Plot of the polynomial Q(s).

Energy dissipation.

© ® N o o s w

Functional basis for the clamped plate.

10. Representation of the coupling matrix.

11. Electric and mechanical frequencies.

12. Frequency-response function (optimal impedance for mode 1).

13. Frequency-response function (optimal impedance for modes 2 and 3).
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