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The synthetic control chart was introduced by [START_REF] Wu | A Synthetic Control Chart for Detecting Small Shifts in the Process Mean[END_REF] as an improvement over the Shewhart X chart for detecting shifts in the mean of a normally distributed process. The synthetic chart for the mean integrates the Shewhart X chart and the conforming run length (CRL) chart. [START_REF] Wu | A Synthetic Control Chart for Detecting Small Shifts in the Process Mean[END_REF] showed that for moderate shifts in the mean, the synthetic chart reduces the out-of-control average run length (ARL) by nearly half while maintaining the same in-control ARL. They also demonstrated that the synthetic chart outperforms the exponentially weighted moving average (EWMA) chart and the joint X-EWMA charts when the mean shift is greater than 0.8σ.

Other works on synthetic charts are as follow : Wu & Spedding (2000a) presented a program in C to design a synthetic chart that minimizes the out-ofcontrol ARL based on an optimization model. Wu & Yeo (2001) and [START_REF] Wu | A Synthetic Control Chart for Detecting Fraction Nonconforming Increases[END_REF] proposed synthetic charts for detecting increases in the fraction nonconforming. [START_REF] Calzada | The Robustness of the Synthetic Control Chart to Non-normality[END_REF] found that the synthetic chart of [START_REF] Wu | A Synthetic Control Chart for Detecting Small Shifts in the Process Mean[END_REF] is reasonably close to the normal theory values for moderate nonnormality or when the sample size n is large. [START_REF] Davis | Evaluating and Improving the Synthetic Control Chart[END_REF] presented a Markov chain model of the synthetic chart suggested by Wu & Spedding (2000a) and used it to evaluate the chart's zero-state and steady-state ARL performances, besides altering the chart to achieve a better ARL performance. [START_REF] Sim | Combined X and CRL Charts for the Gamma Process[END_REF] studied the performance of the synthetic chart based on the gamma and exponential distributions for known and unknown parameters, respectively and concluded that the synthetic chart outperforms the Shewhart X chart with either asymmetric probability limits or 3-sigma control limits. [START_REF] Scariano | A Note on the Lower-sided Synthetic Chart for Exponentials[END_REF] discussed a synthetic chart for exponential data, derived an expression for its ARL and design parameters and showed that the chart outperforms the Shewhart chart for individuals but is inferior to the EWMA and cumulative sum (CUSUM) charts in detecting decreases in the exponential mean. Huang & Chen (2005) suggested a synthetic chart for monitoring process dispersion by combining the sample standard deviation, S chart and the CRL chart. Chen & Huang (2005) combined the sample range, R chart and the CRL chart to form a synthetic chart for process dispersion. [START_REF] Costa | A Synthetic Control Chart for Monitoring the Process Mean and Variance[END_REF] proposed a synthetic chart based on a noncentral chi-square statistic that is superior to the joint X and R chart in detecting shifts in the mean and/or standard deviation. [START_REF] Costa | Synthetic Control Chart for Monitoring the Process Mean and Variance[END_REF] considered a synthetic chart with two-stage sampling to monitor the process mean and variance, and claimed that the chart is more convenient to administer than the joint X and S chart with double sampling, although both charts have similar performances. Similar to the X, EWMA and CUSUM charts, the synthetic chart for the mean proposed by [START_REF] Wu | A Synthetic Control Chart for Detecting Small Shifts in the Process Mean[END_REF] requires the assumption that the distribution of the quality characteristic is normal or approximately normal. But in some situations, it may happen that this condition does not hold (for instance, see [START_REF] Jacobs | Watch Out for Nonnormal Distributions[END_REF]). Experience in the chemical industry shows that there are a number of reasons why a process that is operating in a state of statistical process control, yields non normal skewed distributions. Some of these reasons are:

• measurements or operation in the vicinity of a material's physical limits, e.g. saturation, phase change, boiling point, tensile strength.

• measurements of a characteristic that has zero as a natural limit, e.g. moisture content, impurity content, warpage, bow.

• mathematical relationships between variables, e.g. a variable with an Arrhenius-type exponential dependence on process temperature.

To deal with nonnormal underlying distributions, the approaches that are currently used are (i) transforming the data to attain an approximate normal distribution, (ii) increasing the sample size so that the sample average follows an approximate normal distribution, and (iii) employing heuristic control charts for skewed populations. The existing heuristic charts for skewed populations are the X and R charts based on the weighted variance (WV) method proposed by [START_REF] Bai | X and R Control Charts for Skewed Populations[END_REF], the X chart based on the scaled weighted variance (SWV) method suggested by [START_REF] Castagliola | X Control Chart for Skewed Populations Using a Scaled Weighted Variance Method[END_REF], the X, CUSUM and EWMA charts using the weighted standard deviation method presented by [START_REF] Chang | Control Charts for Positively-skewed Populations with Weighted Standard Deviations[END_REF] and the X and R charts based on the skewness correction method proposed by [START_REF] Chan | Skewness Correction X and R Charts for Skewed Distributions[END_REF].

Some of the other works on control charts for skewed populations are made by (i) [START_REF] Schneider | Control Charts for Skewed and Censored Data[END_REF] who discussed methods to establish control limits when the data are positively skewed and censored from below, (ii) [START_REF] Wu | Asymmetric Control Limits of the X Chart for Skewed Process Distributions[END_REF] who proposed an approach to optimize the control limits of the X chart for skewed populations so that the average number of scrap products is minimized without increasing the Type-I error, (iii) [START_REF] Dou | One-sided Control Charts for the Mean of Positively Skewed Distributions[END_REF] who suggested a procedure to construct a one-sided X chart for positively skewed distributions using the Edgeworth expansion method, (iv) [START_REF] Chen | Economic Design of X Control Charts for Non-normal Data Using Variable Sampling Policy[END_REF] who presented an economic design of X charts for nonnormal data using variable sampling policy, (v) [START_REF] Nichols | A Bootstrap Control Chart for Weibull Percentiles[END_REF] who considered a bootstrap control chart for Weibull percentiles, (vi) [START_REF] Kan | The Individuals Control Charts for Burr Distributed and Weibull Distributed Data[END_REF] who proposed a skewness correction method in setting the asymmetric limits of the individuals charts for Burr and Weibull distributed data, and (vii) [START_REF] Tsai | Skew Normal Distribution and the Design of Control Charts for Averages[END_REF] who developed two control charts and process capability ratios based on the skew normal distribution to monitor the process mean and evaluate the process capability of nonnormal data.

Recently, Khoo, Z. Wu & Atta (2008) proposed a synthetic control chart for monitoring shifts in the process mean of skewed populations using the WV method, where no assumption of the distribution of the underlying process is needed.

This chart was shown to provide vast improvements over all the existing charts for skewed populations, in terms of false alarm and mean shift detection rates for cases with known and unknown parameters.

This paper extends the work of [START_REF] Khoo | A Synthetic Control Chart for Monitoring the Process Mean of Skewed Populations based on the Weighted Variance Method[END_REF] by proposing a synthetic Scaled WV (SWV) control chart for monitoring the mean of skewed populations.

The synthetic SWV-X chart will be shown to outperform the synthetic WV-X chart of [START_REF] Khoo | A Synthetic Control Chart for Monitoring the Process Mean of Skewed Populations based on the Weighted Variance Method[END_REF] for the case with a negative shift in the mean, when the same in-control ARL is considered for the two charts. For this case, the superiority of the synthetic SWV-X chart increases with the level of skewness.

Note that for a positive shift in the mean, the synthetic SWV-X chart is only slightly less effective than the synthetic WV-X chart. Thus, for a process having a skewed population, where past experience indicates that whenever a signal is triggered a negative shift usually occurs, then the synthetic SWV-X chart can be a favourable substitute for the synthetic WV-X chart. The rest of this paper is organized as follows : Section 2 gives a review on the synthetic X, the WV-X and the SWV-X charts. Section 3 presents the proposed synthetic SWV-X chart and details the methodology used for comparing both the synthetic WV-X and synthetic SWV-X charts. Section 4 illustrates the use of the synthetic SWV-X with an example. Section 5 completes the paper with the main conclusions drawn from our study.

2 Literature review The synthetic X chart comprises a X/S sub-chart and a CRL/S sub-chart.

The CRL is defined as the number of inspected units between two consecutive nonconforming units (including the ending nonconforming unit). Figure 1 is an example that shows how the CRL value is determined, assuming that a process starts at t = 0. Here, CRL 1 = 5, CRL 2 = 2 and CRL 3 = 4. The operation of the synthetic X chart is based on the following steps:

Step 1 : Set the lower control limit: L ∈ {1, 2, . . .} of the CRL/S sub-chart and set the constant K > 0 of the X/S sub-chart defined by the following control limits:

LCL X = µ -Kσ (1) U CL X = µ + Kσ (2)
Step 2 : Take a random sample of n observations at each inspection point and compute the sample mean, X.

Step Step 4 : Count the number of X samples between the current and the last nonconforming sample (which includes the current but excludes the last nonconforming sample) as the CRL value of the CRL/S sub-chart.

3 : If LCL X < X < U CL X ,
Step 5 : If the value of CRL ≥ L, the process is declared in-control and the control flow moves back to Step 2. Otherwise, the process is out-ofcontrol and the control flow advances to Step 6.

Step 6 : Signals an out-of-control status to indicate a process mean shift.

Step 7 : Find and remove assignable cause(s). Then move back to Step 2. [START_REF] Wu | A Synthetic Control Chart for Detecting Small Shifts in the Process Mean[END_REF] demonstrated that the Average Run Length (ARL) of the synthetic X control chart corresponding to specific values of K, L, n and where Φ(.) is the standard normal distribution function. In particular, for δ = 0, we have

δ = |µ -µ 1 |/σ (desired magnitude of standardized mean shift) is equal to ARL(δ) = 1 π(1 -(1 -π) L ) (3) with π = Φ(-(K + δ) √ n) + Φ(-(K -δ) √ n) (4 
ARL(0) = 1 2Φ(-K √ n)(1 -(1 -2Φ(-K √ n)) L )
Using these equations, [START_REF] Wu | A Synthetic Control Chart for Detecting Small Shifts in the Process Mean[END_REF] suggested optimal combinations of K and L (useful for the Step 1 described above) that minimize the out-ofcontrol ARL for desired magnitudes of the standardized mean shift δ and an in-control ARL (ARL 0 ) of interest.

The Weighted Variance and Scaled Weighted Variance X charts

Now, let us consider that the distribution of the quality characteristic X is no longer normal but is some continuous unimodal skew distribution f X (x), where

µ = E(X) is the in-control mean, σ = σ(X)
is the the in-control standarddeviation and θ = P (X ≤ µ) is the in-control probability that X is less than or equal to the mean µ. The Weighted Variance X chart (WV-X chart in short)

was initially proposed by [START_REF] Choobineh | Control-limits of QC Charts for Skewed Distributions Using Weighted-variance[END_REF] who suggested the use of the semivariance approximation of [START_REF] Choobineh | A Simple Approximation for Semivariance[END_REF] in order to provide control limits for the mean in the case of a quality characteristic having a skew distribution. [START_REF] Bai | X and R Control Charts for Skewed Populations[END_REF] provided computations and tables to simplify the implementation of the WV-X chart proposed by [START_REF] Choobineh | Control-limits of QC Charts for Skewed Distributions Using Weighted-variance[END_REF]. The control limits of the WV-X chart are

LCL W V = µ -K W V L σ (5) U CL W V = µ + K W V U σ (6) 
where

K W V L and K W V U are equal to K W V L = Φ -1 (1 -α 2 ) 2(1 -θ) n (7) K W V U = Φ -1 (1 -α 2 ) 2θ n ( 8 
)
where n is the sample size, Φ -1 (.) the inverse standard normal distribution (distribution of X is symmetrical) then

K W V L = K W V U = Φ -1 (1 -α 2 ) √ n
and the control limits in equation ( 5) and equation ( 6) are reduced to the classical Shewhart X control limits. The Scaled Weighted Variance X chart (SWV-X chart in short) was suggested by [START_REF] Castagliola | X Control Chart for Skewed Populations Using a Scaled Weighted Variance Method[END_REF] as an improvement over the WV-X chart. [START_REF] Castagliola | X Control Chart for Skewed Populations Using a Scaled Weighted Variance Method[END_REF] provided explanations concerning the shortcomings of the WV method and how these shortcomings were addressed using the SWV method. The control limits of the SWV-X chart are as follow (see [START_REF] Castagliola | X Control Chart for Skewed Populations Using a Scaled Weighted Variance Method[END_REF]):

LCL SW V = µ -K SW V L σ (9) U CL SW V = µ + K SW V U σ ( 10 
)
where

K SW V L and K SW V U are equal to K SW V L = Φ -1 1 - α 4θ 1 -θ nθ (11) 
K SW V U = Φ -1 1 - α 4(1 -θ) θ n(1 -θ) (12) 
It is worth to note that the two constants above can only be computed if α 4 < θ < 1 -α 4 and, as for the WV-X chart, if θ = 1 2 then

K SW V L = K SW V U = Φ -1 (1 -α 2 ) √ n
and the control limits in equation ( 9) and equation ( 10) are also reduced to the classical Shewhart X control limits.

3 The Synthetic Weighted Variance and Synthetic Scaled Weighted Variance X charts

The synthetic WV-X chart, suggested by [START_REF] Khoo | A Synthetic Control Chart for Monitoring the Process Mean of Skewed Populations based on the Weighted Variance Method[END_REF], is based on the idea of integrating the WV method of [START_REF] Bai | X and R Control Charts for Skewed Populations[END_REF] with the synthetic X chart of [START_REF] Wu | A Synthetic Control Chart for Detecting Small Shifts in the Process Mean[END_REF]. The operation of the synthetic WV-X chart is similar to that of the synthetic X chart described in section 2.1, except that the control limits in equation ( 1) and equation ( 2) are replaced with the control limits in equation ( 5) and equation ( 6) for the WV-X/S sub chart. [START_REF] Khoo | A Synthetic Control Chart for Monitoring the Process Mean of Skewed Populations based on the Weighted Variance Method[END_REF] compared by simulation the synthetic WV-X chart with different other alternatives (i.e. SC-X chart by [START_REF] Chan | Skewness Correction X and R Charts for Skewed Distributions[END_REF] and the WSD-X, WSD-CUSUM and WSD-EWMA charts by [START_REF] Chang | Control Charts for Positively-skewed Populations with Weighted Standard Deviations[END_REF]) and concluded that the former gives the most favourable results, in terms of false alarms and mean shift detection rates, in both the known and unknown parameter cases, where the results of the synthetic WV-X chart are even better when the skewness of the underlying distribution is larger.

In this paper, we suggest to integrate the SWV method of [START_REF] Castagliola | X Control Chart for Skewed Populations Using a Scaled Weighted Variance Method[END_REF] with the synthetic X chart of [START_REF] Wu | A Synthetic Control Chart for Detecting Small Shifts in the Process Mean[END_REF] by replacing the control limits in equation ( 1) and equation ( 2) with the control limits in equation ( 9) and equation ( 10) for the SWV-X/S sub chart. The resulting chart will be called a synthetic SWV-X chart. The goal of this paper is to evaluate the respective efficiencies of both the synthetic WV-X and synthetic SWV-X charts in terms of the out-of-control ARL. In order to compare these two charts, we have chosen an innovative methodology that does not involve any simulation. This methodology is decribed below:

1. For the sake of simplicity, we assume that µ = 0 and σ = 1.

2. Let β = E(( X-µ σ ) 3 ) and ψ = E(( X-µ σ ) 4 ) -3 be the skewness and kurtosis coefficients, respectively of the quality characteristic X. In our study, we restrict the values of the skewness coefficient β ∈ {0.5, 1 , 1.5, 2, 2.5, 3, 3.5, 4, 4.5} and, for each of these values, we select 7 different values ψ 1 , . . . , ψ 7 for the kurtosis coefficient ψ. As Figure 2 clearly shows, for each selected skewness coefficient β, the 6 smaller kurtosis coefficients ψ 1 , . . . , ψ 6 are uniformly distributed within the curve corresponding to the lower limit for any possible distributions and the curve corresponding to the lognormal distribution while the largest kurtosis coefficient ψ 7 is just above the curve corresponding to the lognormal distribution. This strategy guarantees to cover a large spectrum of distributions, including the gamma, Weibull Table 1. 3. For each combination (β, ψ i ), for i = 1, . . . , 7, in Table 1, we compute the parameters (a i , b i , c i , d i ) of the [START_REF] Johnson | Systems of Frequency Curves Generated by Methods of Translation[END_REF] distribution having µ = 0 for mean, σ = 1 for standard-deviation, β for skewness coefficient and ψ i , i = 1, . . . , 7 for kurtosis coefficient (the estimation algorithm is due to [START_REF] Hill | Fitting Johnson Curves by Moments[END_REF]). Based on Johnson's work, we know that there is an unique set of parameters (a i , b i , c i , d i ) satisfying this condition (the main properties of the Johnson system of distributions are summarized in the Appendix). Let F J (x|a, b, c, d) be the Johnson distribution function of parameters (a, b, c, d). For each β ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5}, we

can compute θ i = P (X ≤ µ) = F J (µ|a i , b i , c i , d i ) and θ = 1 7 (θ 1 + • • • + θ 7
) being the average probability that X is less than or equal to the mean µ over the spectrum of considered distributions.

4. If the distribution of the quality characteristic X is known, the distribution of the sample mean X is generally unknown (except for some rare cases) and, therefore, there is no closed-form for it. Nevertheless, it is well known that the mean µ X , the standard-deviation σ X , the skewness coefficient β X and the kurtosis coefficient ψ X of X are related to µ, σ, β and ψ through the following simple formulae:

µ X = µ σ X = σ √ n β X = β √ n ψ X = ψ n
Consequently, if the distribution of the sample mean X is actually unknown, we simply suggest to approximate it with the unique Johnson distribution with parameters (a X , b X , c X , d X ) having µ X for mean, σ X for standard-deviation, β X for skewness coefficient and ψ X for kurtosis coefficient and estimated with the algorithm of [START_REF] Hill | Fitting Johnson Curves by Moments[END_REF]. In order to validate this approach, we conducted a thorough study (not presented here) where we computed for different combinations of (β, ψ), the cumulative distribution function of X either by intensive simulations or by fitting with a Johnson distribution. The result of this study clearly demonstated that the cumulative distribution function of X obtained by fitting a Johnson distribution is extremely close to the real one obtained by simulation, thus providing an easy-to-use and accurate approximation for the cumulative distribution function of X.

5. For a combination (β, ψ i ), the ARL of both the Synthetic WV-X and Synthetic SWV-X charts are computed using equation (3) where π in equation ( 4) is replaced by

π = F J (K L |a X , b X , c X + δ, d X ) + 1 -F J (K U |a X , b X , c X + δ, d X ). Here (K L , K U ) are the constants (K W V L , K W V U ) for the Synthetic WV- X chart or (K SW V L , K SW V U
) for the Synthetic SWV-X chart. Consquently, for values of L, K L , K U and β, we can compute 7 differents values ARL 1 , . . . , ARL 7 corresponding to the 7 kurtosis ψ 1 , . . . , ψ 7 and we can also compute ARL = 1 7 (ARL 1 + • • • + ARL 7 ) as the average ARL over the spectrum of considered distributions.

In Tables 2, 3 and 4 we have computed the values of the constants K L , K U and L, for both the Synthetic WV-X chart and the Synthetic SWV-X chart, for n = 5, β ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5} and for δ ∈ {-1.5, -1, -0.7, -0.5, -0.4, -0.3, -0.2, -0.1, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1, 1.5}. The average in-control ARL is ARL 0 = 370.4. For example, if the value of the skewness coefficient is β = 1.5 then the average probability that X is less than or equal to the mean µ is θ = 0.636. If we want to detect a standardized mean shift δ = -0.5 (i.e. a decrease of 0.5σ), we have K L = 0.851, K U = 1.126, L = 7 for the Synthetic WV-X chart and the average out-of-control ARL is ARL = 5.1 while, for the Synthetic SWV-X chart, we have K L = 0.789, K U = 1.252, L = 9 and the average out-of-control ARL is ARL = 3.7. In Tables 2, 3 and 4, the ARL values in bold characters correspond to the lowest out-of-control average ARL's. This clearly demonstrates that when the standardized mean shift δ < 0, the Synthetic SWV-X chart always have smaller average out-of-control ARL than the Synthetic WV-X chart. When the standardized mean shift δ > 0, the previous conclusion is reversed.

An illustrative example

In order to illustrate the use of the Synthetic SWV-X chart, let us consider a 125g yogurt cup filling process where the quality characteristic X is the weight of each yogurt cup. A long term study (Phase I, realized in a local company) based on a large database of yogurt cup weights showed that the distribution of the quality characteristic X is significantly skewed. This study also allowed accurate estimations of the in-control mean µ = 124.9, the in-control standard-deviation σ = 0.76 and the in-control probability θ = 0.679 that X is less than or equal to its mean µ. The quality practitioner in charge of this process decided to take n = 5 yogurt cups every hour. Based on Table 3, he decided to choose the value of θ = 0.682 (which is the closest to the in-control probability θ = 0.679) and to use the constants K L , K U and L optimally designed for detecting a mean shift δ = -0.3, i.e. K L = 0.701, K U = 1.306 and L = 9, yielding the following Synthetic SWV-X control limits LCL = 124.9 -0.701 × 0.76 = 124.37 U CL = 124.9 + 1.306 × 0.76 = 125.89

In Table 5, we recorded 30 samples corresponding to a 30 hours sequence of production (Phase II) from the 101th hour to the 130th hour. In each row we have the values corresponding to n = 5 yogurt cups weighed every hour. The last column is the mean Xi of these n = 5 values. The samples in Table 5 are also plotted in Figure 3 (top). In Figure 3 (bottom), we plotted the mean Xi of the 30 samples with the control limits LCL = 124.37 and U CL = 125.89 of the SWV-X/S sub chart. Concerning the values of Xi , for i = 1, . . . , 100, (corresponding to the starting phase of the process, but not recorded in Table 5), they all verify that LCL < Xi < U CL. As we can see in Figure 3 Thus, we have CRL 3 = 127 -123 = 4 < L = 9 and we can conclude that an out-of-control situation occured corresponding to a downward shift in the process mean (i.e. less yogurt in each of the cups), probably due to a clog in the pipe used for filling the cups.

WV-X chart SWV-X chart β θ δ K L K U L ARL K L K U L ARL 0.5 0.
WV-X chart SWV-X chart β θ δ K L K U L ARL K L K U L ARL 2.0 0.663 -1.5 0.

Conclusions

A synthetic SWV-X chart for skewed populations is suggested in this paper.

The ARL results have shown that the synthetic SWV-X chart gives a more favourable performance than the synthetic WV-X chart when the mean of an underlying process from a skewed population shifts downward or in the negative direction. Consequently, the synthetic SWV-X chart can be a favourable substitute for the synthetic WV-X chart in process monitoring when the mean of a skewed population is likely to shift downward, whenever a change occurs. 
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 2 Figure 2: Selected skewness β and kurtosis ψ i coefficients covering the area corresponding to the gamma, the Weibull and the lognormal distributions.

  Figure 3: (top) 30 samples of size n = 5 corresponding to a 30 hours sequence of production, (bottom) the corresponding Synthetic SWV-X chart
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Table 2 :

 2 Constants K L , K U and L, for both the Synthetic WV-X and Synthetic

	554 -1.5 0.868 0.968	2	1.1	0.843 1.004	2	1.1
	-1.0 0.918 1.023	4	1.8	0.890 1.063	4	1.7
	-0.7 0.955 1.065	7	3.7	0.925 1.108	7	3.3
	-0.5 0.994 1.109 13	8.7	0.960 1.153 13	7.3
	-0.4 1.020 1.137 20	16.0	0.984 1.183 20	12.6
	-0.3 1.043 1.163 30	34.3	1.009 1.215 33	25.0
	-0.2 1.056 1.177 38	89.1	1.037 1.251 60	58.8
	-0.1 0.972 1.083	9	236.8	1.057 1.277 98	164.8
	0.1 1.145 1.277 263	191.5 1.110 1.344 472	261.6
	0.2 1.114 1.242 125	90.9 1.082 1.309 190	127.7
	0.3 1.083 1.208 65	45.6 1.054 1.273 90	62.5
	0.4 1.054 1.175 37	24.7 1.026 1.237 47	32.6
	0.5 1.028 1.146 23	14.3 0.999 1.203 27	18.3
	0.7 0.984 1.097 11	5.9	0.956 1.148 12	7.0
	1.0 0.933 1.040	5	2.3	0.904 1.081	5	2.6
	1.5 0.868 0.968	2	1.1	0.843 1.004	2	1.2
	1.0 0.600 -1.5 0.817 1.001	2	1.1	0.778 1.077	2	1.1
	-1.0 0.863 1.058	4	1.6	0.818 1.140	4	1.5
	-0.7 0.889 1.089	6	2.9	0.839 1.174	6	2.6
	-0.5 0.920 1.128 10	6.5	0.869 1.221 11	5.0
	-0.4 0.936 1.147 13	12.0	0.886 1.248 16	8.1
	-0.3 0.944 1.158 15	27.2	0.905 1.278 25	15.5
	-0.2 0.914 1.120	9	77.9	0.927 1.313 44	37.0
	-0.1 0.817 1.001	2	210.6	0.935 1.327 55	121.9
	0.1 1.081 1.326 177	176.6 1.003 1.432 514	244.9
	0.2 1.052 1.290 100	88.5 0.984 1.403 248	132.8
	0.3 1.024 1.256 60	47.4 0.965 1.373 130	72.4
	0.4 0.998 1.224 38	27.1 0.946 1.343 73	41.1
	0.5 0.974 1.195 25	16.4 0.926 1.312 43	24.4
	0.7 0.931 1.141 12	7.0	0.888 1.252 17	9.8
	1.0 0.877 1.075	5	2.7	0.839 1.174	6	3.4
	1.5 0.817 1.001	2	1.2	0.778 1.077	2	1.3
	1.5 0.636 -1.5 0.770 1.019	2	1.1	0.723 1.127	2	1.1
	-1.0 0.796 1.053	3	1.5	0.755 1.188	4	1.4
	-0.7 0.829 1.097	5	2.5	0.772 1.221	6	2.1
	-0.5 0.851 1.126	7	5.1	0.789 1.252	9	3.7
	-0.4 0.860 1.138	8	9.4	0.803 1.279 13	5.7
	-0.3 0.841 1.113	6	21.9	0.817 1.306 19	10.3
	-0.2 0.796 1.053	3	64.2	0.833 1.335 29	24.5
	-0.1 0.724 0.959	1	183.3	0.819 1.309 20	96.7
	0.1 1.046 1.384 129	180.6 0.913 1.485 328	218.1
	0.2 1.012 1.339 75	94.8 0.897 1.456 193	124.3
	0.3 0.981 1.298 47	52.8 0.881 1.425 116	72.1
	0.4 0.953 1.261 31	30.9 0.865 1.396 74	43.4
	0.5 0.929 1.230 22	18.9 0.850 1.368 48	27.1
	0.7 0.882 1.166 11	8.1	0.823 1.316 22	11.6
	1.0 0.829 1.097	5	3.0	0.784 1.243	8	4.1
	1.5 0.770 1.019	2	1.2	0.723 1.127	2	1.3
	SWV-X charts, for n = 5, β ∈ {0.5, 1, 1.5} and ARL 0 = 370.4.		
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Table 3 :

 3 Constants K L , K U and L, for both the Synthetic WV-X and Synthetic

	730 1.024	2	1.1	0.672 1.141	2	1.1
	-1.0 0.759 1.065	3	1.4	0.689 1.177	3	1.3
	-0.7 0.781 1.095	4	2.2	0.709 1.222	5	1.8
	-0.5 0.798 1.119	5	4.4	0.723 1.251	7	3.0
	-0.4 0.798 1.119	5	8.0	0.733 1.274	9	4.4
	-0.3 0.759 1.065	3	18.6	0.745 1.300 12	7.7
	-0.2 0.730 1.024	2	53.4	0.751 1.314 14	19.4
	-0.1 0.684 0.959	1	159.4	0.709 1.222	5	86.7
	0.1 1.040 1.459 114	190.6 0.866 1.558 281 213.5
	0.2 0.998 1.400 63	105.7 0.850 1.524 170 126.6
	0.3 0.961 1.348 39	61.2 0.831 1.485 102	76.8
	0.4 0.929 1.303 26	36.8 0.814 1.446 64	47.7
	0.5 0.899 1.261 18	22.8 0.797 1.411 42	30.4
	0.7 0.852 1.195 10	9.6	0.766 1.345 20	13.3
	1.0 0.798 1.119	5	3.4	0.728 1.263	8	4.6
	1.5 0.730 1.024	2	1.2	0.672 1.141	2	1.4
	2.5 0.682 -1.5 0.705 1.033	2	1.1	0.632 1.139	2	1.1
	-1.0 0.738 1.081	3	1.3	0.651 1.185	3	1.2
	-0.7 0.762 1.117	4	2.0	0.664 1.216	4	1.7
	-0.5 0.762 1.117	4	3.9	0.682 1.261	6	2.6
	-0.4 0.738 1.081	3	7.1	0.689 1.278	7	3.8
	-0.3 0.705 1.033	2	16.4	0.701 1.306	9	6.7
	-0.2 0.652 0.956	1	45.3	0.689 1.278	7	18.3
	-0.1 0.652 0.956	1	164.1	0.632 1.139	2	85.2
	0.1 1.071 1.570 144	202.5 0.845 1.647 286 215.2
	0.2 1.010 1.481 64	119.3 0.829 1.609 174 133.7
	0.3 0.953 1.398 33	72.1 0.810 1.563 104	85.1
	0.4 0.913 1.338 21	44.4 0.789 1.515 63	55.0
	0.5 0.875 1.283 14	27.9 0.769 1.468 40	35.9
	0.7 0.823 1.207	8	11.7 0.733 1.383 18	16.0
	1.0 0.762 1.117	4	3.8	0.682 1.261	6	5.3
	1.5 0.652 0.956	1	1.1	0.632 1.139	2	1.3
	3.0 0.697 -1.5 0.687 1.042	2	1.1	0.607 1.146	2	1.1
	-1.0 0.724 1.098	3	1.3	0.627 1.199	3	1.2
	-0.7 0.724 1.098	3	1.9	0.641 1.237	4	1.6
	-0.5 0.724 1.098	3	3.6	0.652 1.266	5	2.4
	-0.4 0.687 1.042	2	6.6	0.661 1.290	6	3.4
	-0.3 0.629 0.955	1	15.0	0.669 1.310	7	6.2
	-0.2 0.629 0.955	1	42.0	0.627 1.199	3	18.4
	-0.1 0.629 0.955	1	229.9	0.574 1.058	1	87.9
	0.1 1.123 1.703 225	213.6 0.841 1.749 326 220.3
	0.2 1.052 1.595 85	134.1 0.826 1.709 200 144.3
	0.3 0.956 1.450 30	84.7 0.804 1.654 114	96.4
	0.4 0.893 1.354 16	53.6 0.779 1.590 64	64.6
	0.5 0.854 1.296 11	34.1 0.755 1.531 39	43.2
	0.7 0.792 1.201	6	14.2 0.711 1.417 16	19.5
	1.0 0.724 1.098	3	4.3	0.661 1.290	6	6.2
	1.5 0.629 0.955	1	1.1	0.574 1.058	1	1.3
	SWV-X charts, for n = 5, β ∈ {2, 2.5, 3} and ARL 0 = 370.4.		
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Table 4 :

 4 Constants K L , K U and L, for both the Synthetic WV-X and Synthetic
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	i	X	Xi	CRL
	F o r P e 101 125.3 124.9 124.4 124.6 125.2 124.88 102 124.8 124.8 126.4 124.6 126.4 125.40 103 124.7 124.4 124.7 125.2 128.6 125.52 104 125.5 124.6 124.8 124.4 124.3 124.72 105 124.7 124.3 124.6 125.0 124.4 124.60 106 124.5 124.8 124.7 124.4 124.9 124.66 106 124.4 125.1 125.6 124.5 124.8 124.88 107 124.4 125.3 124.3 125.0 124.3 124.66 108 124.5 126.8 124.4 125.9 124.8 125.28 110 124.4 125.4 124.4 125.0 129.2 125.68 111 126.2 124.3 125.4 124.9 124.5 125.06 112 124.4 124.2 124.3 124.4 124.3 124.32 112 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • e r R e v i 113 124.6 124.6 124.8 124.4 124.5 124.58 • • • 114 124.4 124.5 124.7 124.6 126.1 124.86 • • • 115 125.3 124.8 124.4 124.7 124.5 124.74 • • • 116 124.2 124.9 125.4 124.1 124.6 124.64 • • • 117 125.0 124.5 124.1 124.4 125.0 124.60 • • • 118 124.5 124.7 124.6 124.6 124.7 124.62 • • • 119 125.3 124.2 125.2 124.6 124.3 124.72 • • • 120 125.6 124.3 124.4 124.7 124.9 124.78 • • • 121 124.9 124.6 125.0 124.3 124.2 124.60 • • • 122 124.9 124.3 124.5 124.1 124.6 124.48 • • • 123 124.2 124.0 124.5 124.6 124.3 124.32 11 e w 124 125.4 125.5 124.5 124.5 124.2 124.82 • • • 125 124.1 124.1 126.1 124.3 124.2 124.56 • • • 126 124.1 125.9 124.1 124.7 125.3 124.82 • • • 127 124.1 124.3 124.1 124.2 124.5 124.24 4
	O 128 124.2 124.2 124.4 126.3 124.5 124.72 129 124.2 124.7 124.6 124.3 125.1 124.58 130 126.5 124.1 125.3 124.3 124.4 124.92 n • • • • • • • • • l Table 5: 30 samples of size n = 5 corresponding to a 30 hours sequence of
	production			y
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  the value of Xi for i = 101, . . . , 111 also verify that LCL < Xi < U CL. Then the 112th sample ( X112 = 124.32) is below LCL = 124.37 of the SWV-X/S sub chart. This implies that CRL 1 = 112 > L = 9 and we can conclude that, up to this point, the process seems to be perfectly in-control. From the 113th sample to the 122nd sample, the values of Xi verify that LCL < Xi < U CL.The 123rd sample ( X123 = 124.32) is again below LCL = 124.37. This implies that CRL 2 = 123 -112 = 11 > L = 9 and we can conclude that up to this point, the process is still in-control. Then samples 124, 125 and 126 show that LCL < Xi < U CL, but sample 127 ( X127 = 124.24) is below LCL = 124.37.
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Appendix

Let us focus on transformations of form Z = a + bg(Y ) of the random variable Y , where a and b > 0 are two parameters, where g is a monotone increasing function, and where Z is a N (0, 1) random variable. It is very easy to show that the cumulative distribution function of the random variable Y is:

If c and d > 0 are two additional parameters such that Y = X-c d , then we can