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Abstract 

 

This research examines the Type I error rates obtained when using the mixed model 

with the Kenward-Roger correction and compares them with the Between-Within and 

Satterthwaite approaches in split-plot designs. A simulated study was conducted to 

generate repeated measures data with small samples under normal distribution 

conditions. The data were obtained via three covariance matrices (unstructured, 

heterogeneous first-order auto-regressive and random coefficients), the one with the 

best fit being selected according to the Akaike criterion. The results of the simulation 

study showed the Kenward-Roger test to be more robust, particularly when the 

population covariance matrices were unstructured or heterogeneous first-order auto-

regressive. The main contribution of this study lies in showing that the Kenward-Roger 

method corrects the liberal Type I error rates obtained with the Between-Within and 

Satterthwaite approaches, especially with positive pairings between group sizes and 

covariance matrices. 

 

Key words: Kenward-Roger method; Linear mixed model; Repeated measures; Type I 

error rate; Simulation. 
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1. Introduction 

 

Over the last fifteen years researchers have shown a growing interest in the analysis of 

repeated measures data in both experimental and longitudinal contexts. In the former the 

main objective aim is to analyse treatment effects, while in the latter the idea is to test 

the effect across time longitudinal studies interest lies in testing the time effect. In both 

cases the difficulty arises when applying traditional analytic procedures such as analysis 

of variance (ANOVA) or multivariate analysis of variance (MANOVA). 

One of the recent approaches to the analysis of repeated measures data is based 

on the mixed model (Littell et al., 1996). Laird and Ware (1982) established the bases of 

the linear mixed model, which takes into account the possible correlation of within-

subject errors. Subsequently, Cnaan et al. (1997) and Verbeke and Molenberghs (2000) 

reported a more complete specification and applied the multilevel model to longitudinal 

repeated measures data. Unlike variance-based analyses (ANOVA and MANOVA) the 

mixed model enables the structure of the covariance matrix to be specified on the basis 

of the data, rather than presupposing it. Thus, a more efficient estimate of the fixed 

effects is achieved and, consequently, more powerful statistical tests are obtained. This 

analysis can be performed using the PROC MIXED program of the SAS system (SAS 

Institute, 2000, 2004), which incorporates all the advantages of mixed model 

methodology with repeated measures data (Littell et al., 1998; Verbeke and 

Molenberghs, 1997). By means of this methodology the researcher models the 

covariance structure and achieves greater robustness when estimating the effects of 

repeated measures and interaction. 
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Various studies have reported that the mixed model offers better control of Type 

I error, despite the fact, as Wright and Wolfinger (1996) point out, that Type I error may 

show a positive bias with incorrect covariance structures and small sample sizes. 

Keselman et al. (1999a) applied the mixed model with degrees of freedom based on the 

residual variance, which are the same as the degrees of freedom of the conventional F 

test. These authors found that when the covariance matrix is not spherical the degrees of 

freedom associated with the conventional F test are too large. One alternative would 

thus be to apply the procedure developed by Satterthwaite (1941) to adjust the degrees 

of freedom. 

The problem with estimating the fixed effects of the repeated-measures factor 

and the interaction with the group factor arises from the misspecification of the 

covariance matrix, especially when sample sizes are small. The PROC MIXED program 

of SAS includes several options for model specification with which it is possible to 

change the degrees of freedom when estimating these effects. In general, the inferences 

obtained with the PROC MIXED program of SAS are based on the Wald test, which is 

valid with large samples. Keselman et al. (1999b) point out that the Satterthwaite 

approach has only recently been applied to covariance structures and it is still not 

entirely clear how the mixed model works. The degrees of freedom with the 

Satterthwaite correction are more conservative than the residual degrees of freedom and 

they can be expected to yield more precise F tests. This is the conclusion reached in the 

study by (Keselman et al., (1999a), which showed the F test to be much more liberal 

when the degrees of freedom were based on residuals. 

The present study applied the mixed model (by means of SAS PROC MIXED, 

version 9.1.3) to compare tests of the fixed effects of repeated measures and the 
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interaction in split-plot designs using three degrees-of-freedom solutions: Between-

Within (BW), Satterthwaite (SW) and Kenward-Roger (KR). Although the small 

sample distribution of Wald statistics is approximated by an may yield good 

approximations of the value of F with small samples distribution (Kendward and Roger, 

1997), the statistical results are generally rather poor. The properties of small samples 

can be improved by using the Satterthwaite approach to denominator degrees of 

freedom (Satterthwaite, 1941), or through the Kenward-Roger adjusted degrees of 

freedom solution (Kenward and Roger, 1977). 

Keselman et al. (1999b) found that F tests combined with the Satterthwaite 

approach, using PROC MIXED, were as robust as default tests when the true structure 

of the covariance matrix was specified. Keselman et al. (1999a) based the degrees of 

freedom of the mixed model on the variance of the residuals, which coincide with the 

degrees of freedom of the error of the conventional F test. Through its MODEL option 

the PROC MIXED program enables researchers to use the F approximation based on 

the solution given by Satterthwaite (1946). This approximation corrects the degrees of 

freedom for the test of fixed effects of repeated measures, and was investigated by 

Keselman et al. (1999b) to determine its efficacy in controlling Type I error. However, 

tests of the fixed effects of repeated measures using PROC MIXED were more robust 

when the true covariance structure was known. With versions 8 and above of SAS it is 

possible to use the Kenward-Roger solution (Kenward and Roger, 1997) as an 

alternative way of calculating the degrees of freedom. This procedure appears to yield 

more accurate results of inferences for the fixed effects with small samples (Kowalchuk 

et al., 2004; Schaalje et al., 2001). 
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Assuming that statistical tests follow an approximate distribution of F with the 

corresponding calculation of the degrees of freedom, SAS PROC MIXED (version 

9.1.3) now incorporates two methods for correcting this calculation. The sample 

distribution of F approximately follows an F distribution with q and ν as degrees of 

freedom in the numerator and denominator of this ratio. When using the residual 

degrees of freedom, n – rank(X), where n is the number of observations, the results 

obtained are too liberal. Hence it is better to use the two approaches for correcting 

degrees of freedom that are incorporated into SAS PROC MIXED: 

DDFM=SATTERTH and DDFM=KENWARDROGER. Given the above, the present 

study aimed to compare the mixed-model procedure using the Satterthwaite and 

Kenward-Roger solutions for degrees of freedom with the system that separates the 

between and within degrees of freedom with small samples. 

 

1.1. Satterthwaite and Kenward-Roger approximations for correcting degrees of 

freedom 

 

The Satterthwaite approximation is a generalization of techniques proposed by 

Giesbrecht and Burns (1985), McLean and Sanders (1988) and Fai and Cornelius 

(1996). Let θ be a vector of unknown parameters in V (variance/covariance matrix) and 

C = (C’V
−1

X)
−
, where 

−
 denotes a generalized inverse. If Ĉ and θθθθ̂  are the 

corresponding estimates, the denominator degrees of freedom can be calculated by 

performing the spectral decomposition LĈL’ = P’DP, where P is an orthogonal matrix 

of eigenvectors and D is a diagonal matrix of eigenvalues, both of dimension q x q. 

Define lm as the mth row of PL and let 
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)2( 2

=              (1) 

where Dm is the mth diagonal element of D and gm is the gradient of lmCl’m with respect 

to θ, evaluated at θθθθ̂ . A is the asymptotic variance-covariance matrix of θθθθ̂  obtained 

from the second derivative matrix of the likelihood equations. Thus 

2)(
2

E Σ
1

>
−

=
=

m

m

m
q

m

ν
ν

ν
I             (2)  

where the indicator function eliminates terms for which νm ≤ 2. The degrees of freedom 

for F are then given by 

 
q

ν
−

=
E

2E
             (3) 

provided E > q; otherwise ν = 0. 

The Kenward-Roger approximation calculates the degrees of freedom in a 

similar way and is used for tests with mixed linear models based on any covariance 

structure. If C is a contrast matrix of range q, the Wald F for the hypothesis H0: Cββββ = 0 

is given by F = W /q, where  

W = )ˆ()')ˆ'((')ˆ( 111 ββββββββ CCXVXCC
−−−            (4) 

The next step is to calculate a scale factor δ and an approximate value of the degrees of 

freedom ν. Thus, the Kenward-Roger F statistic is given by 

    F* =    δFKR                                            (5) 

where FFR = )ˆ()')ˆ'((')ˆ(
1 111 ββββββββ CCXVXCC

−−−

q
. The moments of F* are then generated 

and equated to the moments of the F distribution to solve for δ and ν. Under a null 

hypothesis it is assumed that F* is approximately distributed as F with q degrees of 

freedom in the numerator and ν degrees of freedom in the denominator. Thus, two 
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values have to be calculated from the data: the denominator degrees of freedom ν and a 

scale factor δ. Therefore, 

 
1

2
4

−
+

+=
qy

q
ν              (6) 

where 

 
[ ]
[ ]2KR

KR

2E

V

F

F
y = ,            (7) 

and 

 
[ ]( )2-E KR νF

ν
δ =              (8) 

The degrees of freedom are calculated in a similar way to that used in the previous 

procedure and the Wald F statistic is adjusted to take into account the bias associated 

with small samples and the variability of the estimated variance matrix.  

The inferences derived from simulation studies using these methods usually 

function well, even with complex covariance structures (Keselman et al., 1998; Schaalje 

et al., 2002). In the present study we compared the functioning of these models with 

normally-distributed small samples and covariance structures that violate the 

assumption of sphericity, a situation that occurs frequently in the context of longitudinal 

repeated measures. It has been demonstrated that in the case of normally-distributed 

data and heterogeneous within-group covariance structures the KR procedure meets the 

criterion of robustness (Livacic-Rojas et al., 2006). The aim of the present study was 

thus to determine the functioning of heterogeneous covariance structures, both across 

groups and within measurement occasions, when estimating estimate the fixed effects 

associated with time and their interaction with relatively small samples in split-plot 

designs, using mixed models. This approach enables users to model the covariance 
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structure for subjects for a repeated measures variable, and also allows them to fit 

different covariance structures to each group of subjects for each level of a between-

subjects grouping variable. 

 

2. Simulation method 

 

The split-plot design includes a between-subjects factor, where the subjects (i = 1,…,nj) 

are chosen at random for each group  (j = 1,…,J), and a within-subjects factor of 

repeated measures (k = 1,…,K). The main objective of this type of design is to study the 

main repeated measures effect and the group x repeated measures interaction. Here it is 

assumed that the (yijk) data are normally distributed. The test statistics for the effects are 

based on the covariance structure selected by the Akaike Information Criterion (AIC). 

 

2.1. Study variables 

 

The statistical tests of the main repeated measures effect, as well as of the interaction 

with the group factor, have been conducted with both balanced and unbalanced designs, 

with a between-subjects factor and a within-subjects factor. Three values levels were 

taken used for the between-subjects factor, while the values levels four, six and eight 

levels were taken used for the within-subjects factor. In the simulation study the 

combinations of five variables were selected for each level value of K: a) covariance 

structure of the population; b) homogeneous and heterogeneous between-group 

covariance structures; c) total sample size; d) equal and unequal group sizes; and e) 

pairings of the covariance matrices and group sizes. 
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 Three covariance structures with within-subject heterogeneity were used to 

generate the simulated data: unstructured (UN), heterogeneous first-order auto-

regressive (ARH), and random coefficients (RC). At the same time we investigated 

whether the assumption of sphericity was violated, taking the indices ε = 0.57 and 0.75. 

When ε = 1, the assumption of sphericity is met with designs J x K, whereas with ε = 

1/(K-1) the index takes the extreme value. Most studies use a value of 0.75 as a good 

approximation of sphericity, and 0.57 as indicative of non-sphericity (Algina and 

Keselman, 1998; Keselman et al., 1999a; Lix et al., 2003). Table 1 shows the values of 

the covariance matrices for the corresponding sphericity indices. We have omitted the 

values of the generating covariance matrices corresponding to structures of six and eight 

repeated measures.  

 

[Table 1. Insert here approximately] 

 

 Of the eighteen covariance structures generated we analysed both the equal and 

unequal between-group covariance matrices. With heterogeneous matrices the 

inequality of the groups fitted followed the ratio 1:3:5, as in the studies by Keselman et 

al. (1993), Vallejo et al. (2001), Lix et al. (2003), Livacic-Rojas et al. (2006), and 

Vallejo and Ato (2006). Thus, ΣΣΣΣ1 = 
1
/3ΣΣΣΣ2 and ΣΣΣΣ3 = 

5
/3ΣΣΣΣ2, where ΣΣΣΣj is the covariance 

matrix for group j. In addition, we investigated the conditions of equality and inequality 

for group size, considering total sample sizes of N = 30, 36 and 42. Equal and unequal 

group sizes were taken for each value of N. In the latter case we chose group sizes that 

represented values of the variance coefficient of the group size, ∆nj = 0.41, and when 

the group sizes were equal ∆nj = 0. With ∆nj = 0.41, the unequal group sizes were: a) 5, 
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10, 15 (N = 30); b) 6, 12, 18 (N = 36); and c) 7, 14, 21 (N = 42). With ∆nj = 0, the equal 

group sizes were: a) 10, 10, 10 (N = 30); b) 12, 12, 12 (N = 36); and c) 14, 14, 14 (N = 

42). Finally, we defined the type of pairing between group sizes and covariance matrix. 

Positive pairing associates the sample of the larger group with the covariance matrix 

whose values are larger. In contrast, negative pairing relates combines the largest group 

size with the covariance matrix comprised of smaller elements. In the case of balanced 

designs, pairing is null.  

 Table 2 summarises the various combinations of variables examined in the 

present study. For each combination, 1000 replications were performed at a significance 

level of 0.05: K x covariance structures x ε x combinations N(n1 n2 n3)/∆nj/between-

group covariances/pairing x replications (3 x 3 x 2 x 12 = 216 simulation conditions). 

For the simulations we studied the main effect of the repeated measures variable and the 

interaction with the group variable when the data were normally distributed.  

 

[Table 2. Insert here approximately] 

 

 The simulation data were generated by means of a macro from SAS 9.1.3 (SAS 

Institute, 1997) and using the programming language IML (Interactive Matrix 

Language), also from SAS (SAS Institute, 1999a). The first step involved generating the 

covariance matrices from variances and correlations for values of ε = 0.57 and ε = 0.75. 

Next, the RANNOR generator of SAS (SAS Institute, 1999b) was used to derive 

normally-distributed pseudorandom observations by means of the Cholesky factor of 

the covariance matrix Σj. Finally, each set of data was analysed with PROC MIXED 

(SAS Institute, 2000, 2004), using the covariance structure selected according to the 
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Akaike Information Criterion (AIC). The DDFM options in the MODEL statement were 

BETWITHIN, SATTERTH and KENWARDROGER. The TYPE statement was used to 

specify the covariance structure which showed the best fit according to the AIC.  

  

2.2. Covariance structures adjusted to the data 

 

Given the possibility of heterogeneity, both within and between subjects, eleven 

covariance structures were fit with PROC MIXED applying the AIC criteria, the aim 

being to select the one with the lowest value. The following covariance matrices were 

fit: a) compound symmetry (CS); b) unstructured (UN); c) first-order autoregressive 

(AR); d) Huynh-Feldt spherical (HF); e) within-subjects heterogeneous compound 

symmetry (CSH); f) within-subjects heterogeneous first-order autoregressive (ARH); g) 

random coefficients (RC); h) between-subjects heterogeneous unstructured (UNj); i) 

between-subjects heterogeneous Huynh-Feldt spherical (HFj); j) within- and between-

subjects heterogeneous first-order autoregressive (ARHj); and k) between-subjects 

heterogeneous random coefficients (RCj), where the subscript j indicates that the 

covariance matrices are not equal between the groups.  

 

3. Results 

 

In an initial simulation study we analysed examined the covariance structure selected by 

the AIC from among the eleven covariance 11 structures (CS, UN, AR, HF, CSH, ARH, 

RC, UNj, HFj, ARHj and RCj). A second study was then conducted to calculate the p 

values for tests of fixed effects, taking into account the covariance structure selected by 
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AIC, and the different methods used to adjust the degrees of freedom (BW, SW and 

KR). 

 

3.1. Selecting the covariance structure 

  

The AIC was used as the fit criterion due to its advantages over the Schwarz’s Bayesian 

Information Criterion (BIC).  Keselman et al. (1998) demonstrated that the AIC chooses 

the population covariance structure on 47% of occasions, while the BIC achieved a rate 

of 35%. Similarly, Ferron et al. (2002) showed that the AIC selects the true covariance 

structure on 79% of occasions, compared to a rate of 66% for the BIC. More recently, 

Vallejo and Livacic-Rojas (2005) reported that the results of tests based on the AIC are 

better at controlling Type I error rates than are those based on the BIC. These authors 

found that with the BIC, PROC MIXED offers poor control over the estimated 

probabilities of Type I error. Gomez et al. (2005) concluded that the AIC has a better 

success rate with complex covariance structures, for example, UN. More recently, 

Vallejo et al. (2008) found that with different group sizes the AIC is better at estimating 

standard errors. Given these findings we conducted a simulation study using the AIC. 

However, it should be remembered that the Akaike criterion does not always select the 

only true structure, since and other structures may also provide adequate 

approximations.  

 Tables 3, 4 and 5 show which of the eleven candidate covariance structures are 

selected most often by the AIC the fit percentages of the eleven matrices to the 

covariance structures generated, according to the different combinations of variables 

studied. It should be noted that with homogeneous between-groups covariances we used 
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the population matrices UN, ARH and RC, while UNj, ARHj and RCj were used with 

heterogeneous covariances. 

 

3.1.1. Homogeneity of covariances 

 

In general it can be seen that with homogeneous covariances the structures showing the 

best fit are the same as the true UN (Table 3) and ARH (Table 4), with some exceptions 

when ε = 0.75. With UN matrices the percentages oscillate between 63.3% and 84.3% 

(Table 3), and with ARH matrices between 46.7% and 88.6% (Table 4). In contrast, 

with RC covariance matrices the fit percentages of the true structure are practically null 

(Table 5), the most frequently selected structure being CSH (40-76.3%). 

 

3.1.2. Heterogeneity of covariances  

 

It can be seen in Table 3 shows that with heterogeneous covariance matrices and when 

UN is the true structure, the structures that show the best fit to UN are selected most 

often are UNj (53.70.0-77.5%) and ARHj (46.73.0-62.3%). When the covariance matrix 

is ARH (Table 4) the most frecuently frequently selected ARHj covariance structure is 

selected more often ARHj (56.5-97.3%). However, with K = 8 and ε = 0.75 another 

pattern emerges: with homogeneity of groups the best-fitting most selected matrix is 

UNj (90%), while with positive and negative pairings the best-fitting most selected 

matrix is UN (88.3% and 79.3%, respectively). 

 With RC covariance matrices, several structures show a correct fit higher 

percentage fit (Table 5). Thus, when the covariance matrices are heterogeneous the fit 
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of the UNj matrix oscillates between 27.3% and 87.9%, while the fit of the ARHj matrix 

is in the range 34.6-52%. The RCj structure only shows the best fit when K = 6, ε = 0.57 

and there is positive pairing (35.5%). 

 

[Table 3. Insert here approximately] 

[Table 4. Insert here approximately] 

[Table 5. Insert here approximately] 

 

3.2. Type I error rates 

 

The present study followed the criterion of Bradley (1978), by which a test is robust if 

the empirical error rate is within the range 0.025-0.075 for α = 0.05. A test is considered 

to be liberal when the empirical Type I error rate exceeds the upper limit. In contrast, 

when the error rate is below the lower limit the test is conservative. According to 

Kowalchuk et al. (2004) it is important that applied researchers use procedures that 

control the Type I error rate within the limits established by Bradley (1978), particularly 

when these procedures must assume a series of violation conditions.  

 Tables 6-11 show the empirical Type I error rates according to the combination 

of the different variables indicated in Table 2, with respect to the population covariance 

structure. Bold entries correspond to values above the established upper limit while 

those in italics indicate values below the lower limit.  

 

3.2.1. 0.57 sphericity 
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The values shown in Tables 6 and 7 indicate that the KR test is more robust than the 

BW and SW tests. However, if the simulated covariance structure is UN (Table 6) the 

KR method is liberal with negative pairing (0.077-0.272). It can be seen that when the 

number of repeated measures increases to K = 8 the KR procedure remains robust even 

with negative pairing. Table 7 shows that when the simulated covariance structure is 

ARH the KR method may still be is sometimes robust with negative pairing, even with 

K = 4 and K = 6. Finally, Table 8 depicts the results for RC simulated covariance 

matrices. Note that in comparison to the other covariance structures the tests are 

conservative when K increases and pairing is positive. In this case the KR method often 

does not correct the Type I error rate. 

[Table 6. Insert here approximately] 

[Table 7. Insert here approximately] 

[Table 8. Insert here approximately] 

 

3.2.2. 0.75 sphericity 

 

For the more spherical covariance structures, when the population covariance structure 

is UN (Table 9) or ARH (Table 10) the KR test is more robust, although it is difficult 

for Type I error rates to approach nominal values with negative pairing. This is 

particularly so with the effect of the interaction effect. In these cases the KR test is 

liberal. With an ARH structure, positive pairing and K = 8 the tests tend to be more 

conservative, especially as regards the time effect (Table 10). With respect to the RC 

structure (Table 11) the Type I error rates are much higher than the nominal value with 

negative pairings. Furthermore, when the BW and SW tests are more conservative with 
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positive pairings, the same Type I error rate is obtained with the KR method. This is 

observed to a greater extent with the time effect. 

 

[Table 9. Insert here approximately] 

[Table 10. Insert here approximately] 

[Table 11. Insert here approximately] 

 

4. Discussion 

 

This research aimed to assess the robustness of the BW, SW and KR procedures in 

split-plot designs with small numbers of subjects per groups. The first simulation study 

enabled us to select the covariance matrices with the best fit according to the AIC, thus 

taking into account any possible bias due to a wrong choice, which would affect the 

robustness of the statistical test used (Vallejo et al., 2008). With homogeneous 

covariances we found that the true UN and ARH structures showed a high fit 

percentage. However, this was not the case for RC covariance matrices, where the fit 

percentages of the true structure were close to zero. When the covariance matrices were 

heterogeneous, several structures, in addition to the true one, showed a high fit 

percentage. 

As reported by Keselman and Keselman (1990) we found that heterogeneous 

covariance matrices produce a greater discrepancy between empirical and nominal Type 

I error rates. Some research has suggested that the mixed model with BW or SW 

degrees of freedom increases Type I error rates when the between-groups covariance 

matrices are heterogeneous and sample sizes are small, even when the groups are equal 
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in size (Keselman et al., 1999a, 1999b; Keselman et al., 2000; Wright and Wolfinger, 

1996). This effect is heightened in the case of negative pairings. For example, Keselman 

et al. (1999b) found that the empirical Type I error rate when using the SW adjustment 

reached 8% when testing the main repeated-measures effect and 9.9% when testing the 

interaction effect. 

 In accordance with the studies of Kowalchuk et al. (2004) and Vallejo and Ato 

(2006) we conclude that in many cases when the covariance structure selected by AIC is 

applied the KR test of PROC MIXED enables, in many cases, Type I error rates to be 

controlled. However, our results indicate that with negative pairings the KR method 

tends to be liberal, while with positive pairings it proves to be conservative in some 

cases. Similar results were reported by Vallejo and Livacic-Rojas (2005) and Vallejo 

and Ato (2006) when estimating Type I error rates with normally-distributed data. 

Furthermore, in our study, with the non-spherical covariance matrices UN, ARH and 

RC we found that the KR method may be acceptable even with negative pairing. Gomez 

et al. (2005) found no evidence that negative pairings had an adverse effect on Type I 

error rates for the within-subject effect. In fact, they observed that for tests of time 

effect, negative pairing produced slightly better Type I error rates than did positive 

pairing. Our study could not confirm this conclusion because we did not generate the 

same covariance structures. 

In general, this study enables the following conclusions to be drawn: a) Type I 

error rates are inflated liberal even when using the true covariance structure selected by 

the AIC in the analysis; b) on most occasions the Type I error rates observed for the 

interaction effect are higher than those for the main effect; c) the SW method is more 

robust than the BW procedure, and the KR approximation is more robust than the SW 
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method; d) the BW and SW tests are more liberal; e) the tests are scarcely robust with 

negative pairing; f) with positive pairing and ARH or RC covariance structures the tests 

may be conservative; and g) the best outcomes with the KR test are achieved with UN 

or ARH structures and ε = 0.57. 

In sum, the main contribution of this study is to confirm that PROC MIXED 

with the KR correction offers the best control of Type I error rates in most of the 

conditions studied, particularly when the BW and SW tests are liberal with positive 

pairings. 
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Table 1. Population covariance matrices. 

UN ARH RC 



















15

29516.99

64758.480000.44

32379.280000.160000.11

 



















15

1789705.99

8342578.47400000.44

9095318.18723000.15800000.11

 



















3.104

2.678.59

1.454.347.27

2318139

 

ε = 0.57 ε = 0.57 ε = 0.57 



















15

6346.69

0712.69362.24

7038.37913.16391.11

 



















15

1618950.19

0670820.05196152.03

0054772.00424264.02449490.2

 



















45.27

950.15

55.5445.6

10.250.190.030.1

 

ε = 0.75 ε = 0.75 ε = 0.75 
Note. UN = unstructured model; ARH = heterogeneous first-order autroregressive model; RC = random coefficients model;     

ε = sphericity index 
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Table 2. Group sizes of balanced and unbalanced designs with J = 3, K = 4, 

6 and 8, UN, ARH and RC population covariance matrices, and ε = 0.57 

and  ε  = 0.75 
N n1 n2 n3 ∆nj Covariances 

between groups 

Pairing 

30 10 10 10 0.00 = Null 

36 12 12 12 0.00 = Null 

42 14 14 14 0.00 = Null 

30 10 10 10 0.00 ≠ Null 

36 12 12 12 0.00 ≠ Null 

42 14 14 14 0.00 ≠ Null 

30 5 10 15 0.41 ≠ + 

36 6 12 18 0.41 ≠ + 

42 7 14 21 0.41 ≠ + 

30 15 10 5 0.41 ≠ - 

36 18 12 6 0.41 ≠ - 

42 21 14 7 0.41 ≠ - 

Notes. J: groups, K: number of repeated measurements, ε: sphericity, N: total sample size, 

n1, n2 and n3: group sizes, ∆nj: variance coefficient of the group size, =/≠: 

homogeneity/heterogeneity of covariance matrices between groups, null/+/-: 

null/positive/negative pairing of group sizes and covariance matrices.  
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Table 3. Percentages of fit of the 11 candidate covariance structures selected by AIC 

for to the UN population matrix selected by AIC. 
 K = 4 

 ε = 0.57 ε = 0.75 

 Covariances between groups 

Pairing 

Covariances between groups 

Pairing 

Matrix 

of fit 

=  

Null 

≠ 

Null 

≠ 

+ 

≠ 

- 

=  

Null 

≠ 

Null 

≠ 

+ 

≠ 

- 

CS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

UN 65.7 7.0 12.7 8.0 84.3 14.1 21.0 8.7 

AR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

HF 0.0 0.0 0.3 0.0 1.7 0.0 0.0 0.0 

CSH 0.0 0.0 0.3 0.0 4.3 0.3 2.0 0.3 

ARH 24.7 1.0 1.7 1.7 0.0 0.0 0.0 0.0 

RC 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

UNj 5.7 38 57.5 53.7 8.7 70.2 62.7 70.9 

HFj 0.0 0.7 4.0 0.7 1.0 15.4 14.0 20.1 

ARHj 3.7 53.0 23.4 36 0.0 0.0 0.3 0.0 

RCj 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 

 K = 6 

 ε = 0.57 ε = 0.75 

 Covariances between groups 

Pairing 

Covariances between groups 

Pairing 

 =  

Null 

≠ 

Null 

≠ 

+ 

≠ 

- 

=  

Null 

≠ 

Null 

≠ 

+ 

≠ 

- 

CS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

UN 54.0 19.5 5.1 58.4 22.7 2.0 5.3 10.7 

AR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

HF 0.0 0.0 1.3 0.0 0.0 0.3 1.0 0.0 

CSH 0.0 0.0 0.0 0.0 47.3 5.3 12.0 5.7 

ARH 0.0 0.0 32.6 0.0 16.0 4.7 1.0 0.3 

RC 40.3 0.0 0.0 0.0 0.0 0.3 0.3 0.0 

UNj 5.8 77.5 1.3 30.8 8.3 12.3 12.3 20.7 

HFj 0.0 0.0 7.8 0.0 2.0 22.0 5.0 0.0 

ARHj 0.0 3.0 51.2 11.0 3.3 51.0 62.3 62.3 

RCj 0.0 0.0 0.7 0.0 0.3 2.0 0.7 0.3 

 K = 8 

 ε = 0.57 ε = 0.75 

 Covariances between groups 

Pairing 

Covariances between groups 

Pairing 

 =  

Null 

≠ 

Null 

≠ 

+ 

≠ 

- 

=  

Null 

≠ 

Null 

≠ 

+ 

≠ 

- 

CS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

UN 63.3 5.0 40.1 39.5 9.7 1.7 7.3 14.0 

AR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

HF 0.0 0.0 0.0 0.0 0.3 0.0 0.7 0.0 

CSH 0.0 0.0 0.0 0.0 80.6 5.0 39.7 24.3 

ARH 4.7 0.0 0.7 1.3 2.7 0.0 0.0 0.3 

RC 0.0 0.0 0.0 0.0 0.7 0.0 0.3 0.0 

UNj 31.0 73.7 0.0 0.0 2.3 60.3 0.0 0.0 

HFj 0.7 0.0 0.0 0.0 3.0 13.0 0.0 0.0 

ARHj 0.3 21.3 59.2 59.2 0.3 20.0 46.7 61.0 

RCj 0.0 0.0 0.0 0.0 0.3 0.0 2.3 0.7 

Note. In bold = selected matrix The structure with the highest selection percentage is in bold 
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Table 4. Percentages of fit of the 11 candidate covariance structures selected by AIC 

for to the ARH population matrix selected by AIC.  
 K = 4 

 ε = 0.57 ε = 0.75 

 Covariances between groups 

Pairing 

Covariances between groups 

Pairing 

Matrix 

of fit 

=  

Null 

≠ 

Null 

≠ 

+ 

≠ 

- 

=  

Null 

≠ 

Null 

≠ 

+ 

≠ 

- 

CS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

UN 11.7 1.3 1.3 2.4 10.7 3.0 1.7 1.3 

AR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

HF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

CSH 0.7 0.3 0.0 0.0 34.0 2.7 3.0 2.0 

ARH 78.0 4.0 4.7 3.7 46.7 1.0 3.7 1.0 

RC 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.0 

UNj 4.3 10.7 26.7 28.7 3.7 12.0 24.0 24.3 

HFj 0.0 0.3 1.0 1.7 0.3 4.0 4.0 8.3 

ARHj 5.3 83.3 66.3 63.5 3.3 76.3 62.7 62.3 

RCj 0.0 0.0 0.0 0.0 1.3 0.7 0.7 0.7 

 K = 6 

 ε = 0.57 ε = 0.75 

 Covariances between groups 

Pairing 

Covariances between groups 

Pairing 

 =  

Null 

≠ 

Null 

≠ 

+ 

≠ 

- 

=  

Null 

≠ 

Null 

≠ 

+ 

≠ 

- 

CS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

UN 3.7 0.0 0.0 0.0 3.3 0.0 0.0 2.7 

AR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

HF 0.0 0.0 0.3 0.0 0.0 0.0 1.7 0.0 

CSH 0.0 0.0 1.5 0.0 8.7 0.3 9.0 0.0 

ARH 88.6 0.0 21.9 1.3 79.7 1.3 20.7 1.3 

RC 1.7 0.0 0.3 0.0 0.0 0.0 3.0 0.0 

UNj 3.3 10.3 0.7 9.0 4.7 12.0 0.7 12.7 

HFj 0.0 0.3 1.3 0.3 0.0 1.7 2.3 1.3 

ARHj 2.7 89.3 66.4 89.0 3.3 84.7 56.5 81.7 

RCj 0.0 0.0 1.3 0.0 0.3 0.0 6.0 0.3 

 K = 8 

 ε = 0.57 ε = 0.75 

 Covariances between groups 

Pairing 

Covariances between groups 

Pairing 

 =  

Null 

≠ 

Null 

≠ 

+ 

≠ 

- 

=  

Null 

≠ 

Null 

≠ 

+ 

≠ 

- 

CS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

UN 1.3 0.0 0.0 0.3 40.7 7.0 88.3 79.3 

AR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

HF 0.0 0.0 0.0 0.0 2.3 0.3 1.3 3.3 

CSH 0.0 0.0 0.0 0.0 18.7 2.0 6.3 9.7 

ARH 79.7 0.3 2.7 4.3 0.0 0.0 0.0 0.0 

RC 0.0 0.0 0.0 0.0 4.3 0.3 0.7 1.0 

UNj 16.7 22.0 0.0 10.7 27.7 90.0 0.0 0.0 

HFj 1.3 0.3 0.0 0.0 6.0 0.0 0.0 0.0 

ARHj 1.0 77.3 97.3 84.7 0.0 0.0 1.0 0.3 

RCj 0.0 0.0 0.0 0.0 0.3 0.3 2.3 6.3 

Note. In bold = selected matrix The structure with the highest selection percentage is in bold 
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Table 5. Percentages of fit of the 11 candidate covariance structures selected by AIC 

for to the RC population matrix selected by AIC.  
 K = 4 

 ε = 0.57 ε = 0.75 

 Covariances between groups 

Pairing 

Covariances between groups 

Pairing 

Matrix 

of fit 

=  

Null 

≠ 

Null 

≠ 

+ 

≠ 

- 

=  

Null 

≠ 

Null 

≠ 

+ 

≠ 

- 

CS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

UN 30.1 4.0 5.0 2.7 14.3 3.0 3.0 2.3 

AR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

HF 0.0 0.0 0.0 0.0 0.3 0.3 0.0 0.0 

CSH 40.0 8.0 8.7 8.7 66.0 8.7 12.3 7.0 

ARH 17.7 1.0 0.7 1.0 9.0 0.3 0.3 0.7 

RC 0.0 2.0 2.7 1.0 0.3 0.0 0.0 0.0 

UNj 3.3 36.7 42.7 52.7 6.0 26.7 30.7 40.0 

HFj 0.0 0.0 0.7 2.0 0.7 9.0 12.7 11.0 

ARHj 3.0 45.0 36.0 29.3 3.0 52.0 40.7 39.0 

RCj 5.7 3.3 3.7 2.7 0.3 0.0 0.3 0.0 

 K = 6 

 ε = 0.57 ε = 0.75 

 Covariances between groups 

Pairing 

Covariances between groups 

Pairing 

 =  

Null 

≠ 

Null 

≠ 

+ 

≠ 

- 

=  

Null 

≠ 

Null 

≠ 

+ 

≠ 

- 

CS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

UN 17.0 4.3 0.0 13.7 11.7 1.7 6.3 11.3 

AR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

HF 0.0 0.0 4.0 0.0 0.3 0.0 1.0 0.0 

CSH 59.7 10.3 27.1 24.7 76.3 11.3 37.1 22.3 

ARH 0.0 1.3 1.7 0.0 0.3 0.0 0.7 0.0 

RC 0.0 0.6 14.7 3.7 1.7 0.7 4.1 0.7 

UNj 6.7 55.7 0.3 27.3 4.3 39.0 0.0 21.7 

HFj 0.0 2.3 6.6 0.0 1.7 22.7 9.2 5.0 

ARHj 0.0 14.3 10.0 21.7 0.3 23.7 33.8 36.4 

RCj 16.7 11.0 35.5 9.0 3.3 1.0 7.4 2.3 

 K = 8 

 ε = 0.57 ε = 0.75 

 Covariances between groups 

Pairing 

Covariances between groups 

Pairing 

 =  

Null 

≠ 

Null 

≠ 

+ 

≠ 

- 

=  

Null 

≠ 

Null 

≠ 

+ 

≠ 

- 

CS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

UN 15.4 5.7 24.3 33.9 49.0 8.0 65.3 63.0 

AR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

HF 0.0 0.0 0.0 0.0 2.7 0.3 5.7 1.7 

CSH 52.7 6.0 43.0 27.8 17.7 2.7 14.0 21.3 

ARH 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

RC 4.3 0.0 4.0 1.0 0.0 0.0 2.3 5.3 

UNj 22.7 76.6 0.0 0.0 29.0 87.9 0.0 0.0 

HFj 3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

ARHj 0.0 11.4 22.7 34.6 0.0 0.0 0.3 0.3 

RCj 1.0 0.3 6.0 2.7 1.7 1.0 12.3 11.7 

Note. In bold = selected matrix The structure with the highest selection percentage is in bold 

Page 30 of 35

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 30 

 

Table 6. Empirical rates of Type I error for the time and interaction effects (nominal value 0.05). 

Simulated covariance structure UN with K = 4, 6 and 8 repeated measures and ε = 0.57 
Time effect 

 K = 4 K = 6 K = 8 

N n1 n2 n3 ∆nj Covariances 

between 

groups 

Pairing BW SW KR BW SW KR BW SW KR 

30 10 10 10 0.00 = Null 0.087 0.092 0.075 0.091 0.093 0.069 0.102 0.086 0.068 

36 12 12 12 0.00 = Null 0.081 0.086 0.067 0.073 0.077 0.063 0.072 0.074 0.060 

42 14 14 14 0.00 = Null 0.070 0.071 0.061 0.082 0.082 0.072 0.079 0.079 0.068 

30 10 10 10 0.00 ≠ Null 0.097 0.084 0.070 0.126 0.088 0.064 0.123 0.097 0.071 

36 12 12 12 0.00 ≠ Null 0.085 0.071 0.061 0.110 0.088 0.061 0.107 0.079 0.070 

42 14 14 14 0.00 ≠ Null 0.088 0.072 0.060 0.091 0.067 0.058 0.095 0.075 0.064 

30 5 10 15 0.41 ≠ + 0.117 0.089 0.063 0.097 0.083 0.073 0.090 0.080 0.064 

36 6 12 18 0.41 ≠ + 0.113 0.089 0.073 0.090 0.075 0.059 0.063 0.057 0.049 

42 7 14 21 0.41 ≠ + 0.093 0.082 0.067 0.083 0.078 0.071 0.077 0.067 0.060 

30 15 10 5 0.41 ≠ - 0.231 0.150 0.109 0.268 0.272 0.243 0.158 0.107 0.077 

36 18 12 6 0.41 ≠ - 0.192 0.127 0.082 0.224 0.228 0.206 0.118 0.076 0.054 

42 21 14 7 0.41 ≠ - 0.189 0.133 0.098 0.182 0.132 0.105 0.129 0.101 0.072 

Interaction effect 

 K = 4 K = 6 K = 8 

N n1 n2 n3 ∆nj Covariances 

between 

groups 

Pairing BW SW KR BW SW KR BW SW KR 

30 10 10 10 0.00 = Null 0.083 0.089 0.071 0.097 0.101 0.084 0.211 0.144 0.076 

36 12 12 12 0.00 = Null 0.080 0.083 0.066 0.067 0.071 0.059 0.074 0.077 0.062 

42 14 14 14 0.00 = Null 0.079 0.081 0.067 0.090 0.093 0.075 0.065 0.068 0.060 

30 10 10 10 0.00 ≠ Null 0.139 0.096 0.068 0.228 0.151 0.066 0.218 0.144 0.074 

36 12 12 12 0.00 ≠ Null 0.134 0.099 0.075 0.193 0.126 0.069 0.197 0.128 0.071 

42 14 14 14 0.00 ≠ Null 0.093 0.069 0.047 0.162 0.105 0.060 0.176 0.123 0.075 

30 5 10 15 0.41 ≠ + 0.236 0.162 0.074 0.135 0.098 0.062 0.144 0.101 0.066 

36 6 12 18 0.41 ≠ + 0.197 0.129 0.059 0.127 0.099 0.070 0.105 0.083 0.053 

42 7 14 21 0.41 ≠ + 0.153 0.113 0.070 0.130 0.101 0.071 0.122 0.087 0.070 

30 15 10 5 0.41 ≠ - 0.429 0.276 0.153 0.294 0.301 0.272 0.238 0.139 0.087 

36 18 12 6 0.41 ≠ - 0.348 0.229 0.131 0.265 0.267 0.233 0.186 0.131 0.073 

42 21 14 7 0.41 ≠ - 0.303 0.202 0.126 0.297 0.198 0.120 0.175 0.116 0.074 

Note. BW, SW and KR = methods for calculating the degrees of freedom (Between-Within, Satterthwaite and Kenward-

Roger) In bold = liberal  
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Table 7. Empirical rates of Type I error for the time and interaction effects (nominal value 0.05). 

Simulated covariance structure ARH with K = 4, 6 and 8 repeated measures and ε = 0.57 
Time effect 

 K = 4 K = 6 K = 8 

N n1 n2 n3 ∆nj Covariances 

between 

groups 

Pairing BW SW KR BW SW KR BW SW KR 

30 10 10 10 0.00 = Null 0.096 0.083 0.073 0.095 0.079 0.070 0.088 0.078 0.073 

36 12 12 12 0.00 = Null 0.081 0.071 0.064 0.083 0.067 0.065 0.073 0.064 0.063 

42 14 14 14 0.00 = Null 0.065 0.056 0.054 0.083 0.072 0.068 0.066 0.062 0.062 

30 10 10 10 0.00 ≠ Null 0.094 0.074 0.064 0.096 0.074 0.061 0.112 0.084 0.065 

36 12 12 12 0.00 ≠ Null 0.080 0.062 0.051 0.065 0.055 0.046 0.079 0.067 0.064 

42 14 14 14 0.00 ≠ Null 0.093 0.079 0.071 0.070 0.063 0.053 0.076 0.067 0.064 

30 5 10 15 0.41 ≠ + 0.095 0.082 0.065 0.094 0.078 0.066 0.092 0.074 0.065 

36 6 12 18 0.41 ≠ + 0.068 0.054 0.047 0.093 0.078 0.071 0.079 0.068 0.064 

42 7 14 21 0.41 ≠ + 0.069 0.058 0.054 0.068 0.057 0.052 0.077 0.065 0.065 

30 15 10 5 0.41 ≠ - 0.174 0.112 0.092 0.149 0.091 0.065 0.147 0.096 0.082 

36 18 12 6 0.41 ≠ - 0.158 0.108 0.083 0.133 0.087 0.074 0.140 0.088 0.075 

42 21 14 7 0.41 ≠ - 0.116 0.069 0.052 0.108 0.075 0.060 0.124 0.086 0.071 

Interaction effect 

 K = 4 K = 6 K = 8 

N n1 n2 n3 ∆nj Covariances 

between 

groups 

Pairing BW SW KR BW SW KR BW SW KR 

30 10 10 10 0.00 = Null 0.098 0.081 0.078 0.093 0.076 0.072 0.089 0.069 0.070 

36 12 12 12 0.00 = Null 0.080 0.066 0.062 0.090 0.067 0.067 0.074 0.055 0.055 

42 14 14 14 0.00 = Null 0.075 0.066 0.064 0.084 0.076 0.074 0.085 0.070 0.069 

30 10 10 10 0.00 ≠ Null 0.139 0.089 0.065 0.136 0.087 0.057 0.228 0.155 0.079 

36 12 12 12 0.00 ≠ Null 0.113 0.080 0.062 0.121 0.082 0.058 0.126 0.091 0.073 

42 14 14 14 0.00 ≠ Null 0.111 0.085 0.074 0.112 0.077 0.055 0.112 0.078 0.067 

30 5 10 15 0.41 ≠ + 0.146 0.101 0.054 0.135 0.100 0.065 0.148 0.096 0.077 

36 6 12 18 0.41 ≠ + 0.126 0.084 0.056 0.135 0.088 0.053 0.110 0.075 0.058 

42 7 14 21 0.41 ≠ + 0.107 0.078 0.061 0.095 0.071 0.052 0.102 0.073 0.061 

30 15 10 5 0.41 ≠ - 0.261 0.141 0.099 0.225 0.122 0.072 0.238 0.129 0.091 

36 18 12 6 0.41 ≠ - 0.208 0.129 0.094 0.189 0.109 0.072 0.187 0.124 0.095 

42 21 14 7 0.41 ≠ - 0.158 0.085 0.056 0.163 0.097 0.071 0.157 0.089 0.071 

Note. BW, SW and KR = methods for calculating the degrees of freedom (Between-Within, Satterthwaite and Kenward-

Roger) In bold = liberal 
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Table 8. Empirical rates of Type I error for the time and interaction effects (nominal value 0.05). 

Simulated covariance structure RC with K = 4, 6 and 8 repeated measures and ε = 0.57 
Time effect 

 K = 4 K = 6 K = 8 

N n1 n2 n3 ∆nj Covariances 

between 

groups 

Pairing BW SW KR BW SW KR BW SW KR 

30 10 10 10 0.00 = Null 0.066 0.053 0.051 0.079 0.065 0.064 0.099 0.084 0.071 

36 12 12 12 0.00 = Null 0.063 0.053 0.049 0.075 0.067 0.064 0.071 0.063 0.061 

42 14 14 14 0.00 = Null 0.063 0.067 0.059 0.078 0.071 0.067 0.072 0.067 0.066 

30 10 10 10 0.00 ≠ Null 0.105 0.092 0.076 0.129 0.100 0.076 0.131 0.098 0.075 

36 12 12 12 0.00 ≠ Null 0.101 0.082 0.063 0.108 0.086 0.074 0.119 0.100 0.078 

42 14 14 14 0.00 ≠ Null 0.087 0.072 0.064 0.075 0.059 0.050 0.097 0.086 0.069 

30 5 10 15 0.41 ≠ + 0.105 0.085 0.071 0.108 0.083 0.095 0.017 0.015 0.015 

36 6 12 18 0.41 ≠ + 0.089 0.069 0.056 0.068 0.046 0.064 0.013 0.013 0.013 

42 7 14 21 0.41 ≠ + 0.089 0.082 0.068 0.001 0.001 0.001 0.015 0.015 0.015 

30 15 10 5 0.41 ≠ - 0.226 0.141 0.103 0.127 0.095 0.069 0.274 0.276 0.249 

36 18 12 6 0.41 ≠ - 0.208 0.136 0.090 0.223 0.205 0.202 0.111 0.077 0.065 

42 21 14 7 0.41 ≠ - 0.169 0.118 0.085 0.177 0.126 0.088 0.114 0.080 0.067 

Interaction effect 

 K = 4 K = 6 K = 8 

N n1 n2 n3 ∆nj Covariances 

between 

groups 

Pairing BW SW KR BW SW KR BW SW KR 

30 10 10 10 0.00 = Null 0.066 0.056 0.055 0.097 0.079 0.075 0.194 0.133 0.056 

36 12 12 12 0.00 = Null 0.055 0.043 0.041 0.081 0.064 0.064 0.091 0.077 0.078 

42 14 14 14 0.00 = Null 0.072 0.072 0.061 0.075 0.060 0.059 0.080 0.065 0.066 

30 10 10 10 0.00 ≠ Null 0.155 0.106 0.084 0.227 0.162 0.091 0.204 0.143 0.076 

36 12 12 12 0.00 ≠ Null 0.211 0.131 0.073 0.187 0.125 0.078 0.190 0.129 0.069 

42 14 14 14 0.00 ≠ Null 0.127 0.092 0.079 0.149 0.103 0.059 0.156 0.104 0.068 

30 5 10 15 0.41 ≠ + 0.254 0.172 0.087 0.244 0.185 0.012 0.027 0.020 0.021 

36 6 12 18 0.41 ≠ + 0.193 0.143 0.072 0.251 0.069 0.098 0.023 0.015 0.015 

42 7 14 21 0.41 ≠ + 0.156 0.105 0.071 0.031 0.025 0.024 0.028 0.023 0.023 

30 15 10 5 0.41 ≠ - 0.425 0.287 0.178 0.222 0.118 0.082 0.291 0.295 0.273 

36 18 12 6 0.41 ≠ - 0.337 0.225 0.125 0.246 0.229 0.224 0.177 0.083 0.072 

42 21 14 7 0.41 ≠ - 0.271 0.173 0.112 0.306 0.200 0.121 0.150 0.082 0.071 

Note. BW, SW and KR = methods for calculating the degrees of freedom (Between-Within, Satterthwaite and Kenward-

Roger)  In bold = liberal; in italics = conservative 

 

Page 33 of 35

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 33 

 

Table 9. Empirical rates of Type I error for the time and interaction effects (nominal value 0.05). 

Simulated covariance structure UN with K = 4, 6 and 8 repeated measures ε = 0.75 
Time effect 

 K = 4 K = 6 K = 8 

N n1 n2 n3 ∆nj Covariances 

between 

groups 

Pairing BW SW KR BW SW KR BW SW KR 

30 10 10 10 0.00 = Null 0.079 0.081 0.067 0.096 0.082 0.079 0.089 0.072 0.070 

36 12 12 12 0.00 = Null 0.082 0.083 0.073 0.076 0.066 0.063 0.077 0.070 0.067 

42 14 14 14 0.00 = Null 0.070 0.073 0.057 0.055 0.050 0.049 0.067 0.057 0.056 

30 10 10 10 0.00 ≠ Null 0.107 0.083 0.070 0.090 0.076 0.063 0.103 0.071 0.053 

36 12 12 12 0.00 ≠ Null 0.112 0.089 0.075 0.056 0.048 0.045 0.104 0.080 0.059 

42 14 14 14 0.00 ≠ Null 0.070 0.055 0.048 0.078 0.068 0.064 0.095 0.077 0.061 

30 5 10 15 0.41 ≠ + 0.109 0.079 0.067 0.076 0.064 0.055 0.077 0.064 0.059 

36 6 12 18 0.41 ≠ + 0.107 0.090 0.073 0.065 0.059 0.052 0.080 0.072 0.065 

42 7 14 21 0.41 ≠ + 0.098 0.084 0.064 0.061 0.054 0.046 0.084 0.075 0.071 

30 15 10 5 0.41 ≠ - 0.239 0.165 0.133 0.156 0.110 0.092 0.156 0.105 0.083 

36 18 12 6 0.41 ≠ - 0.237 0.150 0.107 0.140 0.090 0.068 0.139 0.096 0.080 

42 21 14 7 0.41 ≠ - 0.186 0.129 0.098 0.116 0.077 0.064 0.104 0.076 0.065 

Interaction effect 

 K = 4 K = 6 K = 8 

N n1 n2 n3 ∆nj Covariances 

between 

groups 

Pairing BW SW KR BW SW KR BW SW KR 

30 10 10 10 0.00 = Null 0.097 0.102 0.080 0.106 0.091 0.091 0.087 0.072 0.069 

36 12 12 12 0.00 = Null 0.079 0.081 0.067 0.080 0.068 0.067 0.083 0.070 0.072 

42 14 14 14 0.00 = Null 0.084 0.089 0.071 0.077 0.069 0.065 0.081 0.073 0.073 

30 10 10 10 0.00 ≠ Null 0.223 0.150 0.074 0.143 0.094 0.065 0.193 0.129 0.071 

36 12 12 12 0.00 ≠ Null 0.180 0.121 0.064 0.099 0.068 0.053 0.087 0.123 0.073 

42 14 14 14 0.00 ≠ Null 0.168 0.123 0.069 0.106 0.085 0.072 0.163 0.116 0.071 

30 5 10 15 0.41 ≠ + 0.230 0.160 0.090 0.126 0.088 0.064 0.124 0.086 0.064 

36 6 12 18 0.41 ≠ + 0.208 0.163 0.080 0.126 0.097 0.072 0.114 0.091 0.071 

42 7 14 21 0.41 ≠ + 0.155 0.115 0.071 0.094 0.070 0.057 0.095 0.072 0.054 

30 15 10 5 0.41 ≠ - 0.435 0.300 0.195 0.198 0.109 0.088 0.225 0.126 0.096 

36 18 12 6 0.41 ≠ - 0.379 0.253 0.147 0.198 0.126 0.088 0.199 0.103 0.081 

42 21 14 7 0.41 ≠ - 0.288 0.188 0.124 0.145 0.087 0.077 0.150 0.097 0.076 

Note. BW, SW and KR = methods for calculating the degrees of freedom (Between-Within, Satterthwaite and Kenward-

Roger) In bold = liberal 
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Table 10. Empirical rates of Type I error for the time and interaction effects (nominal value 0.05). 

Simulated covariance structure ARH with K = 4, 6 and 8 repeated measures and ε = 0.75 
Time effect 

 K = 4 K = 6 K = 8 

N n1 n2 n3 ∆nj Covariances 

between 

groups 

Pairing BW SW KR BW SW KR BW SW KR 

30 10 10 10 0.00 = Null 0.072 0.065 0.063 0.081 0.075 0.075 0.106 0.087 0.069 

36 12 12 12 0.00 = Null 0.075 0.065 0.062 0.104 0.093 0.092 0.081 0.084 0.069 

42 14 14 14 0.00 = Null 0.084 0.075 0.072 0.064 0.055 0.056 0.076 0.076 0.066 

30 10 10 10 0.00 ≠ Null 0.074 0.055 0.053 0.095 0.080 0.075 0.120 0.087 0.067 

36 12 12 12 0.00 ≠ Null 0.073 0.056 0.051 0.089 0.073 0.069 0.108 0.087 0.073 

42 14 14 14 0.00 ≠ Null 0.077 0.066 0.065 0.072 0.062 0.058 0.095 0.076 0.063 

30 5 10 15 0.41 ≠ + 0.087 0.071 0.068 0.069 0.060 0.058 0.025 0.027 0.021 

36 6 12 18 0.41 ≠ + 0.068 0.053 0.054 0.091 0.076 0.075 0.014 0.014 0.010 

42 7 14 21 0.41 ≠ + 0.068 0.053 0.072 0.069 0.059 0.061 0.015 0.015 0.014 

30 15 10 5 0.41 ≠ - 0.197 0.122 0.098 0.169 0.107 0.094 0.284 0.285 0.254 

36 18 12 6 0.41 ≠ - 0.134 0.099 0.086 0.100 0.062 0.053 0.254 0.258 0.230 

42 21 14 7 0.41 ≠ - 0.126 0.088 0.082 0.123 0.092 0.074 0.243 0.248 0.225 

Interaction effect 

 K = 4 K = 6 K = 8 

N n1 n2 n3 ∆nj Covariances 

between 

groups 

Pairing BW SW KR BW SW KR BW SW KR 

30 10 10 10 0.00 = Null 0.088 0.076 0.076 0.092 0.071 0.072 0.191 0.125 0.066 

36 12 12 12 0.00 = Null 0.071 0.058 0.058 0.080 0.066 0.068 0.084 0.089 0.075 

42 14 14 14 0.00 = Null 0.072 0.058 0.057 0.069 0.064 0.064 0.073 0.074 0.066 

30 10 10 10 0.00 ≠ Null 0.122 0.078 0.058 0.111 0.078 0.069 0.218 0.136 0.071 

36 12 12 12 0.00 ≠ Null 0.102 0.068 0.056 0.105 0.067 0.054 0.178 0.119 0.064 

42 14 14 14 0.00 ≠ Null 0.104 0.074 0.060 0.098 0.070 0.058 0.167 0.118 0.073 

30 5 10 15 0.41 ≠ + 0.119 0.089 0.072 0.126 0.084 0.058 0.040 0.044 0.036 

36 6 12 18 0.41 ≠ + 0.117 0.085 0.061 0.122 0.090 0.075 0.032 0.033 0.028 

42 7 14 21 0.41 ≠ + 0.117 0.085 0.056 0.109 0.079 0.071 0.024 0.024 0.020 

30 15 10 5 0.41 ≠ - 0.244 0.137 0.116 0.222 0.129 0.101 0.285 0.289 0.257 

36 18 12 6 0.41 ≠ - 0.177 0.099 0.079 0.169 0.094 0.078 0.292 0.299 0.272 

42 21 14 7 0.41 ≠ - 0.166 0.110 0.093 0.143 0.078 0.070 0.255 0.259 0.244 

Note. BW, SW and KR = methods for calculating the degrees of freedom (Between-Within, Satterthwaite and Kenward-

Roger) In bold = liberal; in italics = conservative 
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Table 11. Empirical rates of Type I error for the time and interaction effects (nominal value 0.05). 

Simulated covariance structure RC with K = 4, 6 and 8 repeated measures and  ε = 0.75 
Time effect 

 K = 4 K = 6 K = 8 

N n1 n2 n3 ∆nj Covariances 

between 

groups 

Pairing BW SW KR BW SW KR BW SW KR 

30 10 10 10 0.00 = Null 0.079 0.072 0.071 0.095 0.088 0.084 0.105 0.080 0.068 

36 12 12 12 0.00 = Null 0.071 0.058 0.058 0.083 0.069 0.065 0.066 0.068 0.060 

42 14 14 14 0.00 = Null 0.083 0.077 0.076 0.074 0.066 0.064 0.073 0.073 0.065 

30 10 10 10 0.00 ≠ Null 0.092 0.070 0.069 0.115 0.087 0.066 0.119 0.081 0.066 

36 12 12 12 0.00 ≠ Null 0.076 0.060 0.057 0.084 0.071 0.054 0.114 0.092 0.070 

42 14 14 14 0.00 ≠ Null 0.055 0.046 0.046 0.093 0.074 0.061 0.098 0.081 0.069 

30 5 10 15 0.41 ≠ + 0.105 0.084 0.062 0.096 0.097 0.097 0.023 0.023 0.018 

36 6 12 18 0.41 ≠ + 0.070 0.063 0.061 0.011 0.001 0.001 0.019 0.020 0.017 

42 7 14 21 0.41 ≠ + 0.061 0.051 0.050 0.001 0.001 0.001 0.017 0.017 0.015 

30 15 10 5 0.41 ≠ - 0.241 0.152 0.094 0.140 0.990 0.083 0.255 0.240 0.236 

36 18 12 6 0.41 ≠ - 0.141 0.098 0.088 0.144 0.092 0.079 0.270 0.273 0.245 

42 21 14 7 0.41 ≠ - 0.131 0.089 0.078 0.158 0.114 0.083 0.230 0.235 0.211 

Interaction effect 

 K = 4 K = 6 K = 8 

N n1 n2 n3 ∆nj Covariances 

between 

groups 

Pairing BW SW KR BW SW KR BW SW KR 

30 10 10 10 0.00 = Null 0.097 0.076 0.079 0.090 0.076 0.075 0.198 0.129 0.063 

36 12 12 12 0.00 = Null 0.100 0.074 0.075 0.096 0.087 0.085 0.083 0.086 0.072 

42 14 14 14 0.00 = Null 0.074 0.062 0.064 0.070 0.059 0.058 0.071 0.073 0.061 

30 10 10 10 0.00 ≠ Null 0.124 0.085 0.075 0.216 0.138 0.070 0.214 0.146 0.066 

36 12 12 12 0.00 ≠ Null 0.116 0.073 0.060 0.186 0.123 0.076 0.176 0.114 0.067 

42 14 14 14 0.00 ≠ Null 0.103 0.065 0.058 0.159 0.109 0.070 0.156 0.112 0.065 

30 5 10 15 0.41 ≠ + 0.223 0.155 0.095 0.095 0.090 0.089 0.042 0.043 0.036 

36 6 12 18 0.41 ≠ + 0.109 0.077 0.067 0.026 0.017 0.017 0.035 0.035 0.030 

42 7 14 21 0.41 ≠ + 0.097 0.067 0.059 0.028 0.025 0.025 0.034 0.038 0.028 

30 15 10 5 0.41 ≠ - 0.429 0.283 0.171 0.196 0.118 0.100 0.281 0.248 0.243 

36 18 12 6 0.41 ≠ - 0.207 0.118 0.104 0.177 0.097 0.082 0.275 0.283 0.260 

42 21 14 7 0.41 ≠ - 0.166 0.092 0.082 0.292 0.182 0.112 0.254 0.256 0.235 

Note. BW, SW and KR = methods for calculating the degrees of freedom (Between-Within, Satterthwaite and Kenward-

Roger) In bold = liberal; in italics = conservative 
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