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Xlim-SIC laboratory - University of Poitiers, France
e-mail: {soulard,carre}@sic.univ-poitiers.fr

ABSTRACT

The Quaternionic Wavelet Transform is a recent improvement of
standard wavelets that has promising theoretical properties. This
new transform has proved its superiority over standard wavelets in
texture analysis, so we propose here to apply it in a wavelet based
image coding process. The main point is the interpretation and cod-
ing of the QWT phase, which is not dealt with in the literature.
At equal bitrates, our algorithm performs better visual quality than
standard wavelet based method.

1. INTRODUCTION

It has been well known since the early 90s that wavelet representa-
tions are strikingly well suited for image coding (see JPEG-2000).
This transform separates the information so that one can code pro-
gressively the global image structure and then the details with a few
coefficients, carrying out scalable bitstreams at high compression
rates.

In 2001, the importance of the Fourier phase for signal repre-
sentation led to an enhancement of the standard wavelet transform
(DWT) : the Complex Wavelet Transform (CWT) [5], whose coef-
ficients have a shift invariant magnitude and a complex phase, giv-
ing them innovating properties. This improvement was furthered in
2004 with the Quaternionic Wavelet Transform (QWT) [4]. Based
on fundamentals brought by T. Bülow in 1999 [3], this represen-
tation - specifically defined for 2D signals - provides a coherent
description of local structures through a shift-invariant magnitude,
analogous to a standard DWT analysis, and a 3-angle 2D phase,
carrying geometric information.

Our previous work has shown superiority of the QWT over
DWT in a texture analysis context [7]. We expect an improve-
ment of wavelet based image coding, thanks to the structural anal-
ysis brought by the QWT phase. The QWT is overcomplete and
its redundancy is 4:1 so it may be thought unadapted to compres-
sion. However this redundancy sorts out the information better than
DWT, so even if we have more coefficients, many of them will be
discarded or hardly quantized so we get in fine a better coding than
with DWT. In particular, the magnitude should contain less signifi-
cant coefficients to code, and the phase should be hardly quantized
without loss of visual quality.

Given the promising theoretical properties of this new trans-
form, we aim at studying its potential for a famous application of
wavelets. Hence we propose to study the QWT in comparison with
standard wavelets, in a compression context, without emphasis on
state of the art techniques.

A necessary first point in image coding is quantization. Present
wavelet based coding methods (EZW, SPIHT, EBCOT, TCE,
SPECK . . . ) that are today the best alternative use quantized co-
efficients. The QWT magnitude can intuitively be processed like
a standard DWT but the main point is the phase quantization - far
from straightforward. With a first QWT quantization algorithm this
work gives an application not did yet to our knowledge and furthers
the practical use of QWT coefficients.

After a presentation of the transform we verify that a part of
the information originally coded in the magnitude has been moved
into the phase; through a study of the magnitude quantization that
compares DWT with QWT. Then the interpretation of the QWT

phase is discussed, and we propose a quantization algorithm that is
compared with DWT in terms of image quality.

2. THE QWT

The Quaternionic Wavelet Transform (QWT) is an orthogonal 2D
filterbank analysis for grayscale images. It provides a quaternionic
scale space analysis, based on fundamental work by Bülow [3].
Bülow showed that complex algebra C is only optimal for handling
1D signals and that 2D signals are best described by embedding
signal processing tools in the more general quaternion algebra H.

Whereas DWT coefficients are real QWT is quaternion valued
i.e. 4-vectors made of one magnitude and a 3-angle phase. Thus the
information is better separated to describe more explicitly the image
content.

In 2004 the Rice University from Houston proposes to use their
dual-tree algorithm to carry out a QWT with perfect reconstruction
filterbanks [4] (that we use in this work). At the same time Bayro
proposes a quaternionic Gabor pyramid [1].

2.1 Evolution of DWT : QWT
A standard wavelet transform (DWT) provides a scale-space analy-
sis of an image; yielding a matrix in which each coefficient is related
to a ‘subband’ (localization in the 2D Fourier domain) and to a posi-
tion in the image. A ‘subband’ means both an oscillation scale (i.e.
a 1D frequency band) and a spatial orientation (i.e. rather vertical,
horizontal or diagonal).

The QWT is an improvement of the DWT providing a richer
scale-space analysis for 2-D signals. Contrary to DWT it is near-
shift invariant and provides a magnitude-phase local analysis of
images. It is based on the 2D generalization of both the Fourier
transform and the analytic signal defined in [3] in the quaternion
algebra H - more adapted than C to describe 2D signals. So in the
one hand the QWT can be viewed like a local ‘2D Quaternionic
Fourier Transform’ (QFT) and in the other hand its subbands are
‘2D Quaternionic Analytic Signals’ associated with bandpass fil-
tered versions of the original signal.

2.2 Definition of the Transform
2.2.1 The Quaternionic 2D Analytic Signal

A quaternion is a generalization of a complex number, related
to 3 imaginary units i, j,k, written q = a + bi + c j + dk, or q =
|q|eiϕ e jθ ekψ in its polar form. It is thus defined by one modulus,
and three angles that we call phase.

The (quaternionic) analytic signal associated with a 2D function
is defined by means of its partial (H1, H2) and total (HT ) Hilbert
transforms (HT) :

fA(x,y) = f (x,y)+ iH1 f (x,y)+ jH2 f (x,y)+ kHT f (x,y)

2.2.2 Quaternionic Wavelets

The mother wavelet is a quaternionic 2D analytic filter, and yields
coefficients that are ‘analytic’. Thus, it inherits the ‘local magni-
tude’ and ‘local phase’ concepts from the 1D analytic signal, very
useful in signal analysis.

Note that the usual interpretation of the magnitude remains
analogous to 1D, as it indicates the relative ‘presence’ of a feature,



Figure 1: The quaternionic wavelet transform of image monarch. From left to right : Original image, Magnitude (intensity inverted for
visual convenience), ϕ ∈ [−π;π], θ ∈ [− π

2 ; π

2 ], ψ ∈ [− π

4 ; π

4 ]. The 3 terms of phase are represented in color, the hue corresponding to the
angle (cyan for 0, red for ±π). Darker zones in phase correspond to negligible magnitude (making phase absurd).

whereas the local phase is now represented by 3 angles that make a
complete description of this 2D feature.

From a practical point of view, if the mother wavelet is sep-
arable i.e. ψ(x,y) = ψh(x)ψh(y), the 2D HT’s are equivalent to
1D HT’s along rows and/or columns. Then considering the 1D
Hilbert pair of wavelets (ψh,ψg = H ψh) and scaling functions
(φh,φg = H φh), the analytic 2D wavelets are written in terms of
separable products.

ψD = ψh(x)ψh(y)+iψg(x)ψh(y)+ jψh(x)ψg(y)+kψg(x)ψg(y)
ψV = φh(x)ψh(y)+iφg(x)ψh(y)+ jφh(x)ψg(y)+kφg(x)ψg(y)
ψH = ψh(x)φh(y)+iψg(x)φh(y)+ jψh(x)φg(y)+kψg(x)φg(y)
φ = φh(x)φh(y)+iφg(x)φh(y)+ jφh(x)φg(y)+kφg(x)φg(y)

This means the decomposition is heavily dependent on the po-
sition of the image with respect to x and y axis (rotation-variance),
and the wavelet is not isotropic, but the advantage is an easy com-
putation with separable filterbanks.

Each subband of the QWT can be seen as the analytic signal
associated with a narrowband1 part of the image. The QWT mag-
nitude |q| is shift-invariant and represents features at any space po-
sition in each frequency subband. The 3 phase angles (ϕ,θ ,ψ)
describe the ‘structure’ of those features. We discuss below the in-
terpretation of these phases.

2.2.3 Filterbank Implementation

The QWT uses the Dual-Tree algorithm [5], a filterbank implemen-
tation that uses a Hilbert pair as a complex 1D wavelet, bringing
shift invariance and analytic coefficients with little redundancy.

Two complementary 1D filter sets lead to four 2D filterbanks
- one pixel shifted each other - providing the near-shift invariance
for a redundancy of only 4:1. Originally combined by Kingsbury to
compute two directional complex analytic wavelets, the 4 outputs
of the Dual-Tree here constitute one 4-valued quaternionic wavelet
analysis, embedding the structural information into a local phase
concept, rather than an oriented separation. As the Dual-Tree makes
an approximation, the QWT coefficients are approximately analytic,
so the extraction of 2-D local amplitude and phase, as well as their
interpretation, are actually approximate. The Fig. 1 shows an exam-
ple of a QWT decomposition.

3. MAGNITUDE CODING

As a preliminary and to be convinced that QWT magnitude and
phase carry complementary information; we first observed the ef-
fect of magnitude quantization with both transforms. The process
is to code QWT (resp. DWT) magnitude by classic uniform quanti-
zation with a fixed step, while keeping exact the phase information

1The 1D analytic signal provides a time analysis considering the entire
frequency spectrum. So in practice, the extracted local (instantaneous) char-
acteristics are only meaningful when the signal itself is narrowband.

(resp. the sign). This first experiment cannot be used in a cod-
ing scheme, but it is a way to verify that the information is better
separated in QWT coefficients. As the QWT phase contains some
rich information about local structures that cannot be carried by the
DWT sign; we should obtain better results with QWT.

3.1 Experimental process
We describe here the procedure we used to produce reconstructions,
which stands for every one showed in this paper :
• Process DWT and/or QWT; The DWT uses biorthogonal CDF

9/7 filters, and the QWT is defined in [4].
• Apply the quantization method to the DWT and/or the 4 out-

puts of QWT, followed by the reconstruction of approximated
values.

• Process reverse DWT and/or QWT.
Because an image coding experiment is strongly dependent on

the image chosen for the test, we use several images (photos) from
the base “LIVE” [6] in their 8 bit grayscale version. For practical
convenience, images were cropped to 512×512.

The quality of the reconstructed image is measured by a classi-
cal Peak Signal to Noise Ratio (PSNR). Our quantization algorithm
is evaluated with rate-distortion curves by calculating the average
number of bits needed to code a coefficient - in number of bits per
pixel (bpp). The original coding of our grayscale images is 8 bpp.

Note that our bitrates are higher than those of a whole coder,
as quantization is only one step of image coding. For example,
the literature commonly consider ‘low bitrates’ around 0.1 bpp, for
complete compression schemes that take into account many depen-
dencies between the coefficients, and use entropy coding. But in our
context a ‘high bitrate’ corresponds to the number of bits needed to
quantize wavelet coefficients and have perfect reconstruction, which
is around 15 bits in practice. So we consider in this paper ‘low bi-
trates’ under 6 bpp.

3.2 Distorted reconstructions
We evaluate the impact of the quantization step size on the recon-
struction, by calculating the PSNR. Table 1 lists some PSNR’s ob-
tained by 5 bits and 8 bits magnitude quantization. With all tested
images the DWT is never significantly superior to QWT - some-
times equivalent. The image sailing1 is slightly better recon-
structed by DWT because an important part of the image is quite
textural (sea surface). The QWT is clearly adapted to code geomet-
ric structures and seems less efficient for describing textures. Some
experiments we made with textural images confirmed this; it is part
of our future work.

Mostly the QWT rate-distortion curve is over the DWT curve.
We can see Fig. 2 that the PSNR of the QWT reconstruction is al-
ways more than 2 dB better than DWT for monarch image. That
means that the QWT phase compensates for the loss of informa-
tion due to magnitude quantization. The example of reconstruction
with 3 bits magnitude quantization shows the obvious superiority of



PSNR (dB)
5 bits 8 bits

Image name DWT QWT DWT QWT
building2 17.0 18.8 26.0 31.2
cemetry 20.2 22.5 29.5 34.9
monarch 24.0 27.6 35.4 40.3
paintedhouse 22.5 24.6 32.7 37.3
parrots 26.4 29.3 36.0 39.4
plane 22.4 22.8 30.1 31.0
sailing1 22.8 22.6 31.1 30.5
sailing2 25.3 28.8 35.6 39.9
Table 1: PSNR’s with magnitude quantization.

QWT, that retrieves the shape of the contours far better than DWT
(See original image Fig. 1). Moreover, as the quaternionic wavelets
are non-oscillating, it reduces considerably the well known oscilla-
tions that usually occur after a non linear wavelet domain process-
ing.

3 bpp with DWT 3 bpp with QWT
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Figure 2: Magnitude quantization.

3.3 Conclusion About Magnitude
The QWT generally allows harder magnitude quantization and the
reconstructions have a smoother aspect with fewer artifacts than
DWT. That confirms that the QWT phase contains far more infor-
mation than the DWT sign; which is a positive result. So if we are
able to quantize this phase so as to allocate a number of bits com-
parable to this of the DWT sign; we can achieve a superior image
representation than DWT. In the sequel we study the QWT phase in
order to quantize it efficiently.

4. THE QWT PHASE

For now, the literature is quite poor about the QWT and the major
difficulty with the use of this transform is the interpretation of the

phase.

4.1 Use of QWT phase

In his thesis [3], Bülow shows the importance of phase in image
analysis, defines a quaternionic Fourier transform (QFT), a quater-
nionic 2D phase and 2D quaternionic analytic Gabor filters.

In a Gabor based texture segmentation, the filtered images are
2D analytic and form a scale-space analysis of the image from
which Bülow extracts magnitudes and local phases at each point
to characterize the texture.

First, due to the QFT shift theorem the two first terms of phase
ϕ and θ describe small shifts of the coded structure, around the
quaternionic coefficient position. This information is analogous to
the classical instantaneous 1D phase that codes an impulse shift.

Note that in 1D, that shift information is equivalent to the struc-
ture information. A phase of 0 or π just means an “impulse” (pos-
itive or negative) and a phase around ± π

2 describes a “step” (ris-
ing or falling) - being in fact the edge of a shifted impulse. In 2D
that shift is not sufficient to describe every structure; in particular
“i2D” structures (e.g. corners, T-junctions) that are more complex
than lines or edges.

The third term ψ completes the structure analysis and is seen as
a texture feature. Bülow found a near-linear relation between ψ and
a “λ” parameter in a superposition of two plane waves defined :

fλ (x,y) = (1−λ)cos(ω1x+ω2y)+λ cos(ω1x−ω2y)

We found three recent references [4, 1, 8] where ϕ and θ are
used in disparity estimation. As the QWT performs local QFT’s the
shift theorem approximately stands for QWT so ϕ and θ code quite
simply a shift of the structure.

In another application of [4] (“wedgelet” representation), ϕ and
θ are used for wedges position and ψ is used for their orientation.

4.2 Distribution of Phase

From our compression point of view it is interesting to observe the
statistic distribution of the QWT phase. So we combined our LIVE
base with the Brodatz Texture album [2] in order to represent a great
variety of images, and the data was cumulated over all images to
have more general statistics.

The histograms Fig. 3 are processed for different scales in each
subband for ϕ , θ and ψ . As we know that phases of low coefficients
have very little meaning and are numerically unstable these cases
were ignored in the processing of histograms; in order to make them
more meaningful. Coefficients which magnitude is less than 2%
of the maximum amplitude are not counted (Empirical threshold
keeping 26% of all the QWT coefficients). If we do not use such
a threshold the distributions are much more “noisy” i.e. a uniform
density is added to all curves.

Note that the distributions of the phase components are strongly
dependent on the subband in which it is observed. A first simple ex-
planation is about the behavior of ϕ and θ in horizontal and vertical
subbands. In those subbands the coded structures are aligned with
x-axis or y-axis. And we know that ϕ and θ can be seen as a 2D
space shift. We must remark that a horizontal structure can hardly
exhibit a horizontal local shift because it is equivalent to the same
structure - same remark for vertical - so only one of the two first
terms is significant for horizontal and vertical structures. A second
explanation is about ψ . We also know that ψ is around ± π

4 when
the structure is diagonal, and around 0 else. Then the horizontal and
vertical subbands contain structures that are never diagonal, so the
ψ phase is always around 0.

The main point of the histograms analysis is that there are a
great variety of cases within QWT coefficients, obviously leading
to an adaptive quantization that we propose now.
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Figure 3: Histograms of QWT phase. The curves are arranged the way the QWT subbands are in Fig. 1.

5. PHASE QUANTIZATION

5.1 Systematic Results
Experimentally, we observe that a uniform quantization of each
term of the QWT phase gives a monotonic relation between the
quantization step and the PSNR. This holds for any term separately
and also for simultaneous quantization of the 3 terms. But know-
ing that there are many different cases of phase these global results
are far from being enough so we now present how to exploit this
variety.

5.2 Adaptive Quantization Ideas
First, it is straightforward that small coefficients do not need their
phase to be coded. Depending on the chosen magnitude quantifica-
tion a QWT may have many zeroes so this point is important.

Considering only first scale - which represents 3/4 of the data
- we can assume that a precise description of the local shift (ϕ,θ)
is useless because the resolution of the subband is just twice lower
than image resolution. The impact of a wrongly coded shift is very
low in this case so we can quantize those phases very roughly too.
More generally, it may be intuitive to quantize the phase with a
smaller step when scale increases.

5.3 Our Proposed Phase Quantization
Based on our QWT phase analysis we propose the following phase
quantization with arbitrary values.

5.3.1 Zero Coefficients

For zero coefficients we do not code the phase so the bit alloca-
tion is just that for the magnitude. If the magnitude quantization is
hard then there are many zeroes; otherwise we use an experimental
threshold (0.04% of the max) that guarantees perfect reconstruction
when phase is not coded under it.

5.3.2 High Frequencies

For coefficients of first scale :
• Horizontal subband : ϕ is set in {− 3π

4 ; π

4 } (1 bit) and θ is set in
{− π

4 ; π

4 } (1 bit). ψ is set to zero (0 bit)
• Vertical subband : ϕ is set in {− 3π

4 ;− π

4 ; π

4 ; 3π

4 } (2 bit), θ = π

4 ,
ψ = 0 (0 bit).

• Diagonal subband : ϕ is set in {− 3π

4 ;− π

4 ; π

4 ; 3π

4 } (2 bit), θ is
set in {− π

4 ; π

4 } (1 bit), and ψ is set in {− π

8 ; π

8 } (1 bit).

That reaches a total of 8 bits to code 3 phases in scale 1 knowing
that many coefficients are negligible at this scale; so we have a very
light code here.

For other scales, the quantization step is adaptive :

• Horizontal subband : the couple (ϕ,ψ) is coded on 4 bits and θ

is quantized more precisely, on “1+ scale” bits
• Vertical subband : the couple (θ ,ψ) is coded on 3 bits and ϕ is

quantized more precisely, on “2+ scale” bits.
• Diagonal subband : the couple (ϕ,θ) is coded on 5 bits and ψ

is quantized more precisely, on “scale” bits.

Quantization centroids are fitted at multiples of π

4 .

6. MAIN RESULTS
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Figure 5: Rate-distortion curves from our final QWT coder, for im-
ages monarch and sailing2.

We now present the performance of our coding algorithm based
on the ideas presented above. It quantizes uniformly the magnitude
with the number of bits as a parameter and an adaptive phase quan-
tization is performed with respect to the description above.

To compare with standard wavelets we force the DWT and the
QWT processes to allocate the same number of bits for a same im-
age. More precisely we first choose a fixed magnitude bitrate to
code the QWT while calculating the bitrate needed for phase cod-
ing to get the total exact bitrate. After that we first quantize DWT
magnitude with a similar bitrate. By counting the numerous small
DWT coefficients that do not need their sign to be coded the actual
bitrate is processed. Then the DWT magnitude quantization step
is adjusted until the DWT and QWT bitrates are similar (conver-
gence).



4.08 bits DWT 4.08 bits QWT sailing2 5.12 bits DWT 5.12 bits QWT

monarch 4.08 bits DWT 4.08 bits QWT 7.58 bits DWT 7.58 bits QWT

sailing2 5.12 bits DWT 5.12 bits QWT 7.43 bits DWT 7.43 bits QWT

Figure 4: Final coding results with zooms.

6.1 Result Analysis

Results on the LIVE base are generally good especially at ‘lower
bitrates’ (< 6 bpp, see 3.1). The Fig. 5 shows rate-distortion curves
for two images and validates our algorithm with the objective qual-
ity measure “PSNR”. The reconstructions Fig. 4 show the superi-
ority of QWT. The reason is that the QWT phase needs a very low
number of bits. So the advantage of the magnitude presented in sec-
tion 3 is not lost, thanks to a coding of the phase as light as the DWT
sign. Our QWT coding preserves better contour shapes and has no
oscillations; this is a great advantage over DWT.

Nevertheless, recall that the PSNR quality measure may be in-
efficient in some cases as it does not take into account the human
visual system. That is the reason of the seeming superiority of DWT
for ‘higher bitrates’ (> 6 bpp, see 3.1) whereas the reconstructions
show a rather equivalent visual quality. See zoomed reconstruc-
tions at 7 bpp Fig. 4 : there is a difference but the quality is actually
subjective. In fact, the distortion brought by the QWT is smooth
and invisible but still present and numerically influential on PSNR.
Moreover, our implementation has some inherent invisible phase
distortion that does not get more accurate with the bitrate param-
eter. At high bitrate, this little incompressible phase distortion is
detected by the PSNR, while DWT keeps on improving the quality.

A last experimental point is to validate the algorithm. Gener-
ally, for a fixed magnitude coding, the image reconstructed with the
exact phase is visually the same than this with the coded phase. That
means our phase coding keeps all important information.

So in spite of the rate-distortion curves we can state that the
QWT coding process outperforms the standard wavelets.

7. CONCLUSION

We proposed an innovating wavelet based coding algorithm using
the new Quaternionic Wavelet Transform. This first step in apply-
ing QWT for image coding turns out to confirm its superiority over
standard wavelets. The coded images has visually more acceptable
distortion at lower bitrates with smooth degradations, preservation
of contour shape, and no oscillations; and the quality is equivalent
at higher bitrates.

Here are some ways of improvement. By studying analytical
expressions of QWT magnitude and phase pdf’s - starting from

assumptions about cartesian terms that are classical wavelet trans-
forms - one may optimize quantization and so enhance reconstruc-
tion. Moreover the well known dependencies of standard wavelets
coefficients across scales are even stronger with the QWT redun-
dancy and may be used to improve compression rate. The final step
is to integrate this quantization method in a whole coding scheme
to see if the algorithm is well suited to entropy coding.

The study of monogenic wavelets - a theoretic improvement of
the QWT more complicated to implement - is part of our prospects
in image coding.
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