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ANALYSIS OF A DISCONTINUOUS GALERKIN METHOD FOR

HETEROGENEOUS DIFFUSION PROBLEMS WITH

LOW-REGULARITY SOLUTIONS

DANIELE A. DI PIETRO1 AND ALEXANDRE ERN2

Abstrat. We study the onvergene of the Symmetri Weighted Interior
Penalty disontinuous Galerkin method for heterogeneous di�usion problems
with low-regularity solutions only belonging to W 2,p with p ∈ (1, 2]. In 2d we
infer an optimal algebrai onvergene rate. In 3d we ahieve the same result
for p > 6/5 , and for p ∈ (1, 6/5] we prove onvergene without algebrai rate.

1. Introdution

In this work we analyze the onvergene of a disontinuous Galerkin (dG) ap-

proximation to low-regularity solutions of the model problem

(1)
−∇·(κ∇u) = f in Ω,

u = 0 on ∂Ω,

where, for d ∈ {2, 3}, Ω denotes a bounded onneted polyhedral domain with

boundary ∂Ω, f ∈ L2(Ω) is the foring term, and κ ∈ L∞(Ω) is the di�usion

oe�ient suh that λ ≤ κ ≤ λ a.e. in Ω for positive real numbers λ and λ.
Owing to the Lax�Milgram Lemma, this problem is well-posed in the energy spae

V := H1
0 (Ω).

In pratie, the di�usion oe�ient has more regularity than just belonging to

L∞(Ω). In what follows, we assume that there is a partition PΩ := {Ωi}1≤i≤NΩ
of

Ω suh that

(i) eah Ωi, 1 ≤ i ≤ NΩ, is an open polyhedron;

(ii) the restrition of κ to eah Ωi, 1 ≤ i ≤ NΩ, is onstant.

The regularity of the exat solution for interfae problems mathing the above

assumption has been studied by Niaise and Sändig [13℄, where it is proven that

(2) There exists p ∈ (1, 2] s.t. u ∈ V† := W 2,p(PΩ),

where W 2,p(PΩ) denotes the broken Sobolev spae spanned by those funtions v
suh that v|Ωi

∈W 2,p(Ωi) for all 1 ≤ i ≤ NΩ. However, up to date, the onvergene

analysis of dG methods for the interfae problem (1) has generally hinged on a more

stringent regularity assumption on the exat solution, namely u ∈ H3/2+ǫ(PΩ) with
ǫ > 0. The goal of this paper is to �ll the gap by using only the regularity (2). We

fully ahieve this goal in 2d, whereby we derive energy norm error estimates with

optimal algebrai onvergene rates. A similar result has been established reently

by Wihler and Rivière [18℄ in the simpler ase of the Laplae equation in 2d. As
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in [18℄ our analysis hinges on disrete stability, strong onsisteny and bounded-

ness of the disrete bilinear form, but handling the heterogeneity of the di�usion

oe�ient requires speial are to ahieve robustness. The boundedness property is

also formulated in a somewhat di�erent way. In 3d the situation is more deliate.

For p ∈ (6/5, 2] we also derive optimal algebrai onvergene rates for the energy

norm error. In this ase, owing to the Sobolev embedding, the exat solution is

indeed in H1+α(PΩ) with α > 0. For brevity, we treat the 2d ase with p ∈ (1, 2]
and the 3d ase with p ∈ (6/5, 2] simultaneously; the analysis readily extends to

p ∈ (2d/d+2, 2] in any spae dimension. Finally, in 3d with p ∈ (1, 6/5], we present

for the sake of ompleteness a onvergene proof without algebrai rates. The anal-

ysis, valid in any spae dimension, follows the ompatness argument introdued

in [5℄. Herein, we onsider shape-regular meshes. An alternative approah based on

geometrially re�ned meshes has been investigated, e.g., by Wihler, Frauenfelder,

and Shwab [17℄.

The fous is here on the Symmetri Weighted Interior Penalty (SWIP) dG

method to approximate the model problem (1) (aounting for variations in sym-

metry is straightforward). The SWIP method has been introdued in the more

general ontext of di�usion-advetion-reation problems by Di Pietro, Ern, and

Guermond [6℄ and Ern, Stephansen, and Zunino [9℄. For the model problem (1), the

di�erenes with respet to the lassial Symmetri Interior Penalty (SIP) method

of Arnold [2℄ lay in the use of di�usion-dependent, weighted average trae operators

and of a penalty parameter proportional to the harmoni average of the di�usion

at interfaes. This allows one to infer energy norm error estimates with multi-

pliative onstant independent of di�usion heterogeneity, whih makes the SWIP

method partiularly suited to di�usion-advetion problems with sharp internal lay-

ers. The possibility of using non-arithmeti averages in dG methods has been

pointed out and used in various ontexts, e.g., by Stenberg [14℄ and by Heinrih

and o-workers [11, 10, 12℄. The idea of onneting the atual value of the weights

to the di�usion oe�ient was originally proposed by Burman and Zunino [4℄ in

the ontext of mortaring tehniques for a singularly perturbed di�usion-advetion

equation.

The material is organized as follows. In �2 we present the disrete setting.

In �3 we derive algebrai onvergene rates for exat solutions in W 2,p(PΩ) with

p ∈ (2d/d+2, 2]. Finally, the onvergene for the remaining ases is overed in �4.

Numerial results have already been presented in [8, 15℄ for the well-known 2d four-

orner problem, whereby the onvergene rates derived herein have been observed

numerially.

2. The disrete setting

2.1. Meshes and faes. Let (Th)h∈H be a sequene of re�ned simpliial meshes

overing Ω exatly, where H denotes a ountable set having zero as unique au-

mulation point. Meshes an possess hanging nodes. Quite importantly, meshes are

assumed to be ompatible with the partition PΩ, that is, suh that for all h ∈ H
and all T ∈ Th, there exists a unique Ωi of the partition PΩ suh that T ⊂ Ωi.

Sine the di�usion oe�ient is pieewise onstant on the partition PΩ, it is also

pieewise onstant on eah ompatible mesh.

For a mesh element T ∈ Th, hT denotes its diameter and nT its unit outward

normal de�ned a.e. on ∂T . The mesh-size is h := maxT∈Th
hT . The following



DG METHOD FOR LOW-REGULARITY SOLUTIONS 3

T

Figure 1. The set FT for the element T (shaded) ontains in this

ase the four mesh faes with verties in bold line

de�nitions apply for every h ∈ H. For every integer k ≥ 0, we introdue the spae

Pk
d(Th) :=

{

vh ∈ L2(Ω) | ∀T ∈ Th, vh|T ∈ P
k
d(T )

}

,

where Pk
d(T ) in spanned by the restrition to T of polynomial funtions in d variables

of total degree ≤ k. We say that a (losed) subset F of Ω is a mesh fae if F
has positive (d − 1)-dimensional measure and if one of the two following mutually

exlusive onditions is satis�ed:

(i) There are distint mesh elements T1, T2 ∈ Th suh that F = ∂T1∩∂T2; in suh

ase, F is alled an interfae and we set nF := nT1
, the unit normal vetor to

F pointing from T1 to T2 (the orientation of nF is arbitrary depending on the

hoie of T1 and T2, but kept �xed in what follows);

(ii) There is T ∈ Th suh that F = ∂T ∩ ∂Ω; in suh ase, F is alled a boundary

fae and we set nF := n, the outward unit normal to ∂Ω.

Interfaes are olleted in the set F i
h, boundary faes in Fb

h , and mesh faes in

Fh := F i
h ∪ F

b
h . Moreover, for every mesh element T ∈ Th, the set

FT := {F ∈ Fh | F ⊂ ∂T}

ontains the mesh faes omposing the boundary of T . As nonmathing meshes are

allowed, the ardinal number of FT an be larger than (d + 1); see Figure 1. In

what follows, we assume that (Th)h∈H is an admissible mesh sequene, that is, Th

is shape-regular in the usual sense and ontat-regular meaning that there exists C
independent of the mesh-size h suh that, for all T ∈ Th and all F ∈ FT , hT ≤ ChF ,

the diameter of F . Letting

(3) N∂ := max
h∈H, T∈Th

card(FT ),

ontat regularity implies that N∂ is bounded.

2.2. Jumps and weighted averages.

De�nition 2.1 (Jumps). Let v be a salar-valued funtion de�ned on Ω and assume

that v is smooth enough to admit on all F ∈ Fh a (possibly two-valued) trae. Then,

if F ∈ F i
h with F = ∂T1 ∩ ∂T2, the jump of v at F is de�ned for a.e. x ∈ F as

JvKF (x) := v|T1
(x)− v|T2

(x),

while if F ∈ Fb
h with F = ∂T ∩ ∂Ω, we set JvKF (x) := v|T (x).

De�nition 2.2 (Weighted averages). Let v be a salar-valued funtion de�ned on Ω
and assume that v is smooth enough to admit on all F ∈ Fh a (possibly two-valued)

trae. To any interfae F ∈ F i
h with F = ∂T1 ∩ ∂T2, we assign two non-negative

real numbers ωT1,F and ωT2,F suh that

ωT1,F + ωT2,F = 1.
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Then, the weighted average of v at F ∈ F i
h is de�ned for a.e. x ∈ F as

{v}ω,F (x) := ωT1,F v|T1
(x) + ωT2,F v|T2

(x).

while on boundary faes F ∈ Fb
h with F = ∂T ∩ ∂Ω, we set {v}ω,F (x) := v|T (x).

Clearly, the usual (arithmeti) average at interfaes orresponds to the partiular

hoie ωT1,F = ωT1,F = 1
2 . Heneforth, we onsider a spei� di�usion-dependent

hoie for the weights, namely for all F ∈ F i
h, F = ∂T1 ∩ ∂T2,

ωT1,F :=
κ2

κ1 + κ2
, ωT2,F :=

κ1

κ1 + κ2
,

where κi = κ|Ti
, i ∈ {1, 2}. In partiular, the ase of homogeneous di�usion yields

the usual (arithmeti) averages. When v is vetor-valued, the above average and

jump operators at omponentwise. Whenever no onfusion an arise, both the

subsript F and the variable x are omitted.

2.3. The disrete problem. We aim at approximating the exat solution u of (1)

by a dG method using the disrete spae

Vh := Pk
d(Th), k ≥ 1.

De�ne for all (vh, wh) ∈ Vh × Vh,

ah(vh, wh) :=

∫

Ω

κ∇hvh·∇hwh +
∑

F∈Fh

η
γκ,F

hF

∫

F

JvhKJwhK(4)

−
∑

F∈Fh

∫

F

{κ∇hvh}ω·nF JwhK−
∑

F∈Fh

∫

F

JvhK{κ∇hwh}ω·nF ,

where ∇h denotes the usual broken gradient operator on Th, η > 0 is a user-

dependent penalty parameter (to be hosen large enough to ensure disrete stability,

see Lemma 3.4), while the di�usion-dependent penalty parameter γκ,F is suh that

for all F ∈ F i
h with F = ∂T1 ∩ ∂T2,

γκ,F :=
2κ1κ2

κ1 + κ2
,

where, as above, κi = κ|Ti
, i ∈ {1, 2}, while for all F ∈ Fb

h , F = ∂T ∩ ∂Ω,

γκ,F := κ|T .

We notie that the above hoie for the penalty parameter γκ,F on interfaes or-

responds to the harmoni mean of the two di�usion oe�ients on either side of

the interfae. In what follows, the terms in the seond line of (4) are respetively

referred to as onsisteny and symmetry terms, as they serve the enforement of the

orresponding property at the disrete level. The bilinear form ah de�ned by (4)

is termed the Symmetri Weighted Interior Penalty (SWIP) bilinear form [6, 9℄.

Whenever κ is onstant in Ω, the usual (arithmeti) averages are reovered in the

onsisteny and symmetry terms. Finally, the disrete problem is

(5) Find uh ∈ Vh s.t. ah(uh, vh) =

∫

Ω

fvh for all vh ∈ Vh.
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2.4. Extension of the disrete bilinear form. To assert onsisteny for the

disrete problem (5) in the usual strong form, we need to plug the exat solution

u into the �rst argument of the bilinear form ah. This requires in turn to give a

meaning to the normal gradient of u independently on eah mesh fae. The fat

that −∆u = f ∈ L2(T ) for all T ∈ Th is insu�ient, as it only yields ∇u·nT ∈
H−1/2(∂T ). The regularity (2) is thus ruial, sine owing to mesh ompatibility, it

implies for all v ∈ V†, all T ∈ Th, and all F ∈ FT ,

(6) ∇v·nT ∈ Lp(F ).

As a result, the disrete bilinear form ah an be extended to V†h × Vh with

V†h := V† + Vh,

and V† de�ned by (2).

3. Convergene analysis in 2d and in 3d for p ∈ (6/5, 2]

In this setion we prove optimal onvergene rates for the method (5) in 2d and

in 3d for p > 6/5, that is, p > 2d/d+2. Owing to the Sobolev embedding theorem,

the regularity (2) yields

(7) u ∈ H1+α(PΩ) with α := 1 + d

(

1

2
−

1

p

)

> 0.

The error analysis in this setion proeeds by establishing onsisteny, disrete

stability, and boundedness for the SWIP bilinear form ah. The error is measured

in the following energy norm: For all v ∈ V†h,

(8) |||v|||κ :=
(

‖κ
1/2∇hv‖2[L2(Ω)]d + |v|2J,κ

)1/2

,

with jump seminorm

(9) |v|J,κ :=

(

∑

F∈Fh

|v|2J,κ,F

)1/2

, |v|J,κ,F :=

(

γκ,F

hF

)1/2

‖JvK‖L2(F ).

3.1. Tehnial results. This setion ollets some useful tehnial results. We

reall the following inverse and trae inequalities (see, e.g., [3, 7℄): For all yh ∈ Vh

and all F ∈ Fh,

(10) ‖yh‖Lq(F ) ≤ Cqh
(d−1)( 1

q
− 1

2
)

F ‖yh‖L2(F ),

and the following trae inequality: For all yh ∈ Vh, all T ∈ Th, and all F ∈ FT ,

(11) h
1/2

F ‖yh‖L2(F ) ≤ Ctr‖yh‖L2(T ).

The quantity Ctr only depends on d, k, and mesh regularity, while there holds

Cq ≤ max(1, C∞) [16℄ where C∞ only depends on d, k, and mesh regularity. For a

real number r ∈ (1,+∞), we set

βr :=
1

2
+ (d− 1)

(

1

2
−

1

r

)

,

and observe that for r = 2, β2 = 1
2 . We onsider the following seminorm

|v|†,κ,r :=

(

∑

T∈Th

∑

F∈FT

hrβr

F ‖κ
1/2∇v|T ·nF ‖

r
Lr(F )

)1/r

.
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In partiular, for r = 2,

|v|†,κ,2 =

(

∑

T∈Th

∑

F∈FT

hF ‖κ
1/2∇v|T ·nF ‖

2
L2(F )

)1/2

.

The main result of this setion is a bound on the onsisteny and symmetry terms

in the SWIP bilinear form ah. In what follows, we set q := p
p−1 so that 1

p + 1
q = 1

and q ∈ [2,+∞).

Lemma 3.1 (Bound on onsisteny and symmetry terms). There holds:

(i) For all (vh, w) ∈ Vh × V†h,

(12)

∣

∣

∣

∣

∣

∑

F∈Fh

∫

F

{κ∇hvh}ω·nF JwK

∣

∣

∣

∣

∣

≤ |vh|†,κ,2|w|J,κ.

(ii) For all (v, wh) ∈ V†h × Vh,

(13)

∣

∣

∣

∣

∣

∑

F∈Fh

∫

F

{κ∇hv}ω·nF JwhK

∣

∣

∣

∣

∣

≤ 2
1

2
− 1

q Cq|v|†,κ,p|wh|J,κ.

Proof. (i) Proof of (12). Let (vh, w) ∈ Vh×V†h. For all F ∈ F
i
h with F = ∂T1∩∂T2,

set ωi = ωTi,F , κi = κ|Ti
, and ai = κ

1/2

i (∇hvh)|Ti
·nF , i ∈ {1, 2}. The Cauhy�

Shwarz inequality yields
∫

F

{κ∇hvh}ω·nF JwK =

∫

F

(ω1κ
1/2

1 a1 + ω2κ
1/2

2 a2)JwK

≤

(

1

2
hF (‖a1‖

2
L2(F ) + ‖a2‖

2
L2(F ))

)1/2

×
(

2(ω2
1κ1 + ω2

2κ2)h
−1
F ‖JwK‖2L2(F )

)1/2

,

and sine 2(ω2
1κ1 + ω2

2κ2) = γκ,F , it is inferred that

∫

F

{κ∇hvh}ω·nF JwK ≤

(

1

2
hF (‖a1‖

2
L2(F ) + ‖a2‖

2
L2(F ))

)1/2

|w|J,κ,F .

Moreover, for all F ∈ Fb
h with F = ∂T ∩ ∂Ω and a = (κ1/2∇hvh)|T ·nF ,

∫

F

{κ∇hvh}ω·nF JwK ≤ h
1/2

F ‖a‖L2(F )|w|J,κ,F .

Summing over the mesh faes, using the Cauhy�Shwarz inequality, and regrouping

the fae ontributions of eah mesh element yields (12).

(ii) Proof of (13). Let (v, wh) ∈ V†h × Vh. For all F ∈ F i
h, letting now ai =

κ
1/2

i (∇hv)|Ti
·nF , i ∈ {1, 2}, Hölder's inequality yields

∫

F

{κ∇hv}ω·nF JwhK ≤

(

1

2
h

pβp

F (‖a1‖
p
Lp(F ) + ‖a2‖

p
Lp(F ))

)1/p

× 2
1/p

(

(ωq
1κ

q/2

1 + ωq
2κ

q/2

2 )h
−qβp

F ‖JwhK‖qLq(F )

)1/q

.

We observe that sine q ≥ 2,

(ωq
1κ

q/2

1 + ωq
2κ

q/2

2 ) =
(κ1κ2)

q/2

(κ1 + κ2)q
(κ

q/2

1 + κ
q/2

2 ) ≤
(κ1κ2)

q/2

(κ1 + κ2)q
(κ1 + κ2)

q/2 = 2−
q/2γ

q/2

κ,F .
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Moreover, owing to the inverse inequality (10) and sine 1
p + 1

q = 1,

h
−βp

F ‖JwhK‖Lq(F ) ≤ Cqh
−βp

F h
(d−1)( 1

q
− 1

2
)

F ‖JwhK‖L2(F ) = Cqh
−1/2

F ‖JwhK‖L2(F ).

Hene, sine 2
1

p
− 1

2 = 2
1

2
− 1

q ,
∫

F

{κ∇hv}ω·nF JwhK ≤

(

1

2
h

pβp

F (‖a1‖
p
Lp(F ) + ‖a2‖

p
Lp(F ))

)1/p

× 2
1

2
− 1

q Cq|wh|J,κ,F .

Moreover, for all F ∈ Fb
h , proeeding as above with a = (κ1/2∇hv)|T ·nF yields

∫

F

{κ∇hv}ω·nF JwhK ≤
(

h
pβp

F ‖a‖pLp(F )

)1/p

× Cq|wh|J,κ,F .

Summing over mesh faes, applying one last time Hölder's inequality, and regroup-

ing the fae ontributions of eah mesh element (sine 1 ≤ 2
1

2
− 1

q for boundary

faes), we infer
∣

∣

∣

∣

∣

∑

F∈Fh

∫

F

{κ∇hv}ω·nF JwhK

∣

∣

∣

∣

∣

≤ |v|†,κ,p × 2
1

2
− 1

q Cq

(

∑

F∈Fh

|wh|
q
J,κ,F

)1/q

,

and sine q ≥ 2, we obtain
(

∑

F∈Fh

|wh|
q
J,κ,F

)1/q

≤

(

∑

F∈Fh

|wh|
2
J,κ,F

)1/2

= |wh|J,κ,

thereby yielding (13). �

3.2. Consisteny.

Lemma 3.2 (Jumps of exat solution). The exat solution u is suh that

JuK = 0 ∀F ∈ Fh,(14)

Jκ∇uK·nF = 0 ∀F ∈ F i
h.(15)

Proof. Property (14) is lassial for funtions in H1
0 (Ω). To prove (15), let ϕ ∈

C∞
0 (Ω). Sine −∇·(κ∇u) = f ∈ L2(Ω),

∫

Ω

(−∇·(κ∇u))ϕ =

∫

Ω

κ∇u·∇ϕ.

Furthermore, we obtain using the Green theorem and (6), for all T ∈ Th,
∫

T

(−∇·(κ∇u))ϕ =

∫

T

κ∇u·∇ϕ−

∫

∂T

(κ∇u·nT )ϕ.

Summing over mesh elements and aounting for the fat that ϕ vanishes on ∂Ω
yields

∑

F∈F i

h

∫

F

(Jκ∇uK·nF )ϕ = 0,

whene the assertion is inferred by hoosing the support of ϕ overing a single

interfae and using a density argument. �

Lemma 3.3 (Consisteny). For all wh ∈ Vh,

ah(u,wh) =

∫

Ω

fwh.



8 D. A. DI PIETRO AND A. ERN

Proof. Plug u into the �rst argument of the bilinear form ah given by (4). Inte-

grating by parts the �rst term yields

(16)

∫

Ω

κ∇u·∇hwh = −
∑

T∈Th

∫

T

∇·(κ∇u)wh +
∑

T∈Th

∫

∂T

κ(∇u·nT )wh.

Rewriting the seond term on the right-hand side of the above expression as a sum

over mesh faes leads to
∑

T∈Th

∫

∂T

κ(∇u·nT )wh =
∑

F∈F i

h

∫

F

J(κ∇u)whK·nF +
∑

F∈Fb

h

∫

F

κ(∇u·n)wh.

We now observe that for all F ∈ F i
h,

J(κ∇u)whK = {κ∇u}ωJwhK + Jκ∇uK{wh}ω,

where {wh}ω := ωT2,F wh|T1
+ ωT1,F wh|T2

. To prove this identity, we set ai =
(κ∇u)|Ti

, bi = wh|Ti
, ωi = ωTi,F , i ∈ {1, 2}, so that

J(κ∇u)whK = a1b1 − a2b2

= (ω1a1 + ω2a2)(b1 − b2) + (a1 − a2)(ω2b1 + ω1b2)

= {κ∇u}ωJwhK + Jκ∇uK{wh}ω,

sine ω1 + ω2 = 1. As a result, aounting for boundary faes,

∑

T∈Th

∫

∂T

κ(∇u·nT )wh =
∑

F∈Fh

∫

F

{κ∇u}ω·nF JwhK +
∑

F∈F i

h

∫

F

Jκ∇uK·nF {wh}ω.

Combining this expression with (4) and (16) yields

ah(u,wh) = −
∑

T∈Th

∫

T

∇·(κ∇u)wh +
∑

F∈Fh

η
γκ,F

hF

∫

F

JuKJwhK

+
∑

F∈F i

h

∫

F

Jκ∇uK·nF {wh}ω −
∑

F∈Fh

∫

F

JuK{κ∇hwh}ω·nF .

This yields the assertion owing to (14)�(15) and to −∇·(κ∇u) = f in Ω. �

3.3. Stability. We now establish the disrete oerivity of the SWIP bilinear form

under the usual assumption that the penalty parameter η is large enough. An im-

portant point is that the minimal threshold on the penalty parameter is independent

of the di�usion oe�ient.

Lemma 3.4 (Disrete oerivity). For all η > C2
trN∂ , the SWIP bilinear form ah

is oerive on Vh with respet to the |||·|||κ-norm, i.e.,

∀vh ∈ Vh, ah(vh, vh) ≥ Csta|||vh|||
2
κ,

with Csta := (η − C2
trN∂){max(1/2, η + C2

trN∂)}−1.

Proof. Let vh ∈ Vh. We �rst observe that

ah(vh, vh) = ‖κ
1/2∇hvh‖

2
[L2(Ω)]d − 2

∑

F∈Fh

∫

F

{κ∇hvh}ω·nF JvhK + η|vh|
2
J,κ,

and bound the seond term on the right-hand side using (12) to obtain

ah(vh, vh) ≥ ‖κ
1/2∇hvh‖

2
[L2(Ω)]d − 2|vh|†,κ,2|vh|J,κ + η|vh|

2
J,κ.
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Owing to the disrete trae inequality (11), we readily infer

(17) |vh|†,κ,2 ≤ CtrN
1/2

∂ ‖κ
1/2∇hvh‖[L2(Ω)]d .

Using the inequality 2ab ≤ ǫa2 + (1/ǫ)b2 valid for any ǫ > 0 yields

ah(vh, vh) ≥
(

1− C2
trN∂ǫ

)

‖κ
1/2∇hvh‖

2
[L2(Ω)]d + (η − 1/ǫ) |vh|

2
J,κ.

It now su�es to take ǫ = 2(η + C2
trN∂)−1 to infer the assertion. �

As a straightforward onsequene of the Lax�Milgram Lemma, Lemma 3.4 yields

the well-posedness of the disrete problem (5).

3.4. Boundedness. We onsider the following additional norm: For all v ∈ V†h,

|||v|||κ,† := |||v|||κ + |v|†,κ,p.

Lemma 3.5 (Boundedness). There holds

∀(v, wh) ∈ V†h × Vh, ah(v, wh) ≤ Cbnd|||v|||κ,† |||wh|||κ.

with Cbnd = 1 + η + 2
1

2
− 1

q Cq + CtrN
1/2

∂

Proof. Let (v, wh) ∈ V†h × Vh and denote by T1, . . . ,T4 the four terms on the

right-hand side of (4). Using the Cauhy�Shwarz inequality yields

|T1 + T2| ≤ (1 + η)|||v|||κ|||wh|||κ ≤ (1 + η)|||v|||κ,† |||wh|||κ.

Moreover, owing to the bound (13),

|T3| ≤ 2
1

2
− 1

q Cq|v|†,κ,p|wh|J,κ ≤ 2
1

2
− 1

q Cq|||v|||κ,† |||wh|||κ.

Finally, using the bounds (12) and (17) leads to

|T4| ≤ |v|J,κ|wh|†,κ,2 ≤ CtrN
1/2

∂ |v|J,κ‖κ
1/2∇hwh‖[L2(Ω)]d ≤ CtrN

1/2

∂ |||v|||κ|||wh|||κ.

Colleting the above bounds yields the assertion. �

3.5. Convergene.

Theorem 3.6 (|||·|||κ-norm error estimate). Assume η > C2
trN∂ . There holds

(18) |||u− uh|||κ ≤ C inf
yh∈Vh

|||u− yh|||κ,† ,

with C = 1 + C−1
staCbnd. Moreover, realling the de�nition (7) of α,

(19) |||u− uh|||κ .

(

∑

T∈Th

‖κ‖
p

2

L∞(T )h
pα
T ‖u‖

p
W 2,p(T )

)1/p

,

yielding, in partiular,

|||u− uh|||κ . λ
1/2

hα‖u‖W 2,p(Th).

Proof. (i) Proof of (18). Let yh ∈ Vh. Owing to disrete stability and onsisteny,

|||uh − yh|||κ ≤ C−1
sta sup

wh∈Vh\{0}

ah(uh − yh, wh)

|||wh|||κ
= C−1

sta sup
wh∈Vh\{0}

ah(u− yh, wh)

|||wh|||κ
.

Hene, owing to boundedness,

|||uh − yh|||κ ≤ C−1
staCbnd|||u− yh|||κ,† .

Estimate (18) then results from the triangle inequality, the fat that |||u − yh|||κ ≤
|||u− yh|||κ,† , and that yh is arbitrary in Vh.
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(ii) To prove (19), we use (18) with yh = πhu where πh denotes the L2-orthogonal

projetion onto Vh. For all T ∈ Th, using the Sobolev embedding W 1,p(T ) →֒ L2(T )
sine p > 2d

d+2 together with interpolation properties in W 2,p(T ), it an be shown

that

h−1
T ‖u− yh‖L2(T ) + ‖∇h(u− yh)‖[L2(T )]d . h

1+d( 1

2
− 1

p
)

T ‖u‖W 2,p(T ).

Hene, sine γκ,F ≤ min(κ|T1
, κ|T2

) for all F ∈ F i
h with F = ∂T1 ∩ ∂T2, JyhK =

Ju− yhK on all F ∈ Fh, and ‖v‖L2(F ) . ‖v‖
1/2

L2(T )‖v‖
1/2

H1(T ) for all T ∈ Th, F ∈ FT ,

and v ∈ H1(T ), we infer

|||u− yh|||κ .

(

∑

T∈Th

‖κ‖L∞(T )h
2+d(1− 2

p
)

T ‖u‖2W 2,p(T )

)1/2

≤

(

∑

T∈Th

‖κ‖
p

2

L∞(T )h
p[1+d( 1

2
− 1

p
)]

T ‖u‖pW 2,p(T )

)1/p

,

sine for non-negative real numbers (aT )T∈Th
, (
∑

T∈Th
a2

T )1/2 ≤ (
∑

T∈Th
ap

T )1/p.

Moreover, sine ‖v‖Lp(F ) . ‖v‖
1− 1

p

Lp(T )‖v‖
1

p

W 1,p(T ) for all T ∈ Th, F ∈ FT , and

v ∈W 1,p(T ), we infer using interpolation properties in W 2,p(T ) that

‖∇(u− yh)|T ·nF ‖Lp(F ) . h
1− 1

p

T ‖u‖W 2,p(T ),

whene, using again (aT )T∈Th
, (
∑

T∈Th
a2

T )1/2 ≤ (
∑

T∈Th
ap

T )1/p,

|u− yh|†,κ,2 .

(

∑

T∈Th

‖κ‖
p

2

L∞(T )h
p[1+d( 1

2
− 1

p
)]

T ‖u‖pW 2,p(T )

)1/p

.

The proof is omplete sine α = 1 + d( 1
2 −

1
p ). �

4. Convergene analysis in 3d for p ∈ (1, 6/5]

We treat here the 3d ase with p ∈ (1, 6/5]. In this ase, the regularity (2) is in-

su�ient to establish onvergene rates by proeeding as in the previous setion. To

prove onvergene still using admissible mesh sequenes (and in partiular, shape-

regular meshes), we onsider here a di�erent analysis tehnique, inspired by [5℄ and

relying on a ompatness argument. In this ase, a weaker form of onsisteny is in-

voked, whih does not require to extend the disrete bilinear form to the ontinuous

spae, thereby making the spaes V† and V†h unneessary.

4.1. Lifting and disrete gradients. An important ingredient of the analysis is a

disrete gradient featuring suitable onvergene properties for sequenes of smooth

and of disrete funtions. The disrete gradient is de�ned in terms of the weighted

lifting operators introdued by Di Pietro, Ern, and Guermond [6℄; see also Agélas,

Di Pietro, Eymard, and Masson [1℄. More preisely, for any integer l ≥ 0 and all

F ∈ Fh, we de�ne the linear operator rl
ω,F : L2(F )→ [Pl

d(Th)]d suh that, for all

v ∈ L2(F ),

(20)

∫

Ω

rl
ω,F (v)·τh =

∫

F

v{τh}ω·nF ∀τh ∈ [Pl
d(Th)]d.
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We also de�ne the following global lifting:

(21) Rl
ω,h(v) :=

∑

F∈Fh

rl
ω,F (v).

The L2-norm of the global lifting an be bounded in terms of the jump seminorm.

Proeeding as in the proof of (12) yields that for all l ≥ 0 and all v ∈ V†,

(22) ‖κ
1/2Rl

ω,h(JvK)‖[L2(Ω)]d ≤ CtrN
1/2

∂ |v|J,κ.

For all l ≥ 0 and all vh ∈ Vh, we de�ne the disrete gradient

(23) Gl
ω,h(vh) := ∇hvh − Rl

ω,h(JvhK).

For future use, we also introdue the following data-independent norms,

|||v||| :=
(

‖∇hv‖2[L2(Ω)]d + |v|2J

)1/2

, |v|J :=

(

∑

F∈Fh

h−1
F ‖JvK‖2L2(F )

)1/2

.

For every integer l ≥ 0, we also denote by πl
h the L2-orthogonal projetion onto

Pl
d(Th); the same notation is used for the L2-orthogonal omponentwise projetion

onto [Pl
d(Th)]d.

Lemma 4.1 (Disrete Rellih�Kondrahov). Let (vh)h∈H be a sequene in (Vh)h∈H,

uniformly bounded in the |||·|||-norm. Then, there exists a funtion v ∈ H1
0 (Ω) suh

that as h→ 0, up to a subsequene, vh → v strongly in L2(Ω).

Proof. See [5, Theorem 6.3℄. �

Lemma 4.2 (Properties of Gl
ω,h). The disrete gradients Gl

ω,h, l ≥ 0, enjoy the

following properties:

(i) For all sequenes (vh)h∈H in (Vh)h∈H uniformly bounded in the |||·|||-norm,

as h → 0, Gl
ω,h(vh) ⇀ ∇v weakly in [L2(Ω)]d with v ∈ H1

0 (Ω) provided by

Theorem 4.1;

(ii) For all ϕ ∈ C∞
0 (Ω), as h→ 0, Gl

ω,h(π1
hϕ)→ ∇ϕ strongly in [L2(Ω)]d.

Proof. (i) To prove the weak onvergene of Gl
ω,h(vh) to ∇v, let Φ ∈ [C∞

0 (Ω)]d, set

Φh := πl
hΦ and observe that

∫

Ω

Gl
ω,h(vh)·Φ = −

∫

Ω

vh∇·Φ +
∑

T∈Th

∫

∂T

vhΦ·nT −
∑

F∈Fh

∫

Ω

rl
ω,F (JvhK)·Φh

= −

∫

Ω

vh∇·Φ +
∑

F∈Fh

∫

F

JvhK{Φ− Φh}ω·nF = T1 + T2,

where we have used the de�nition of the L2-orthogonal projetion together with (20)

and (21). As h → 0, T1 → −
∫

Ω
v∇·Φ. For the seond term, the Cauhy�Shwarz

inequality yields

T2 ≤ |vh|J,κ ×

(

∑

F∈Fh

hF γ−1
F

∫

F

|{Φ− Φh}ω|
2

)1/2

,

whih tends to zero owing to the approximation properties of the L2-orthogonal

projetion together with the fat that |vh|J,κ ≤ λ
1/2

|vh|J is uniformly bounded by

assumption. This onludes the proof.
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(ii) Let ϕh := π1
hϕ. Then, Gl

ω,h(ϕh) = ∇hϕh − Rl
ω,h(JϕhK) = T1 + T2. Clearly,

T1 → ∇ϕ strongly in [L2(Ω)]d as h→ 0. Moreover, owing to (22), it is inferred that

‖Rl
ω,h(JϕhK)‖[L2(Ω)]d ≤ CtrN

1/2

∂ |ϕh|J,κ = CtrN
1/2

∂ |ϕh − ϕ|J,κ, whih tends to zero as

h→ 0, thereby onluding the proof. �

4.2. Convergene. The SWIP bilinear form ah admits the following equivalent

formulation on Vh × Vh: For l ∈ {k − 1, k},

(24) ah(vh, wh) =

∫

Ω

κGl
ω,h(vh)·Gl

ω,h(wh) + jh(vh, wh),

with jh(vh, wh) := −
∫

Ω
κRl

ω,h(JvhK)·Rl
ω,h(JwhK) +

∑

F∈Fh
ηγκ,F h−1

F

∫

F
JvhKJwhK. We

an now state and prove the main result of this setion.

Theorem 4.3 (Convergene to minimal regularity solutions). Let (uh)h∈H be the

sequene of approximate solutions generated by solving the disrete problems (5).

Then, as h→ 0, (i) uh → u strongly in L2(Ω), (ii) ∇huh → ∇u strongly in

[L2(Ω)]d, (iii) |uh|J → 0, with u ∈ V unique solution to (1).

Proof. (i) A priori estimate. We reall the disrete Poinaré inequality [5, eq. (75)℄,

(25) ∀vh ∈ Vh, ‖vh‖L2(Ω) ≤ σ2|||vh|||,

with σ2 independent of the mesh-size h. Owing to the oerivity of ah together

with (25), it is inferred that

Cstaλ|||uh|||
2 ≤ Csta|||uh|||

2
κ ≤ a(uh, uh) =

∫

Ω

fuh

≤ ‖f‖L2(Ω)‖uh‖L2(Ω) ≤ σ2‖f‖L2(Ω)|||uh|||,

hene |||uh||| ≤ σ2(Cstaλ)−1‖f‖L2(Ω), that is to say, the sequene of disrete solutions

is uniformly bounded in the |||·|||-norm.

(ii) Compatness. Owing to Theorem 4.1 together with Lemma 4.2i, there exists

u ∈ H1
0 (Ω) suh that, as h → 0, up to a subsequene, uh → u strongly in L2(Ω)

and Gl
ω,h(uh) ⇀ ∇u weakly in [L2(Ω)]d.

(iii) Identi�ation of the limit. Let ϕ ∈ C∞
0 (Ω) and set ϕh := π1

hϕ. Owing to the

regularity of ϕ, it is lear that |||ϕ− ϕh|||κ → 0 as h→ 0. Observe that

ah(uh, ϕh) =

∫

Ω

κGl
ω,h(uh)·Gl

ω,h(ϕh) + jh(uh, ϕh) = T1 + T2.

As h→ 0, T1 →
∫

Ω
κ∇u·∇ϕ owing to the weak onvergene of Gl

ω,h(uh) to ∇u and

to the strong onvergene of Gl
ω,h(ϕh) to ∇ϕ proved in Lemma 4.2. Furthermore,

the Cauhy�Shwarz inequality together with (22) yield

|T2| = |jh(uh, ϕh)| ≤
(

C2
trN∂ + η

)

|uh|J,κ|ϕh|J,κ ≤
(

C2
trN∂ + η

)

λ
1/2

|uh|J|ϕh|J,κ

Sine |uh|J is bounded by point (i), and sine |ϕh|J,κ = |ϕh−ϕ|J,κ tends to zero as

h→ 0, it is inferred that T2 → 0. As a result,

(26)

∫

Ω

κ∇u·∇ϕ← ah(uh, ϕh) =

∫

Ω

fϕh →

∫

Ω

fϕ.

Hene, by the density of C∞
0 (Ω) in H1

0 (Ω), u = u, the unique solution to (1). Owing

to the uniqueness of u, the whole sequene of disrete solutions onverges.
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(iv) Strong onvergene of the gradient and of the jumps. Eqs. (22) and (24) yield

(27) ∀vh ∈ Vh, ah(vh, vh) ≥ ‖κ
1/2Gl

ω,h(vh)‖2[L2(Ω)]d +
(

η − C2
trN∂

)

|vh|
2
J,κ.

From the weak onvergene of Gl
ω,h(uh) to ∇u, we readily infer the weak onver-

gene of κ1/2Gl
ω,h(uh) to κ1/2∇u. Then, owing to (27) and to weak onvergene,

lim inf
h→0

ah(uh, uh) ≥ lim inf
h→0

‖κ
1/2Gl

ω,h(uh)‖2[L2(Ω)]d ≥ ‖κ
1/2∇u‖2[L2(Ω)]d .

Furthermore, still owing to (27),

lim sup
h→0

‖κ
1/2Gl

ω,h(uh)‖2[L2(Ω)]d ≤ lim sup
h→0

ah(uh, uh)

= lim sup
h→0

∫

Ω

fuh =

∫

Ω

fu = ‖κ
1/2∇u‖2[L2(Ω)]d .

This lassially proves the strong onvergene of κ1/2Gl
ω,h(uh) to κ1/2∇u in [L2(Ω)]d

and, hene, the strong onvergene of Gl
ω,h(uh) to ∇u in [L2(Ω)]d. Note that

ah(uh, uh)→ ‖κ1/2∇u‖2[L2(Ω)]d also. Using (27) we then infer

(η − C2
trN∂)|uh|

2
J,κ ≤ ah(uh, uh)− ‖κ

1/2Gl
ω,h(uh)‖2[L2(Ω)]d ,

and, sine η > C2
trN∂ and the right-hand side tends to zero, |uh|J,κ → 0. To infer

that |uh|J → 0, simply observe that |uh|J ≤ λ−1/2|uh|J,κ. �

Remark 4.4. When extended to V†h × Vh, the disrete bilinear form ah de�ned

by (24) is no longer onsistent in the usual �nite element sense; see [5, Remark 3.3℄.

However, (26) shows that ah retains a form of weak asymptoti onsisteny whih

su�es to infer the onvergene of the method when u only exhibits the minimal

regularity.
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