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ASYMPTOTIC CONFIDENCE INTERVALS FOR A NEW INEQUALITY MEA-

SURE

1 Introduction

Recently Zenga (2007) introduced a new inequality measure based on ratios between lower

and upper group means. Both Zenga’s new measure and Gini’s index may be inter-

preted in terms of areas beneath inequality curves. In this work the performance of

asymptotic confidence intervals for Gini’s measure and for the new measure is tested. Several

types of confidence intervals are considered: the normal, the percentile, the BCa and the

t-bootstrap. While the underlying asymptotic theory for Gini’s measure is well established,

formal proofs for Zenga’s index are currently under development. Indeed, also in view of

our simulation results, asymptotic properties similar to those of Gini’s index can be expected

to hold also for Zenga’s new inequality measure.

The present work is organized as follows. Section 2 introduces the inequality functionals.

Section 3 presents a brief review on non parametric confidence intervals. The simulation

study is presented and discussed in Section 4. Some concluding remarks end the paper in

Section 5.

2 The Inequality Functionals

Let X1, ..., Xn be independent random variables with common distribution function F . De-

note by F̂ the empirical cumulative distribution function, and let θ(F ) be the functional of

interest. Using this notation, a sample statistic may be written as θ(F̂ ).

Under suitable smoothness restrictions on θ (Serfling, 1980) the sample statistic may be

represented as

θ(F̂ ) = θ(F ) +
1

n

n∑

i=1

h(F ; Xi) + op(n
−1/2), (1)

1
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where

h(F ; x) = lim
λ→0+

θ(F + λ(δx − F )) − θ(F )

λ
(2)

is the value of the influence function at x (δx as usual denotes the distribution function

which assigns probability 1 to the point x). If σ2
θ = V ar(h(F ; X)) is finite, then the Taylor

expansion in (1) implies that

(
θ(F̂ ) − θ(F )

σθ/
√

n

)
d−→ N(0, 1), (3)

Section 3 reviews some asymptotic confidence intervals for smooth functionals like θ to which

the above non parametric delta method applies.

Let us now focus on the two inequality measures considered in this work. Using the

functional notation, Gini’s measure is defined by

G(F ) = 2

∫ 1

0

(p − LF (p)) dp,

where

LF (p) =
1

µF

∫ p

0

F−1(t)dt, 0 < p < 1

is the Lorenz curve associated with the distribution F and µF is the first moment

of F . As usual, we restrict the domain of Gini’s index to the class of distribution

functions F with non negative support. Further, we impose 0 < µF < ∞ so that

LF (p) is well defined. The asymptotic normality of Gini’s inequality measure in case

of i.i.d. sampling was first established by Hoeffding (1948), under second order moment

restrictions on F .

For continuous distributions F with non negative support and finite first moment the

new inequality measure of Zenga (2007) is defined by

Z(F ) =

∫ 1

0

ZF (p)dp (4)

where

ZF (p) = 1 − 1 − p

p
· LF (p)

1 − LF (p)
, 0 < p < 1

2
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is Zenga’s new inequality curve.

The ratio behind this definition is straightforward. Indeed, LF (p)
p

in ZF (p) is

the mean income of the poorest p percent of the population, while 1−LF (p)
1−p

is the

mean income of the remaining part of the population. Notice that the ratio

between this two means takes on values in [0, 1]. Small values correspond to high

inequality between the two groups, while large values correspond to situations

close to equity. Thus ZF (p) is a point inequality measure and Z(F ) is the mean

of these point measures.

In order to compare the two inequality measures it is convenient to rewrite

also Gini’s index as a (weighted) mean of point inequality measures, i.e.

G(F ) =

∫ 1

0

GF (p) 2p dp (5)

where, according to Gini (1914),

GF (p) =
p − LF (p)

p
, 0 < p < 1

measures the relative inequality at p. As 0 ≤ LF (p) ≤ p, we see that also GF (p)

takes on values in [0, 1] and that GF (p) is large (small) if the fraction of total

income of the poorest p percent of the population is small (large). Comparing

now (4) with (5) we observe that both G(F ) and Z(F ) are means of their re-

spective inequality curves, but while Gini’s index emphasizes the upper part of

the income distribution by the weight function w(p) = 2p, Zenga’s index has a

constant weight function.

Substituting p = F (x) in all integrals involved in definition (4), Z(F ) may be expressed

as

Z(F ) = 1 −
∫ ∞

0

1 − F (x)

F (x)
·
∫ x

0
ydF (y)∫∞

x
ydF (y)

dF (x). (6)

The latter analytic expression for the functional proves to be more convenient for com-

putational purposes in inferential problems. Indeed, the empirical distribution function F̂

3
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associated to an i.i.d. sample is discrete, so that substituting F with F̂ in (6) yields a sum

of n ratios. If instead we substitute F with F̂ in (4), we have to evaluate the area below

a continuous curve, which is more time consuming. For this reason, we will use definition

(6) in our simulation study. For discrete distribution functions like F̂ this requires

slight changes in the defining formula:

Z(F ) = 1 −
∫

[0,∞)

gF (x) dF (x), (7)

where

gF (x) =






1−F (x)
F (x)

·
∫
[0,x] ydF (y)

∫
(x,∞) ydF (y)

, if 0 < F (x) < 1;

0, otherwise.

Notice that gF (x) is well defined for each x and each distribution F with non

negative support. With this definition we get

Z(F̂ ) = 1 − 1

n

n−1∑

i=1

(
n − i

i
·
∑

j≤i xj∑
j>i xj

)
.

Neither (4) nor (7) coincide with the original definition that the author provided for

discrete distributions. This will not cause any troubles here, since the scope is merely to

compute confidence intervals for the functional (4) (as originally defined) in case of i.i.d.

sampling from a continuous distribution F and hence we need a smooth extension of

the functional to some convex space that contains the parent distribution F (a

continuous distribution with non negative support and finite first moment) and

all empirical distribution functions F̂ that may occur when we sample from F . By

smooth extension we mean an extension such that the Taylor expansion in (1) and (2) holds.

In the appendix we shall compute h(F ; X) for Zenga’s new measure and show

that σ2
θ = V ar(h(F ; X)) is finite if

∫
x2+ǫdF (x) is finite for some ǫ > 0. Condition (1)

will however not be checked in this work. In what follows we shall confine ourselves

to a simulation study for assessing the coverage probability and the length of some types of

asymptotic confidence intervals for Zenga’s new measure and for Gini’s index.

4

Page 4 of 20

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

3 Confidence Intervals

This section reviews some of the most commonly used types of confidence intervals and the

theory behind them.

Firstly, notice that if (3) holds and we substitute σ2
θ with a consistent estimator1 σ̂2

θ ,

we obtain the (1 − 2α) normal confidence interval

(
θ(F̂ ) − z1−α

σ̂θ√
n

; θ(F̂ ) + z1−α
σ̂θ√
n

)

for θ(F ). In what follows we will briefly discuss confidence intervals for θ obtained by non

parametric bootstrap methods.

3.1 The Percentile Confidence Interval

The percentile method relies on the assumption that there exists a strictly increasing con-

tinuous transformation g(θ) such that

P
{

g(θ(F̂ )) − g(θ(F )) ≤ x
}

= Ψ(x) for all F , (8)

where Ψ is a continuous and symmetric distribution. If Ψ is the standard normal distribution

then g is just the normalizing and variance stabilizing transformation. Let zα be the α

quantile of Ψ. If g and Ψ were known, we could compute an exact 1− 2α confidence interval

for θ(F ) in the following way:

(
g−1(g(θ(F̂ )) − z1−α); g−1(g(θ(F̂ )) − zα)

)
. (9)

We will now show that this confidence interval can also be computed without knowing neither

g nor Ψ. This will be done by exploiting condition (8) and the bootstrap distribution of θ,

i.e. the distribution of the functional θ if the underlying parent distribution is F̂ . In what

follows we will denote by P∗ probabilities which refer to i.i.d. sampling from F̂ and F ∗ will

be used for the empirical cumulative distribution function induced by n independent random

1Several consistent estimators have been proposed in literature, provided the functional satisfies quite

general smoothness conditions. See Shao and Tu (1996) for an overview about sufficient conditions.

5
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variables with common distribution F̂ . Using this notation, the bootstrap distribution of θ

is given by P∗ {θ(F ∗) < x}. Now, if θp is the p-th quantile of the latter distribution, then

P∗ {θ(F ∗) ≤ θp} = P∗

{
g(θ(F ∗)) − g(θ(F̂ )) ≤ g(θp) − g(θ(F̂ ))

}

[by (8)] = Ψ
(
g(θp) − g(θ(F̂ ))

)

[by continuity of Ψ and g] = p

(10)

so that the θp satisfies the condition g(θp)− g(θ(F̂ )) = zp. Substituting this in (9) and using

the symmetry of Ψ, we get the bootstrap percentile confidence interval whose bounds are

given simply by θα and θ1−α. Notice that these bounds can be computed without knowing

neither g nor Ψ.

If assumption (8) holds exactly for the parent distribution F and for all F̂ that can

occur with probability 1,2 then the percentile method presented here gives exact confidence

intervals. In practice, however, assumption (8) holds only asymptotically as the sample size

tends to infinity. In this case the coverage accuracy of the percentile confidence interval

depends on how good the approximation is at F and at the empirical distribution functions

F̂ .

3.2 The Boostrap Accelerated Bias Corrected Confidence Interval

The bootstrap accelerated bias corrected confidence interval relies on a more general assump-

tion than (8), that takes into account also bias and skewness. In particular, it is assumed

that there exist a strictly increasing continuous transformation g as well as constants a and

b such that

P

{
g(θ(F̂ )) − g(θ(F ))

1 + ag(θ(F ))
+ b ≤ x

}
= Ψ(x) for all F , (11)

where Ψ is assumed to be continuous and strictly increasing. According to Efron (1987) the

parameter a measures how fast the standard deviation of g(θ(F̂ )) is changing with respect

to g(θ(F )) and is therefore called the acceleration constant. If g, Ψ, a and b were known, the

2notice that if F = F̂ in (8), then F̂ = F ∗ and P = P∗ on the left hand side

6
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lower and upper bounds of an exact (1− 2α) confidence interval for θ could be computed in

the following way:

g−1

(
g(θ(F̂ )) +

(b − z1−α)(1 + ag(θ(F̂ )))

1 − a(b − z1−α)

)
(12)

and

g−1

(
g(θ(F̂ )) +

(b − zα)(1 + ag(θ(F̂ )))

1 − a(b − zα)

)
. (13)

Now, using assumption (11) we get

P∗ {θ(F ∗) ≤ θp} = P∗

{
g(θ(F ∗)) − g(θ(F̂ ))

1 + ag(θ(F̂ ))
+ b ≤ g(θp) − g(θ(F̂ ))

1 + ag(θ(F̂ ))
+ b

}

[by (11)] = Ψ

(
g(θp) − g(θ(F̂ ))

1 + ag(θ(F̂ ))
+ b

)

[by continuity of Ψ and g] = p

so that the p-th quantile θp of the bootstrap distribution satisfies the following condition:

g(θp) − g(θ(F̂ ))

1 + ag(θ(F̂ ))
+ b = zp.

Solving for θp we get

θp = g−1
(
g(θ(F̂ )) + (zp − b)(1 + ag(θ(F̂ )))

)
.

Then, equating θp with the lower confidence bound in (12), and solving for p we see that

g(θ(F̂ )) + (zp − b)(1 + ag(θ(F̂ ))) = g(θ(F̂ )) +
(b − z1−α)(1 + ag(θ(F̂ )))

1 − a(b − z1−α)

(zp − b) =
(b − z1−α)

1 − a(b − z1−α)

p = Ψ

(
b +

(b − z1−α)

1 − a(b − z1−α)

)
.

Hence, the lower bound of the exact confidence interval in (12) may be obtained as a quan-

tile of the bootstrap distribution of θ and can therefore be computed without knowing the

increasing transformation g. The same proof may be applied to the upper bound. Thus the

7
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BCa confidence interval is given by (θp; θp), where θp is the p-th quantile of the bootstrap

distribution of θ and

p = Ψ

(
b +

(b − z1−α)

1 − a(b − z1−α)

)
,

p = Ψ

(
b +

(b − zα)

1 − a(b − zα)

)
.

In order to find b notice that (use again assumption (11))

P∗

{
θ(F ∗) ≤ θ(F̂ )

}
= P∗

{
g(θ(F ∗)) − g(θ(F̂ ))

1 + ag(θ(F̂ ))
+ b ≤ b

}
= Ψ(b)

so that b = Ψ−1
(
P∗

{
θ(F ∗) ≤ θ(F̂ )

})
. The acceleration constant a, however, is not easy

to determine. As suggested by Efron (1987), in our simulation study we approxi-

mated the constant a by

â =

∑n
i=1 h(F̂ ; Xi)

3

6
(∑n

i=1 h(F̂ ; Xi)2
)3/2

,

where h is the influence function defined in (2). Since
∑n

i=1 h(F̂ ; Xi) = 0 for

smooth functionals, â may be simply interpreted as one sixth of the skewness

of the empirical influence values h(F̂ ; Xi). The latter were obtained by numeric

differentiation, i.e.

h(F̂ ; Xi) ≈
θ
(
F̂ + ǫ(δx − F̂ )

)
− θ

(
F̂
)

ǫ
,

with ǫ = 0.0001/n.

Again, assumption (11) holds in practice only asymptotically as the sample size diverges

and the coverage accuracy of the BCa confidence interval depends on how good the approx-

imation is at the parent distribution F and at the empirical distribution functions F̂ .

3.3 The t-bootstrap Confidence Interval

The idea behind the t-bootstrap confidence interval is easy to understand. Assume there

exists a pivotal quantity, or at least an asymptotically pivotal quantity, like

θ(F̂ ) − θ(F )

σθ(F̂ )/
√

n
, (14)

8
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where σ2
θ(F̂ ) is a consistent estimator of σ2

θ in (3). Given the empirical distribution F̂ , the

distribution of the random variable in (14) may be estimated by

P∗

{
θ(F ∗) − θ(F̂ )

σθ(F ∗)/
√

n
≤ t

}
. (15)

Using this estimate we may construct the (1 − 2α) t-bootstrap confidence interval

(
θ(F̂ ) − t∗1−α

σθ(F̂ )√
n

; θ(F̂ ) − t∗α
σθ(F̂ )√

n

)
,

where t∗p is the p-th quantile of the bootstrap distribution in (15). The drawback of the

t-bootstrap confidence interval is that it requires a consistent variance estimator σ2
θ(F̂ ) to

be known. In the simulation study described in the following section we used

σ̂2
θ =

1

n

n∑

i=1

h(F̂ ; Xi)
2,

as variance estimator in the normal and t-bootstrap confidence intervals. Notice that σ̂2
θ is

the variance of the empirical influence values h(F̂ ; Xi). Intuitively, σ̂2
θ will be consistent for

σ2
θ if h(F̂ ; x) is close to h(F ; x) uniformly in x whenever F̂ is close to F .

Usually the analytic expressions of the bootstrap distributions of θ or of its studentized

version are unknown and must be approximated by Monte Carlo methods. This introduces

a simulation error into the confidence intervals. Most authors compute from 999 to 9999

replicates of θ or its studentized version to estimate the quantiles of the corresponding boot-

strap distribution. The ratio behind computing, say, 999 instead of 1000 replicates is that

in this way the quantiles of common interest (i.e the percentiles) are order statistics of the

bootstrap replicates. The computational effort, in particular for BCa and t-bootstrap confi-

dence intervals, is justified by a higher order of accuracy with respect to normal confidence

intervals.

9
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4 Simulation Results

The design of the simulation study begins with the choice of the underlying distributions.

As income analysis is the natural framework in which inequality measures are needed, we

will focus our attention on two widely used income models: the Dagum and the Lognormal

models. Their probability density functions are respectively given by

f(x) = λβθx−(θ+1)
(
1 + λx−θ

)−(β+1)
, (λ, β, θ > 0, x > 0);

f(x) =
1√
2πδ

1

x
e−

1
2(

ln x−γ
δ )

2

, (−∞ < γ < ∞, δ > 0, x > 0).

In the simulations we set the parameters equal to their maximum likelihood estimates ob-

tained on real data. In the Dagum case, the Italian expenditure distribution, as given by the

Banca d’Italia Survey on Household Income and Wealth in 2002 (8001 households) yields

β̂ = 1.055, θ̂ = 3.095 and λ̂ = 44030 (Bianchi, 2003). On this distribution the value of Gini’s

and Zenga’s inequality measures are respectively given by Ĝ = 0.3193 and Ẑ = 0.6505. In

the Lognormal case, Latorre (1989) obtained γ̂ = 2.8171 and δ̂ = 0.6262, using the Ital-

ian income distribution of 1983 (4107 households; source: Banca d’Italia Survey on Italian

Household Income and Wealth, 1983). Hence, we get Ĝ = 0.3420 and Ẑ = 0.6774. Both

estimated models proved to fit well the corresponding empirical distribution, as assessed by

the Kolmogorov-Smirnov test and the χ2 test.

Having chosen the parent distributions, we drew 10000 samples of size ranging from 100

to 400 from both of them and for each sample we checked whether the confidence intervals

in section 3 contained the true value of the inequality measure. The coverage probabilities

reported in Table 1 are the relative frequencies (on a total of 10000) of the confidence intervals

that contain the true value of the inequality measure, while Table 2 displays the average

size of the 10000 confidence intervals with 95% nominal confidence level. The bootstrap

distributions were obtained by taking 9999 resamples from each sample and by computing

the functionals or their standardized versions (for the t-bootstrap confidence intervals) on

each resample.

10
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The results in Table 1 show that the confidence intervals suffer from undercoverage.

Comparing the different types of confidence intervals it is seen, as expected, that the t-

bootstrap performs best in terms of coverage probability, at the cost of providing larger

intervals (see Table 1 and 2). As the sample size reaches 400, the coverage probability of the

t-bootstrap confidence intervals is quite close to the nominal confidence level.

If large confidence levels are required, the number of bootstrap resamples has to be in-

creased beyond 9999 in order to get meaningful BCa confidence intervals. Indeed, in the

Dagum case with samples of size 400, we observed that 825 (out of 10000) BCa confidence

intervals for Gini’s index with 99% nominal confidence level were based on the 100th per-

centile of the bootstrap distribution (for Zenga’s index this figure is 659). This may be

explained by the heaviness of the tail of the Dagum model. Indeed, with the Lognormal

parent distribution, only 34 of the 99%-Bca confidence intervals for Gini’s index and 29 of

those for Zenga’s index required the 100th percentile of the bootstrap distribution for their

computation.

Consider now the results in Table 2. Combined with the above observed

undercoverage, the rather large average sizes of the confidence intervals suggest

that point estimates for the two inequality measures are not very accurate even

in samples of 400 observations. In practical situations, in order to distinguish

between substantial differences in the degree of inequality and differences that

are merely due to sample variability, we may therefore need larger samples.

Finally, comparing the performance of the confidence intervals for Gini’s index

with that of Zenga’s new measure we do not notice large differences in the

coverage accuracy or in the size. It seems that both indices may be estimated

with about the same precision in finite samples from economic size distributions.
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5 Concluding Remarks

In this work we tested the performance of several types of asymptotic confidence

intervals for Zenga’s new inequality measure and for Gini’s traditional measure

in sampling from economic size distributions. The results show that the confidence

intervals suffer from some undercoverage. Nevertheless, it appears that the coverage accu-

racy of the t-bootstrap confidence intervals is quite close to the nominal confidence level in

samples of size 400. The rather large average size of the confidence intervals, how-

ever, suggests that point estimates for the two inequality measures are not very

accurate in samples of size up to 400 and that larger samples may be needed in

order to get a reliable inequality ranking. Besides this, it appears that the con-

fidence intervals for the Zenga and Gini indices have similar coverage accuracy

and size.

Appendix

We will first derive an analytic expression for the influence function h(F ; x) of

Zenga’s index as defined in equation (7), i.e. we shall find

lim
λ→0+

Z (Fλ) − Z (F )

λ
, (16)

where F is a continuous distribution with non negative support and finite first moment µ,

X is a fixed real number such that 0 < F (X) < 1 and Fλ = F + λ(δX − F ). We shall use

the following notation:

µλ =

∫

[0,∞)

ydFλ(y), Qλ(x) =

∫

[0,x]

ydFλ(y)

and

gλ(x) =






1−Fλ(x)
Fλ(x)

Qλ(x)
µλ−Qλ(x)

, if 0 < Fλ(x) < 1;

0, otherwise;
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so that

Z(Fλ) = 1 −
∫

[0,∞)

gλ(x)dFλ(x).

If λ = 0 we shall simply write µ, Q(x) and g(x).

For each λ ∈ [0, 1], we have

Z (Fλ) − Z (F ) = −
∫

[0,∞)

[gλ(x) − g(x)] dFλ(x) −
∫

[0,∞)

g(x)d (Fλ(x) − F (x))

Using the definition of Fλ, the first integral on the right hand side becomes

(1 − λ)

∫

[0,∞)

[gλ(x) − g(x)] dF (x) + λ [gλ(X) − g(X)] ,

while the second intergral can be written as

λ

[
g(X) −

∫

[0,∞)

g(x)dF (x)

]

It follows that

Z (Fλ) − Z (F )

λ
= −

∫

[0,∞)

gλ(x) − g(x)

λ
dF (x)+

+

∫

[0,∞)

[gλ(x) − g(x)] dF (x)+

− [gλ(X) − g(X)] +

−
[
g(X) −

∫

[0,∞)

g(x)dF (x)

]
.

(17)

Since gλ(x) → g(x) for all x as λ approaches 0 from the right, the expression in the third

line of equation (17) tends to 0 when we take the limit in (16). Moreover |gλ(x)| ≤ 1 for

all x and for all λ ∈ [0, 1] and therefore also the integral in the second line of equation (17)

will tend to 0 as λ approaches 0 from the right. Consider now the integral in the first line of

(17). Suppose that 0 < λ < 1. Then 0 < F (x) < 1 is equivalent to 0 < Fλ(x) < 1. If these

conditions fail, then
gλ(x) − g(x)

λ
= 0.
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On the other hand, if at x the condition 0 < F (x) < 1 holds, we get (after some simple

algebraic manipulations)

gλ(x) − g(x)

λ
=

1 − Fλ(x)

(µλ − Qλ(x)) Fλ(x)
· Qλ(x) − Q(x)

λ
+

+
Q(x)

(µλ − Qλ(x)) Fλ(x)
· (1 − Fλ(x)) − (1 − F (x))

λ
+

− Q(x) (1 − F (x))

(µλ − Qλ(x)) Fλ(x)
· 1

F (x)
· Fλ(x) − F (x)

λ
+

− Q(x) (1 − F (x))

(µλ − Qλ(x)) F (x)
· 1

µ − Q(x)
· (µλ − Qλ(x)) − (µ − Q(x))

λ
.

Simplifying λ in the rightmost fractions of each line, we obtain

gλ(x) − g(x)

λ
=

1 − Fλ(x)

(µλ − Qλ(x)) Fλ(x)
(XδX(x) − Q(x)) +

+
Q(x)

(µλ − Qλ(x)) Fλ(x)
[(1 − δX(x)) − (1 − F (x))] +

− Q(x) (1 − F (x))

(µλ − Qλ(x)) Fλ(x)F (x)
(δX(x) − F (x)) +

− Q(x) (1 − F (x))

(µλ − Qλ(x)) F (x) (µ − Q(x))
[X (1 − δX(x)) − (µ − Q(x))] .

(18)

The first term on the right hand side is bounded by

∣∣∣∣
XδX(x) − Q(x)

Qλ(x)

∣∣∣∣ ≤






1
1−λ

if x < X

1
1−λ

(
X

Q(X)
+ 1
)

if x ≥ X.

Therefore, if λ < λ0 ∈ [0, 1), there there exists a constant K (depending on F , X and λ0)

that bounds the first term on the right hand side of the equation (18) for all x. In a similar

way we can also find constants that bound the other three terms on the right hand side of

equation (18) for all λ smaller than some λ0 ∈ [0, 1) and for all x. It follows that when we

let λ approach zero from the right in the first integral on the right hand side of (17), we can

apply Lebesgue’s dominated convergence theorem and take the limit under the integral sign.
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Finally we get the value of the influence function at the point X

h(F,X) = lim
λ→0+

Z (Fλ) − Z (F )

λ

= −
∫

[0,∞)

1 − F (x)

(µ − Q(x)) F (x)
(XδX(x) − Q(x)) dF (x)+

−
∫

[0,∞)

Q(x)

(µ − Q(x)) F (x)
[(1 − δX(x)) − (1 − F (x))] dF (x)+

+

∫

[0,∞)

Q(x) (1 − F (x))

(µ − Q(x)) F (x)2
(δX(x) − F (x)) dF (x)+

+

∫

[0,∞)

Q(x) (1 − F (x))

(µ − Q(x))2 F (x)
[X (1 − δX(x)) − (µ − Q(x))] dF (x)

−
[
g(X) −

∫

[0,∞)

g(x)dF (x)

]
.

(19)

Notice that, since each of the integrals in (19) is finite, we could split up the integral
∫

limλ→0+
gλ(x)−g(x)

λ
dF (x).

Let now X be redefined as a random variable with distribution given by F and consider

E{h(F ; X)}. Applying Fubini’s theorem to the first four terms on the right hand side of

(19) we see that the expectation E{h(F ; X)} vanishes. We shall now find a restriction on

the moments of F that ensures

V ar{h(F ; X)} = E{h(F ; X)2} < ∞.

Recalling that |gλ(x)| ≤ 1 and ignoring constant terms in (19), we see that the variance of

h(F ; x) is finite if and only if the second moments of the following random variables

X ·
∫

[X,∞)

1 − F (x)

(µ − Q(x)) F (x)
dF (x) (20)

∫

[0,X)

Q(x)

(µ − Q(x)) F (x)
dF (x) (21)

∫

[X,∞)

Q(x) (1 − F (x))

(µ − Q(x)) F (x)2
dF (x) (22)

X ·
∫

[0,X)

Q(x) (1 − F (x))

(µ − Q(x))2 F (x)
dF (x) (23)
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are finite. Consider first the random variables in (20), (21) and (22). Notice that they are

bounded from above respectively by

X ·
∫
[X,∞)

1
XF (x)

dF (x) = − ln F (X),
∫

[0,X)
1

1−F (X)
dF (x) = − ln (1 − F (X)) ,

∫
[X,∞)

1
F (x)

dF (x) = − ln F (X).

Since we assumed F to be continuous, we have 0 < F (X) < 1 with probability 1, and

therefore the random variables lnF (X) and ln(1 − F (X)) are well defined with probability

1. Since

P
{
− lnk F (X) > t

}
= P

{
F (X) < e−t1/k

}
= e−t1/k

, k = 1, 2, ...,

and

P
{
− lnk(1 − F (X)) > t

}
= P

{
F (X) > 1 − e−t1/k

}
= e−t1/k

, k = 1, 2, ..., (24)

all moments of the random variables − ln F (X) and − ln (1 − F (X)) are finite. It follows

that no additional restriction on the parent distribution F is needed in order that the second

moments of the random variables in (20), (21) and (22) be finite. Now, our last effort is

devoted to the random variable in (23)

X ·
∫

[0,X)

Q(x) (1 − F (x))

(µ − Q(x))2 F (x)
dF (x) ≤ X ·

∫

[0,X)

1

µ (1 − F (x))
dF (x)

= −X

µ
ln (1 − F (X)) .

Let ǫ > 0. If 0 < F (x) < 1 then either

xǫ ≥ − ln(1 − F (x))

or

x < − ln1/ǫ(1 − F (x)).

Therefore,

−X

µ
ln (1 − F (X)) ≤ 1

µ
max

{
X1+ǫ;− ln1+1/ǫ(1 − F (X))

}

≤ 1

µ

(
X1+ǫ − ln1+1/ǫ(1 − F (X))

)
.
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By (24) and the Schwartz inequality, the random variable 1
µ

(
X1+ǫ − ln1+1/ǫ(1 − F (X))

)
has

finite second moment provided that
∫

x2+2ǫdF (x) < ∞. The same condition ensures that

the random variable in (23) and hence h(F ; X) have finite variance.
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Table 1: Coverage accuracy of the asymptotic confidence intervals

Dagum parent distribution: λ = 44030, β = 1.055, θ = 3.095; G = 0.3193, I = 0.6505

Gini’s index Zenga’s index

normal confidence intervals

n 0.9000 0.9500 0.9750 0.9900 0.9000 0.9500 0.9750 0.9900

100 0.8228 0.8842 0.9196 0.9468 0.8407 0.9032 0.9418 0.9662

200 0.8418 0.9005 0.9331 0.9592 0.8522 0.9102 0.9476 0.9715

400 0.8643 0.9194 0.9482 0.9689 0.8641 0.9236 0.9560 0.9758

percentile confidence intervals

100 0.7986 0.8571 0.8933 0.9269 0.8157 0.8743 0.9115 0.9410

200 0.8271 0.8880 0.9183 0.9489 0.8313 0.8915 0.9235 0.9554

400 0.8539 0.9108 0.9421 0.9637 0.8569 0.9092 0.9417 0.9670

BCa confidence intervals

100 0.8334 0.8959 0.9347 0.9593 0.8472 0.9075 0.9449 0.9694

200 0.8487 0.9020 0.9416 0.9670 0.8523 0.9098 0.9463 0.9728

400 0.8602 0.9181 0.9496 0.9733 0.8633 0.9212 0.9529 0.9762

t-boostrap confidence intervals

100 0.8642 0.9226 0.9524 0.9734 0.8647 0.9276 0.9576 0.9778

200 0.8699 0.9232 0.9575 0.9767 0.8696 0.9268 0.9613 0.9807

400 0.8780 0.9338 0.9608 0.9810 0.8769 0.9344 0.9634 0.9829

Lognormal parent distribution: γ = 2.8171, δ = 0.6262; G = 0.3420, Z = 0.6774

Gini’s index Zenga’s index

normal confidence intervals

n 0.9000 0.9500 0.9750 0.9900 0.9000 0.9500 0.9750 0.9900

100 0.8617 0.9188 0.9485 0.9709 0.8731 0.9282 0.9593 0.9791

200 0.8821 0.9354 0.9640 0.9812 0.8875 0.9429 0.9679 0.9846

400 0.8877 0.9431 0.9687 0.9861 0.8906 0.9457 0.9726 0.9875

percentile confidence intervals

100 0.8404 0.8971 0.9310 0.9586 0.8536 0.9101 0.9392 0.9669

200 0.8687 0.9243 0.9553 0.9756 0.8721 0.9260 0.9567 0.9772

400 0.8822 0.9345 0.9647 0.9831 0.8817 0.9369 0.9660 0.9827

BCa confidence intervals

100 0.8671 0.9234 0.9536 0.9738 0.8729 0.9270 0.9589 0.9797

200 0.8819 0.9369 0.9646 0.9821 0.8847 0.9412 0.9668 0.9841

400 0.8847 0.9423 0.9700 0.9876 0.8892 0.9451 0.9711 0.9872

t-boostrap confidence intervals

100 0.8863 0.9391 0.9664 0.9843 0.8833 0.9391 0.9664 0.9850

200 0.8960 0.9488 0.9715 0.9882 0.8960 0.9479 0.9736 0.9884

400 0.8919 0.9483 0.9747 0.9904 0.8973 0.9508 0.9757 0.9897
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Table 2: Average size of the 95% asymptotic confidence intervals

Dagum parent distribution Lognormal parent distribution

with λ = 44030, β = 1.055, θ = 3.095 with γ = 2.8171, δ = 0.6262

Gini Zenga Gini Zenga

normal confidence intervals

100 0.1114 0.1272 0.0938 0.1036

200 0.0850 0.0945 0.0686 0.0745

400 0.0641 0.0702 0.0494 0.0533

percentile confidence intervals

100 0.1095 0.1258 0.0933 0.1033

200 0.0840 0.0938 0.0685 0.0743

400 0.0636 0.0698 0.0494 0.0532

BCa confidence intervals

100 0.1162 0.1262 0.0961 0.1025

200 0.0896 0.0952 0.0702 0.0743

400 0.0676 0.0713 0.0503 0.0533

t-boostrap confidence intervals

100 0.1512 0.1491 0.1082 0.1114

200 0.1064 0.1081 0.0747 0.0784

400 0.0763 0.0786 0.0519 0.0550
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Lognorma distribution (gamma=2,8171; delta=0,6262; Gini=0,3420; Zenga=0,6774)

ONLY FOR THE REFEREE. NOT TO BE INCLUDED IN THE PAPER !!!

The bootstrap distributions were obtained by R=9999 bootstrap 

replicates of the sample statistics or their standardized versions.

The estimates of the coverage accuracies and average sizes 

for sample size n=100 refer to N=10000 simulated samples, whereas

(due to compuation time) the estimates of coverage accuracies and 

average sizes for samples of size n=400 refer to only N=1000 simulated samples.

This explains why sometimes the estimate of the coverage 

accuracy is larger for samples of size n=100, than for samples of size 400.

Gini's index (G = 0,3420)

Non parametric Normal confidence intervals Parametric Normal confidence intervals

n\1-alpha 0.9000 0.9500 0.9750 0.9900 av.size 0.9000 0.9500 0.9750 0.9900 av.size

100 0.8597 0.9178 0.9514 0.9738 0.0940 0.8923 0.9447 0.9700 0.9863 0.0882

400 0.8830 0.9380 0.9690 0.9830 0.0490 0.9010 0.9410 0.9720 0.9850 0.0443

Non parametric Percentile confidence intervals Parametric Percentile confidence intervals

n\1-alpha 0.9000 0.9500 0.9750 0.9900 av.size 0.9000 0.9500 0.9750 0.9900 av.size

100 0.8426 0.8945 0.9311 0.9602 0.0936 0.8862 0.9356 0.9649 0.9811 0.0882

400 0.8670 0.9270 0.9640 0.9770 0.0490 0.8940 0.9410 0.9700 0.9850 0.0443

Non parametric BCa confidence intervals Parametric BCa confidence intervals

n\1-alpha 0.9000 0.9500 0.9750 0.9900 av.size 0.9000 0.9500 0.9750 0.9900 av.size

100 0.8663 0.9223 0.9558 0.9772 0.0962 0.8972 0.9498 0.9746 0.9909 0.0900

400 0.8810 0.9390 0.9610 0.9820 0.0497 0.9040 0.9530 0.9720 0.9850 0.0445

Non parametric t-bootstrap confidence intervals Parametric t-bootstrap confidence intervals

n\1-alpha 0.9000 0.9500 0.9750 0.9900 av.size 0.9000 0.9500 0.9750 0.9900 av.size

100 0.8863 0.9403 0.9679 0.9858 0.1083 0.8975 0.9437 0.9690 0.9829 0.0950

400 0.8900 0.9450 0.9730 0.9870 0.0513 0.9000 0.9520 0.9720 0.9900 0.0451

Zenga's index (Z = 0,6774)

Non parametric Normal confidence intervalsParametric t-bootstrap confidence intervals Parametric Normal confidence intervals

n\1-alpha 0.9000 0.9500 0.9750 0.9900 av.size 0.9000 0.9500 0.9750 0.9900 av.size

100 0.8975 0.9437 0.9690 0.9829 0.0950 0.8960 0.9490 0.9728 0.9902 0.1031

400 0.9000 0.9520 0.9720 0.9900 0.0451 0.9020 0.9470 0.9740 0.9880 0.0513

Non parametric Percentile confidence intervals Parametric Percentile confidence intervals

n\1-alpha 0.9000 0.9500 0.9750 0.9900 av.size 0.9000 0.9500 0.9750 0.9900 av.size

100 0.8545 0.9081 0.9410 0.9665 0.1034 0.8862 0.9356 0.9649 0.9811 0.1031

400 0.8590 0.9290 0.9610 0.9790 0.0528 0.8940 0.9410 0.9700 0.9850 0.0513

Non parametric BCa confidence intervals Parametric BCa confidence intervals

n\1-alpha 0.9000 0.9500 0.9750 0.9900 av.size 0.9000 0.9500 0.9750 0.9900 av.size

100 0.8711 0.9285 0.9594 0.9809 0.1026 0.8972 0.9498 0.9746 0.9909 0.1026

400 0.8820 0.9360 0.9710 0.9810 0.0529 0.9040 0.9530 0.9720 0.9850 0.0513

Non parametric t-bootstrap confidence intervals Parametric t-bootstrap confidence intervals

n\1-alpha 0.9000 0.9500 0.9750 0.9900 av.size 0.9000 0.9500 0.9750 0.9900 av.size

100 0.8843 0.9385 0.9683 0.9865 0.1114 0.9077 0.9565 0.9802 0.9928 0.1059

400 0.8890 0.9410 0.9740 0.9870 0.0545 0.9050 0.9560 0.9750 0.9890 0.0517
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