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We propose new tests for panel cointegration by extending the panel unit root tests of Choi (JIMF 2001) and Maddala and Wu (OBES 1999) to the panel cointegration case. The tests are flexible, intuitively appealing and relatively easy to compute. We investigate the finite sample behavior in a simulation study. Several variants of the tests compare favorably in terms of both size and power with other widely used panel cointegration tests.

There is wide consensus in economics that cointegration is an important statistical concept which is implied by many economic models. In practice, however, evidence of cointegration or non-cointegration is often weak because of the rather small sample sizes typically available in macroeconometrics. To overcome this problem, the cointegration methodology has recently been extended to panel data. This allows the researcher to work with larger samples, thereby improving the performance of tests and estimators. [START_REF] Pedroni | Panel Cointegration: Asymptotic and Finite Sample Properties of Pooled Time Series Tests with an Application to the PPP Hypothesis[END_REF] and [START_REF] Kao | Spurious Regression and Residual Based Tests for Cointegration in Panel Data[END_REF] generalize the residual-based tests of [START_REF] Engle | Co-Integration and Error Correction: Representation, Estimation, and Testing[END_REF] and [START_REF] Phillips | Asymptotic Properties of Residual Based Tests for Cointegration[END_REF], [START_REF] Larsson | Likelihood-Based Cointegration Tests in Heterogeneous Panels[END_REF] extend the [START_REF] Johansen | Statistical Analysis of Cointegration Vectors[END_REF] tests to panel data while McCoskey and [START_REF] Mccoskey | A Residual Based Test of the Null of Cointegration in Panel Data[END_REF] propose a test for the null of panel cointegration in the spirit of [START_REF] Shin | A Residual-Based Test of the Null of Cointegration against the Alternative of No Cointegration[END_REF].

The present paper studies some new tests for panel cointegration, extending the p-value combination panel unit root tests of [START_REF] Maddala | A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test[END_REF] and [START_REF] Choi | Unit Root Tests for Panel Data[END_REF] to the cointegration setting. In this framework, it is straightforward to account for unbalanced panels and arbitrary heterogeneity in the serial correlation structure of the series. Moreover, the tests are simple to implement and intuitively appealing. We explore the finite sample performance of the tests in a simulation study. Certain variants of the tests compare favorably with many of the previously proposed panel cointegration tests.

The next section introduces the tests. Section 3 presents the finite sample study. Section 4 concludes.

P-Value Combination Tests for Panel Cointegration

The present section develops the tests for panel cointegration. The following notation is used throughout. x ik is a (T i × 1) column vector collecting the observations on the kth variable of unit i of the panel, where i = 1, . . . , N and k = 1, . . . , K. To the K variables we may add time polynomials of order up to 2, i.e. constants, trend and squared trend terms. The number of observations T i per unit may depend on i, i.e. the panel may be unbalanced. Denote by p i the marginal significance level, or p-value, of a time series cointegration test applied to the ith unit of the panel. Let θ i,T i be a time series cointegration test statistic on unit i for a sample size of T i . F T i denotes the exact, finite T i null cumulative distribution function (cdf) of θ i,T i . Since the tests we shall consider here are one-sided, p i = F T i (θ i,T i ) if the test rejects for small values of θ i,T i and

p i = 1-F T i (θ i,T i )
if the test rejects for large values of θ i,T i . However, F T i is unknown in practice, such that we need to work with a suitable approximation which will be described in more detail below.

We are interested in testing the following null hypothesis H 0 : There is no (within-unit) cointegration for any i, i = 1, . . . , N,

against the alternative H 1 : There is (within-unit) cointegration for at least one i, i = 1, . . . , N.

The alternative H 1 states that a rejection is evidence of 1 to N cointegrated units in the panel. That is, a rejection neither allows to conclude that the entire panel is cointegrated nor does it provide information about the number of units of the panel that exhibit cointegrating relationships.

The main idea of the suggested testing principle has been used in meta analytic studies for a long time [cf. [START_REF] Fisher | Statistical Methods for Research Workers[END_REF][START_REF] Hedges | Statistical Methods for Meta-Analysis[END_REF]. Consider the testing problem on the panel as consisting of N testing problems, one for each unit of the panel. That is, conduct N separate time series cointegration tests and obtain the corresponding p-values of the test statistics. 1 We make the following assumptions [see [START_REF] Pedroni | Panel Cointegration: Asymptotic and Finite Sample Properties of Pooled Time Series Tests with an Application to the PPP Hypothesis[END_REF].

Assumption 1 (Continuity)

As T i → ∞, θ i,T i has a continuous asymptotic cdf F i under H 0 for all i =

1 Both [START_REF] Maddala | A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test[END_REF] and [START_REF] Choi | Unit Root Tests for Panel Data[END_REF] suggest extending their panel unit root tests to the cointegration case. However, to the best of our knowledge, they do not provide an actual implementation nor do they investigate the performance of the tests. Furthermore, our approach is more general and likely to be more accurate in some respects to be discussed below. Assumption 2 (Cross-Sectional Uncorrelatedness)

x ik,t = x ik,t-1 + ξ ik,t , t = 1, . . . , T i , i = 1, . . . , N, k = 1, . . . , K. Let ξ i,t ≡ (ξ i1,t , . . . , ξ iK,t ) . We require E[ξ i,t ξ j,s ] = 0 ∀ s, t = 1, . . . , T i and i = j. The error process ξ i,t is generated as a linear vector process ξ i,t = C i (L)η i,t , where L is the lag operator and C i are coefficient matrices. η i,t is vector white noise.

Remark 1. Assumption 1 asymptotically ensures, among other things, a uniform p-value distribution of the time series test statistics under H 0 on the unit interval: Bickel and Doksum, 2001, Sec. 4.1]. It is satisfied by the time series cointegration tests considered in this paper.

p i ∼ U[0, 1] (i ∈ N N ) [see, e.g.,
Remark 2. The second assumption is strong [see, e.g., [START_REF] Banerjee | Testing for PPP: Should We Use Panel Methods?[END_REF]. It implies that the different units of a panel must not be linked to each other beyond relatively simple forms of correlation such as common time effects which can be eliminated by demeaning across the cross sectional dimension. This assumption is likely to be violated in many typical macroeconomic panel data sets. We will return to this issue below.

We now present the test statistics. Combine the N p-values of the individual time series cointegration tests, p i , i = 1, . . . , N , as follows to obtain three test statistics for panel cointegration:

P χ 2 = -2 N i=1 ln(p i ) (2a) P Φ -1 = N -1 2 N i=1 Φ -1 (p i ) ( 2b 
)
P t = 3(5N + 4) π 2 N (5N + 2) N i=1 ln p i 1 -p i (2c)
When considered together we refer to Eqs. time series cointegration test. Hence, the coefficients describing the relationship between the different variables for each unit of the panel can be heterogeneous across i. Thus, the availability of large-T time series allows for pooling the data into a panel without having to impose strong homogeneity restrictions on the slope coefficients as in traditional panel data analysis.2 Under Assumptions 1 and 2, as T i → ∞ for all i, the test statistics are asymptotically distributed as

P χ 2 → d χ 2 2N P Φ -1 → d N (0, 1) (3) 
P t approx. → d T 5N +4 ,
where χ 2 is a chi-squared distributed random variable and T denotes Student's t distribution. The subscripts give the degrees of freedom.

Remark 3. We require that T i → ∞ for all i, as, unlike in [START_REF] Fisher | Statistical Methods for Research Workers[END_REF] original contribution, the P tests are not exact when dealing with nonstationary data. This is because, as F T i is unknown, we need to employ an approximation to F T i for finite T . This matters because the null hypothesis (1) is not a simple one and the available test statistics are not pivotal in finite samples. H 0 is satisfied by a wide class of multivariate nonstationary processes. See, for instance, the fairly general framework of [START_REF] Phillips | Asymptotic Properties of Residual Based Tests for Cointegration[END_REF].

Hence, for finite T , the p-values of the test need no longer be uniformly distributed on the unit interval, even if the true Data Generating Process (DGP) of the time series is from the null hypothesis set of nonstationary but non-cointegrated processes. Thus, we need T i → ∞ for all i to ensure that p i ∼ U[0, 1] under H 0 so as to be able to invoke the limiting distribution in (3). We do not need N → ∞ to obtain (3). Of course, these asymptotic distributions are, as usual, only approximations to the finite-sample ones.

Section 3 evaluates their accuracy via extensive simulation experiments.

Using consistent time series cointegration tests, p i → p 0 under the alternative of cointegration. Hence, quite intuitively, the smaller p i , the more it acts towards rejecting the null of no panel cointegration. The decision rule therefore is to reject the null of no panel cointegration when P χ 2 exceeds the critical value from a χ 2 2N distribution at the desired significance level. For (2b) and (2c) one would reject for large negative values of the panel test statistics P Φ -1 and P t , respectively.

We now discuss how to obtain the p-values required for computation of the P test statistics. [START_REF] Hanck | The Error-in-Rejection Probability of Meta Analytic Panel Tests[END_REF] shows that using accurate p-values is crucial to achieve a precise control of the type I error rate in meta analytic panel testing. The null distributions of both residual and system-based time series cointegration tests converge to functionals of Brownian motion. Hence, analytic expressions of the asymptotic cdfs F i are hard to obtain, and p-values of the tests cannot simply be obtained by evaluating F i . A remedy frequently adopted in the literature is to approximate F i (which, in turn, is typically used to approximate F T i ) by Monte Carlo simulation. However, this approach is unsatisfactory for (at least) the following reason. These simulations are typically only performed for one sample size which is meant to provide an approximation to the asymptotic distribution. This sample size need neither be large enough to be useful as an asymptotic approximation nor does it generally yield an accurate estimate of F T i for other sample sizes. MacKinnon et al. [1999] show for certain special cases where analytic expressions of the asymptotic distribution functions F i are available that this approach may deliver fairly inaccurate estimates of F i . In the time series case, it is now fairly standard practice to report p-values of unit root and cointegration tests using the results of the response surface regressions introduced by [START_REF] Mackinnon | Critical Values for Cointegration Tests[END_REF]. We follow this approach here.

The null hypothesis (1) formulates no precise econometric characterization of (non-) cointegration. This is to allow for generality in testing the long-run equilibrium properties of the series, enabling the researcher to use whichever time series tests seem suitable to test for time series (non-)cointegration in the different units of the panel. We use p-values of the Augmented Dickey-Fuller (ADF ) cointegration tests [START_REF] Engle | Co-Integration and Error Correction: Representation, Estimation, and Testing[END_REF] as provided by [START_REF] Mackinnon | Numerical Distribution Functions for Unit Root and Cointegration Tests[END_REF]. 3 That is, the p-values are obtained from the t-statistic of 3 MacKinnon improves upon his prior work by using a heteroscedasticity and serial correlation robust technique to approximate between the estimated quantiles of the response surface regressions. Our application is based on a translation of James MacKinnon's Fortran code into a GAUSS procedure which is available upon request. The procedure implements all panel data tests developed in this section. 

γ i -1 in the OLS regression ∆û i,t = (γ i -1)û i,t-1 + P p=1 ν p ∆û i,t-p + i,t .
Here, ûi,t is the usual residual from a first stage OLS regression of one of the x ik on the remaining x i,-k . Alternatively, one could capture serial correlation by the semiparametric approach of [START_REF] Phillips | Asymptotic Properties of Residual Based Tests for Cointegration[END_REF]. Finally, we obtain the p-values for the Johansen [1988] λ trace and λ max tests provided in [START_REF] Mackinnon | Numerical Distribution Functions of Likelihood Ratio Tests for Cointegration[END_REF]. That is, we test for the presence of h = 0 cointegrating relationships by estimating the number of significantly non-zero eigenvalues of the matrix Πi estimated from the Vector Error Correction Model

∆x i,t = -Π i x i,t-P + P -1 p=1 Γ i,p ∆x i,t-p + i,t by the λ trace -test λ trace,i (h) = -T K k=h+1 ln (1 -πk,i ) (4) 
and the λ max -test

λ max,i (h|h + 1) = -T ln (1 -πh+1,i ) . (5) 
Here, πk,i denotes the kth largest eigenvalue of Πi . In (4), the alternative is a general one, while one tests against h + 1 cointegration relationships in (5). For small T , the [START_REF] Johansen | Statistical Analysis of Cointegration Vectors[END_REF] tests are known to be oversized [see e.g. [START_REF] Cheung | Finite Sample Sizes of Johansen's Likelihood Ratio Tests for Cointegration[END_REF]. To remove this size distortion, we employ [START_REF] Cheung | Finite Sample Sizes of Johansen's Likelihood Ratio Tests for Cointegration[END_REF] small sample degree of freedom correction. As mentioned above, this is particularly important in our framework as the size distortions in the time series tests would (via unduly small p-values) otherwise "add up" when combined over N to form the panel test statistics [START_REF] Hanck | The Error-in-Rejection Probability of Meta Analytic Panel Tests[END_REF], to yield an arbitrarily severely size-distorted panel test.

To summarize, we obtain the p-values required for performing the P tests from the most widely used time series cointegration tests. We now present a Monte Carlo study of the finite sample performance of the tests proposed in the previous section. The Data Generating Process (DGP) is similar to the one used by [START_REF] Engle | Co-Integration and Error Correction: Representation, Estimation, and Testing[END_REF]. The extension to the panel data setting is discussed in [START_REF] Kao | Spurious Regression and Residual Based Tests for Cointegration in Panel Data[END_REF]. For simplicity, only consider the bivariate case, i.e. K = 2:

DGP A x i,1t -α i -βx i,2t = z i,t , a 1 x i,1t -a 2 x i,2t = w i,t
where

z i,t = ρz i,t-1 + e zi,t , ∆w i,t = e wi,t
and e zi,t e wi,t

iid

∼ N 0 0 , 1 ψσ ψσ σ 2
Remark 4. When |ρ| < 1 the equilibrium error in the first equation is stationary such that x i1,t and x i2,t are cointegrated with

β i = (1 -α i -β) .
Remark 5. When writing the above DGP as an error correction model [see, e.g., [START_REF] Gonzalo | Five Alternative Methods of Estimating Long-Run Equilibrium Relationships[END_REF] it is immediate that x i2,t is weakly exogenous when a 1 = 0.

We investigate all combinations of the following values for the parameters of the model:

β = 2, a 1 ∈ {0, 1}, a 2 = -1, σ ∈ {0.5, 1}, ρ ∈ {0
.9, 0.99, 1} and ψ ∈ {-0.5, 0, 0.5}.

The fraction of cointegrated series in the panel is increased from 0 to 1 in steps of 0.1, i.e. δ ∈ {0, 0.1, . . . , 1}. The dimensions of the panel are N ∈ {10, 20, 50, 100, 150} and, after having discarded 150 initial observations, T ∈ {10, 30, 50, 100, 250, 500}, for a total

of 2 × 1 × 2 × 3 × 3 × 11 × 5 × 6 = 11
, 880 experiments. For a given cross-sectional dimension, the unit specific intercepts are drawn as α i ∼ U[0, 10] and kept fixed for all T i . Each experiment involves M = 5, 000 replications. 4 We choose a common β for all i in order to be able to compare the performance of our tests with results for other 4 Uniform random numbers are generated using the KM algorithm from which Normal variates are created with the fast acceptance-rejection algorithm, both implemented in GAUSS. Part of the calculations are performed with COINT 2.0 by Peter Phillips and Sam Ouliaris. panel cointegration tests as reported by [START_REF] Gutierrez | On the Power of Panel Cointegration Tests: A Monte Carlo Comparison[END_REF]. The p-values are from the [START_REF] Engle | Co-Integration and Error Correction: Representation, Estimation, and Testing[END_REF] ADF test, holding the number of lagged differences fixed at 1. We further test for cointegration using the λ trace -test for h = 0 vs. an unrestricted number of cointegrating relationships. As the null hypothesis (1) is tested against an unspecified number of cointegrating relationships, we employ λ trace rather than λ max . The setup of course alternatively allows for using λ max if one is concretely interested in testing against exactly one cointegrating relationship.

For brevity, we only give the results for ψ = 0, a 1 = 0 and σ = 1. 5 Table I shows the empirical size of the tests (ρ = 1) at the nominal 5% level using the ADF -and λ tracetests as the underlying time series tests. The main conclusions are as follows. First, the Engle/Granger-based tests control size rather well. Only for very small T do we observe an (albeit tolerable) size distortion. As predicted analytically by [START_REF] Hanck | The Error-in-Rejection Probability of Meta Analytic Panel Tests[END_REF], the tests' size distortions "add up" over N to become more size distorted as N increases. These mild distortions vanish quickly with increasing T . The P χ 2 test seems to have slightly better size than the other two. 6 Second, the Johansen-based tests are oversized in panels of small time series dimensions.

As pointed out above, this is because the underlying λ trace -test overrejects for short time series when using asymptotic critical values. Apparently, the [START_REF] Cheung | Finite Sample Sizes of Johansen's Likelihood Ratio Tests for Cointegration[END_REF] correction factors employed here do not completely eliminate that distortion. This is not entirely surprising as [START_REF] Cheung | Finite Sample Sizes of Johansen's Likelihood Ratio Tests for Cointegration[END_REF] conduct their response surface regressions for T 33, such that the corrections used here for T = 10 are effectively only extrapolations. (For T = 10, we found the corrected univariate λ trace -test to have a finite-sample size of around 10%. The uncorrected finite-sample size exceeds 30%.) This flaw then inevitably carries over to the panel tests via erroneously 5 The full set of results of the finite sample study are available upon request. Broadly speaking, a lower σ seems to have little, if any, systematic effect. Correlation in the error processes (ψ = 0) has a slightly negative effect on power.

6 We also investigate whether using MacKinnon's [1996] p-values improves the behavior of the tests relative to obtaining quantiles by generating only one set of replicates. For smaller panels, the latter approach (with 50,000 replications) exhibits non-negligible upward size distortions even when using quantiles specifically generated for the sample sizes considered. Interestingly, however, there does not seem to be a trend towards higher distortions with increasing N . For medium-and large-dimensional panels neither approach has a clear advantage over the other. Note: ρ = 1, ψ = 0, σ = 1 and a 1 = 0. M = 5, 000 replications. 5% nominal level. ADF and λ trace are the underlying time series tests.

small p-values. (Note, though, that time series as short as T ≈ 10 are rather uncommon in typical macroeconometric applications.) This size distortion vanishes for T 30, such that the λ trace -based P tests can be recommended for application at least for T 50.

We now relate our results to those of some other recently proposed panel cointegration tests. 7 We first give the key statistics of the various tests that are considered. For more details refer to the original contributions. Furthermore, [START_REF] Banerjee | Panel Data Unit Roots and Cointegration: An Overview[END_REF], [START_REF] Baltagi | Nonstationary Panels, Cointegration in Panels and Dynamic Panels: A Survey[END_REF] or [START_REF] Breitung | Unit Roots and Cointegration in Panels[END_REF] provide surveys of the literature.

Pedroni [2004]

Pedroni [2004] , where ẽi,t = (∆ê i,t , êi,t-1 ) . The êi,t are obtained from heterogenous Engle/Granger-type first stage OLS regressions of an x ik on the remaining x i,-k , possibly including some deterministic regressors. We consider the "Group-ρ", "Panel-ρ" and (nonparametric) "Panel-t"-test statistics which are given by, respectively,

Zρ N T -1 = N i=1 A -1 22i (A 21i -T λi ), Z ρNT -1 = N i=1 A 22i -1 N i=1 (A 21i -T λi )
and

Z tNT = σ2 N T N i=1 A 22i -1/2 N i=1 (A 21i -T λi ).
The expressions λi and σ2 N T estimate nuisance parameters from the long-run conditional variances. After proper standardization, all statistics have a standard normal limiting distribution. The decision rule is to reject the null hypothesis of no panel cointegration for large negative values.

Kao [1999]

Kao [1999] proposes five different panel extensions of the time series (A)DF -type tests.

We focus on those that do not require strict exogeneity of the regressors. More specifically,

DF * ρ = √ N T (ρ -1) + 3 √ N σ2 ν σ2 0ν 3 + 36σ 4 ν 5σ 4 0ν
and

DF * t = t ρ + 6N σ2 ν 2σ 0ν σ2 0ν 2σ 2 ν + 3σ 2 ν 10σ 2 ν .
Here, ρ is the estimate of the AR(1) coefficient of the residuals from a fixed effects panel regression and t ρ is the associated t-statistic. The remaining terms play a role similar to the nuisance parameter estimates in the [START_REF] Pedroni | Panel Cointegration: Asymptotic and Finite Sample Properties of Pooled Time Series Tests with an Application to the PPP Hypothesis[END_REF] tests. Again, both tests are standard normal under the null of no panel cointegration and reject for large negative values.

Larsson et al. [2001]

The panel cointegration test of [START_REF] Larsson | Likelihood-Based Cointegration Tests in Heterogeneous Panels[END_REF] applies a Central Limit Theorem to (4). Defining λ trace = N -1 N i=1 λ trace,i , their panel cointegration test statistic is given by

Υ LR = √ N   λ trace -E[λ trace ] Var[λ trace ]   .
Under some conditions, including Table III shows the size-adjusted power of the P tests at ρ = 0.9. The major findings are as follows. Both the Engle/Granger-and Johansen-based tests behave consistently in that power for all variants eventually grows with both dimensions. The use of panel data 8 These size distortions are well in line with results found by [START_REF] Kao | Spurious Regression and Residual Based Tests for Cointegration in Panel Data[END_REF] and [START_REF] Larsson | Likelihood-Based Cointegration Tests in Heterogeneous Panels[END_REF] (cf. their Tables 4 and2, resp.). [START_REF] Pedroni | Panel Cointegration: Asymptotic and Finite Sample Properties of Pooled Time Series Tests with an Application to the PPP Hypothesis[END_REF] conducts experiments for T 40 only. Any remaining differences are due to differences in the underlying DGP. As these results suggest that the asymptotic approximations should be used with care for very small T , future research might attempt to provide correction factors similar to those of [START_REF] Cheung | Finite Sample Sizes of Johansen's Likelihood Ratio Tests for Cointegration[END_REF]. Note: ρ = 1, ψ = 0, σ = 1 and a 1 = 0. M = 5, 000 replications. 5% nominal level.

√ N T -1 → 0,
is therefore justified, as it yields a power gain over univariate approaches. The Johansenbased tests appear to require somewhat larger T to achieve high power under this DGP. 9

Second, the P Φ -1 and the P t tests outperform the P χ 2 test at least for the ADF variant.

This finding is in line with the results reported by [START_REF] Choi | Unit Root Tests for Panel Data[END_REF] for his panel unit root tests.

Whether to choose the P Φ -1 or the P t in any application would be a matter of taste. Third, in each of the cases, power tends to grow faster along the time series dimension. More specifically, the power of the tests rises quickly between T = 50 and T = 100. The simulation evidence therefore suggests that the P tests are particularly useful in medium to relatively long panels. 1.000 1.000 1.000 1.000 1.000 0.950 0.997 1.000 1.000 1.000

Note: ρ = 0.9, ψ = 0, σ = 1, δ = 0.5 and a 1 = 0. M = 5, 000 replications. 5% nominal level. ADF and λ trace are the underlying time series tests.

Now, let us compare the power results of Table III andFigure the unit specific intercepts, no heterogeneity is allowed for. But, in many practical applications, the units of a panel, say, countries, differ in their short-run dynamic adjustment behavior. We therefore elicit how the performance of the tests changes when we introduce heterogeneity in the serial correlation properties. Since, to the best of our knowledge, no power comparison of the different panel cointegration tests under these circumstances is available in the literature, we also include the tests presented above.

Consider the following modification of DGP A to introduce higher order serial correlation in the equilibrium error z t . 11 Following [START_REF] Said | Testing for Unit Roots in Autoregressive-Moving Average Models of Unknown Order[END_REF], define 

DGP B x i1,t -α i -βx i2,t = z i,t , a 1 x i1,t -a 2 x i2,t = w i,t , z i,t = ρ i z i,t-1 + e zi,
∼ N 0 0 , 1 ψσ ψσ σ 2
We draw, for each series in the panel, the order of the AR-process

according to ζi = [ζ i ],
where and [y] rounds to the nearest integer. We then generate the AR-coefficients from ϕ i,p ∼ U[0.1, 0.35], p i = 1, . . . , ζi . In the size study, ρ i = 1 for i = 1, . . . , N . To study power, we let ρ i ∼ U[0.9, 1] for i = 1, . . . , δN , while ρ i = 1 for 11 I am grateful to an anonymous referee for suggesting this extension. Note: ρ = 0.9, ψ = 0, σ = 1 and a 1 = 0. M = 5, 000 replications. 5% nominal level.

ζ i ∼ U[1, 2], i = 1, . . . , N
i = δN + 1, . . . , N .12 Tables V to VIII report results on size and size-adjusted power of the tests for σ = 1, ψ = 0, a 1 = 0 and δ = 0.5. The number of lagged differences for the ADF regression is chosen according to the automatic procedure suggested by [START_REF] Ng | Lag Length Selection and the Construction of Unit Root Tests with Good Size and Power[END_REF]. As regards size, Tables V shows that the P tests to maintain their good performance, with the exception of very small T . The Kao and Υ LR tests are slightly, whereas Pedroni's are quite severely oversized (Table VI).

It is not possible to compare the size-adjusted power with the results from Table III because the alternative is now different. But, Tables VII andVIII show that the ADFbased P tests as well as Pedroni's tests generally outperform Kao's and the Υ LR test. This is intuitive as the P and [START_REF] Pedroni | Panel Cointegration: Asymptotic and Finite Sample Properties of Pooled Time Series Tests with an Application to the PPP Hypothesis[END_REF] DGP C Let X 1,t = (x 1,1t , . . . , x N,1t ) and X 2,t = (x 1,2t , . . . , x N,2t ) . X 1,t and X 2,t are generated as

∆X 1,t ∆X 2,t = αβ X 1,t-1 X 2,t-1 + Γ ∆X 1,t-1 ∆X 2,t-1 + ε t , where α = -α • I N 0 N 0 N I N and β = I N -I N 0 N 0 N .
with I A (0 A ) the A-dimensional identity (zero) matrix, Γ = 0.15I 2N and ε t ∼ N (0, I 2N ).

For α = 0, x i,1t and x i,2t , i = 1, . . . , N , are independent nonstationary processes. We then study size of the tests. For α > 0, this formulation ensures cointegrating relationships

x i,1t -x i,2t , such that we analyze power of the tests. By increasing α, the degree of reversion to the cointegration relationship increases, such that the tests should become more powerful. For the degree of mean reversion, we choose α ∈ {0, 0.05, 0.1, 0.15, 0.2}. Results are summarized in Table IX. 14 As regards size, a pattern comparable to the results of DGP A emerges. For example, the system-based P Φ -1 ,λ and Υ LR tests are oversized for very small T . We also again observe a mild "adding up" of size distortions for the P Φ -1 ,DF and the DF * t test. A notable exception are the tests by Pedroni, that seem to be quite severely undersized under DGP C. Concerning power, we find that the above conjecture that this error-correction DGP is more favorable to the system-based tests is corroborated. In particular, unlike in Tables III and IV, the system-based P Φ -1 ,λ and Υ LR tests are, together with the DF * t test, the most powerful ones under DGP C.

To summarize, the P tests discussed in this paper enjoy a rather consistently attractive

14 Results for the other tests considered above are available upon request. Broadly speaking, the other P tests behave very much like the P Φ -1 test when using the same time series test, with the P χ 2 again being slightly less powerful. Furthermore, the other tests by Kao and Pedroni are somewhat less powerful than the ones reported here. Note: Half of the series has ρ i ∼ U[0.9, 1], ρ i = 1 else. ψ = 0, σ = 1 and a 1 = 0. M = 5, 000. 5% nominal level. performance in terms finite sample size and power across a range of realistic and challenging scenarios. The P tests may therefore be useful in a fairly wide range of practical applications.

Conclusion

We study new tests for panel cointegration, labeled P tests. As in [START_REF] Maddala | A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test[END_REF] and [START_REF] Choi | Unit Root Tests for Panel Data[END_REF], we use a meta analytic p-value combination approach to develop tests for nonstationary panel data. The new tests are flexible, intuitively appealing and easy to implement. The tests employ highly accurate p-values obtained from response surface regressions [START_REF] Mackinnon | Numerical Distribution Functions for Unit Root and Cointegration Tests[END_REF][START_REF] Mackinnon | Numerical Distribution Functions of Likelihood Ratio Tests for Cointegration[END_REF]. A finite sample study reveals that the [START_REF] Engle | Co-Integration and Error Correction: Representation, Estimation, and Testing[END_REF]-based variant of the controls size even for rather short panels. The empirical size of the tests is very close to the nominal one for .007 .004 .001 .001
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Note: M = 5, 000 replications. 5% nominal level. Power results ( α > 0) are size adjusted. ADF is the underlying time series test for P P tests exhibit an upward size distortion for small T , which however vanishes quickly. In that regard, we find the P tests to compare favorably with existing tests. In terms of power, their performance is often as good as and, in certain cases, better than the more powerful among other widely used panel cointegration tests.

As most tests in this literature, the ones suggested here rely on the assumption of crosssectional uncorrelatedness (see Assumption 2). This assumption is likely to be overly strong for many macroeconomic panels and may lead, if violated, to erroneous conclusions [cf. O'Connell, 1998]. We therefore suggest to extend the tests developed here to allow for cross-sectional correlation by, e.g., the bootstrap method. [START_REF] Maddala | A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test[END_REF] report encouraging results along these lines for their panel unit root test. There is a growing literature on bootstrapping cointegrating regressions [see [START_REF] Li | Bootstrapping Cointegrating Regressions[END_REF] 

  (2a) to (2c) as P tests from now on. The P tests, via pooling p-values, provide convenient tests for panel cointegration by imposing minimal homogeneity restrictions on the panel. For instance, the different units of the panel can be unbalanced. Furthermore, the evidence for (non-)cointegration is first investigated for each unit of the panel and then compactly expressed with the p-value of the

  [START_REF] Larsson | Likelihood-Based Cointegration Tests in Heterogeneous Panels[END_REF] can show that Υ LR T,N -→ N (0, 1). The moments are obtained by stochastic simulation and are tabulated in the paper. The null hypothesis of no cointegration at a level α is rejected if the test statistic exceeds the (1 -α)-quantile of the standard normal distribution, i.e. for large values.Table II reports the empirical sizes of the other panel cointegration tests presented above.All the other tests have difficulty to control size for small T . 8 In addition, Kao's tests also seem to require a larger N to work well. In contrast, the empirical size of Pedroni's tests improves quite rapidly with T for any N . The small size distortion of the λ trace test seems to carry over to a corresponding severe size distortion for the system-based Υ LR test, which however vanishes quite fast with T . Comparing these results with those for the P tests, we find the P tests to compare quite favorably with existing panel cointegration tests in terms of finite-sample size.

  Figure I plots the power of the Engle/Granger-based tests for N = 100 as the fraction of cointegrated variables in the system, δ, increases. Panels (a) and (b) depict the cases T = 50 and T = 100, respectively. It can be seen that the power of the P tests rises to one substantially quicker when the underlying time series are longer.9 See below for their performance under other DGPs.

  Figure I-Power of the P panel cointegration tests

  ζ i ∼ U[1, 2], i = 1, . . . , δN and ϕ i,p ∼ U[0.1, 0.35]

  encountered in applied macroeconometric work. The λ trace -based

  that can be fruitfully applied to the present problem. Recent useful contributions include[START_REF] Chang | A Sieve Bootstrap for the Test of a Unit Root[END_REF] and[START_REF] Chang | Bootstrapping Cointegrating Regressions[END_REF]. Investigation of this extension is currently

Table I -

 I Empirical Size of the P Tests

					ADF					λ trace		
	T	N	10	20	50	100	150	10	20	50	100	150
	(i) P χ 2										
	10		0.058 0.062 0.068 0.069 0.072	0.241 0.345 0.604 0.829 0.932
	30		0.049 0.047 0.044 0.048 0.042	0.050 0.046 0.044 0.036 0.032
	50		0.055 0.051 0.044 0.044 0.044	0.051 0.044 0.039 0.036 0.034
	100		0.047 0.050 0.046 0.047 0.051	0.052 0.046 0.047 0.043 0.031
	250		0.050 0.046 0.057 0.049 0.049	0.052 0.044 0.044 0.048 0.050
	500		0.053 0.048 0.051 0.048 0.050	0.049 0.050 0.051 0.047 0.045
	(ii) P Φ -1										
	10		0.051 0.047 0.039 0.030 0.026	0.203 0.277 0.484 0.720 0.842
	30		0.045 0.043 0.038 0.037 0.029	0.049 0.045 0.036 0.033 0.025
	50		0.054 0.044 0.041 0.040 0.037	0.046 0.039 0.033 0.030 0.030
	100		0.049 0.052 0.048 0.047 0.045	0.051 0.048 0.043 0.041 0.026
	250		0.053 0.044 0.052 0.047 0.044	0.048 0.047 0.048 0.048 0.048
	500		0.052 0.051 0.049 0.048 0.051	0.053 0.048 0.050 0.050 0.050
	(iii) P t										
	10		0.052 0.047 0.038 0.027 0.025	0.215 0.293 0.509 0.740 0.860
	30		0.046 0.043 0.038 0.037 0.028	0.051 0.045 0.034 0.035 0.024
	50		0.055 0.045 0.043 0.040 0.035	0.047 0.038 0.034 0.031 0.030
	100		0.049 0.050 0.050 0.048 0.045	0.051 0.048 0.042 0.041 0.026
	250		0.054 0.045 0.052 0.048 0.044	0.048 0.046 0.048 0.047 0.050
	500		0.053 0.050 0.050 0.046 0.051	0.052 0.048 0.051 0.050 0.049

  derives seven different tests for panel cointegration. These may be categorized according to what information on the different units of the panel is pooled. The "Group-Mean" Statistics are essentially means of the conventional time series tests [see[START_REF] Phillips | Asymptotic Properties of Residual Based Tests for Cointegration[END_REF]. The "Within" Statistics separately sum the numerator and denominator terms of the corresponding time series statistics. Let A i =

	T t=1 ẽi,t ẽ i,t
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Table II -

 II Empirical Size of the Other Cointegration Tests

	T	N	10	20	50	100	150	10	20	50	100	150
			(i) Z ρNT -1				(ii) Z tNT				
	10		0.022 0.025 0.050 0.084 0.131	0.471 0.680 0.941 0.998 1.000
	30		0.096 0.109 0.147 0.224 0.276	0.139 0.187 0.303 0.460 0.597
	50		0.101 0.090 0.119 0.152 0.177	0.102 0.101 0.147 0.203 0.250
	100		0.097 0.100 0.103 0.133 0.154	0.070 0.076 0.090 0.111 0.126
	250		0.095 0.083 0.082 0.084 0.087	0.066 0.061 0.067 0.073 0.071
	500		0.088 0.084 0.078 0.072 0.083	0.059 0.064 0.062 0.065 0.068
			(iii) Zρ N T -1				(iv) DF * t				
	10		0.000 0.000 0.000 0.000 0.000	0.020 0.020 0.043 0.097 0.177
	30		0.014 0.006 0.002 0.001 0.000	0.080 0.064 0.061 0.059 0.066
	50		0.027 0.018 0.010 0.006 0.002	0.105 0.079 0.073 0.062 0.064
	100		0.042 0.036 0.028 0.020 0.022	0.124 0.100 0.084 0.072 0.066
	250		0.054 0.045 0.053 0.046 0.036	0.144 0.110 0.081 0.072 0.072
	500		0.063 0.054 0.054 0.056 0.056	0.154 0.105 0.084 0.072 0.067
			(v) DF * ρ					(vi) Υ LR				
	10		0.093 0.108 0.195 0.315 0.433	0.260 0.362 0.614 0.828 0.932
	30		0.074 0.073 0.084 0.091 0.105	0.063 0.058 0.047 0.045 0.036
	50		0.081 0.066 0.072 0.078 0.079	0.058 0.051 0.046 0.043 0.044
	100		0.084 0.078 0.072 0.070 0.067	0.065 0.058 0.058 0.053 0.039
	250		0.087 0.075 0.074 0.059 0.060	0.063 0.055 0.057 0.062 0.063
	500		0.087 0.071 0.064 0.057 0.062	0.062 0.059 0.063 0.058 0.060

Table III -

 III Size-Adjusted Power of the P Tests

					ADF					λ trace		
	T	N	10	20	50	100	150	10	20	50	100	150
	(i) P χ 2										
	10		0.061 0.065 0.069 0.081 0.083	0.049 0.043 0.044 0.042 0.034
	30		0.085 0.124 0.185 0.276 0.372	0.037 0.036 0.031 0.019 0.022
	50		0.138 0.236 0.454 0.717 0.843	0.052 0.038 0.051 0.039 0.040
	100		0.502 0.765 0.990 1.000 1.000	0.091 0.098 0.219 0.234 0.348
	250		1.000 1.000 1.000 1.000 1.000	0.547 0.748 0.994 1.000 1.000
	500		1.000 1.000 1.000 1.000 1.000	0.989 1.000 1.000 1.000 1.000
	(ii) P Φ -1										
	10		0.059 0.068 0.085 0.102 0.111	0.048 0.041 0.043 0.037 0.036
	30		0.095 0.151 0.250 0.380 0.552	0.035 0.037 0.031 0.022 0.019
	50		0.191 0.284 0.575 0.851 0.948	0.050 0.042 0.052 0.047 0.042
	100		0.508 0.805 0.992 1.000 1.000	0.100 0.104 0.234 0.295 0.383
	250		0.995 1.000 1.000 1.000 1.000	0.440 0.591 0.982 0.999 1.000
	500		1.000 1.000 1.000 1.000 1.000	0.898 0.986 1.000 1.000 1.000
	(iii) P t										
	10		0.060 0.070 0.086 0.103 0.114	0.048 0.044 0.043 0.038 0.037
	30		0.092 0.148 0.244 0.382 0.555	0.035 0.035 0.033 0.019 0.020
	50		0.185 0.286 0.561 0.835 0.939	0.052 0.042 0.051 0.045 0.043
	100		0.500 0.789 0.991 1.000 1.000	0.096 0.101 0.236 0.290 0.378
	250		0.997 1.000 1.000 1.000 1.000	0.476 0.648 0.987 0.999 1.000
	500											

  t , e zi,t = i,p i e i,t-p i , ∆w i,t = e wi,t ,

		ζi
		p i =1
	e zi,t	iid
	e wi,t	
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Table IV -

 IV Size-Adjusted Power of other Cointegration Tests

	T	N	10	20	50	100	150	10	20	50	100	150
			(i) Z ρNT -1				(ii) Z tNT				
	10		0.061 0.072 0.094 0.126 0.165	0.063 0.070 0.092 0.106 0.126
	30		0.121 0.189 0.356 0.547 0.731	0.098 0.156 0.289 0.440 0.619
	50		0.232 0.331 0.573 0.844 0.935	0.186 0.264 0.487 0.736 0.863
	100		0.399 0.616 0.873 0.986 0.999	0.347 0.509 0.799 0.964 0.995
	250		0.617 0.785 0.967 0.997 1.000	0.558 0.728 0.939 0.994 1.000
	500		0.716 0.851 0.989 1.000 1.000	0.669 0.816 0.976 0.999 1.000
			(iii) Zρ N T -1				(iv) DF * t				
	10		0.061 0.072 0.086 0.102 0.124	0.051 0.042 0.029 0.031 0.025
	30		0.111 0.171 0.291 0.461 0.645	0.120 0.195 0.361 0.575 0.726
	50		0.215 0.365 0.664 0.919 0.979	0.236 0.365 0.631 0.870 0.957
	100		0.630 0.892 1.000 1.000 1.000	0.392 0.594 0.862 0.980 0.996
	250		1.000 1.000 1.000 1.000 1.000	0.554 0.717 0.939 0.996 1.000
	500		1.000 1.000 1.000 1.000 1.000	0.610 0.768 0.965 0.998 1.000
			(v) DF * ρ					(vi) Υ LR				
	10		0.064 0.055 0.047 0.063 0.058	0.048 0.043 0.042 0.042 0.035
	30		0.094 0.149 0.240 0.371 0.498	0.037 0.035 0.031 0.019 0.020
	50		0.177 0.263 0.428 0.685 0.815	0.052 0.037 0.049 0.042 0.040
	100		0.306 0.469 0.705 0.905 0.972	0.095 0.101 0.229 0.266 0.375
	250		0.456 0.596 0.843 0.975 0.997	0.526 0.717 0.993 1.000 1.000
	500		0.531 0.656 0.897 0.982 0.999	0.978 1.000 1.000 1.000 1.000

Table V -

 V tests are designed to accommodate cross-sectional Size of the P Tests with AR(p) Errors heterogeneity. In the case of Pedroni's tests it is however not clear to what extent this result is practically useful in view of the large size distortions found above. DGPs A and B closely mirror the framework of residual-based cointegration tests. This potentially affords the residual-based tests (i.e. the ADF -based P tests as well as Kao's[1999] and[START_REF] Pedroni | Panel Cointegration: Asymptotic and Finite Sample Properties of Pooled Time Series Tests with an Application to the PPP Hypothesis[END_REF]) a relative advantage against the system-based tests (i.e. the λ trace -based P tests andLarsson et al.'s [2001]).13 To verify this claim, we consider the following Vector Error Correction-type DGP. This DGP is more closely related to the latter system-based tests, as, for instance, it is not built around an equilibrium error z i,t

					ADF					λ trace		
	T	N	10	20	50	100	150	10	20	50	100	150
	(i) P χ 2										
	10		0.104 0.113 0.086 0.069 0.053	0.559 0.781 0.977 0.999 1.000
	30		0.050 0.035 0.029 0.019 0.010	0.042 0.043 0.036 0.034 0.037
	50		0.045 0.042 0.032 0.025 0.016	0.048 0.047 0.042 0.043 0.045
	100		0.042 0.042 0.033 0.027 0.024	0.054 0.054 0.051 0.055 0.058
	250		0.042 0.048 0.034 0.037 0.034	0.065 0.068 0.073 0.087 0.097
	F o r 0.046 0.043 0.038 0.040 0.034 (ii) P Φ -1 500 10 0.018 0.006 0.000 0.000 0.000 30 0.028 0.017 0.007 0.003 0.001 50 0.030 0.029 0.015 0.009 0.002 F o r	0.066 0.081 0.090 0.107 0.122 0.481 0.696 0.943 0.997 1.000 0.043 0.039 0.031 0.025 0.026 0.043 0.038 0.032 0.036 0.034
	100		0.036 0.032 0.025 0.017 0.013	0.051 0.048 0.043 0.044 0.049
	250 500		P 0.041 0.044 0.028 0.028 0.025 0.045 0.043 0.038 0.034 0.030 P	0.064 0.067 0.069 0.077 0.087 0.056 0.077 0.081 0.090 0.101
	(iii) P t			e e							
	10 30 50 100		e r 0.043 0.021 0.003 0.000 0.000 0.033 0.021 0.009 0.004 0.002 0.031 0.032 0.018 0.011 0.003 0.036 0.034 0.024 0.018 0.014 e r	0.509 0.720 0.954 0.998 1.000 0.043 0.039 0.031 0.026 0.027 0.046 0.039 0.034 0.035 0.034 0.052 0.050 0.045 0.046 0.049
	250 500		R 0.042 0.043 0.029 0.028 0.028 0.047 0.045 0.039 0.035 0.031 R	0.064 0.069 0.073 0.080 0.088 0.061 0.078 0.085 0.094 0.105
	e v i e Note: ρ i = 1, ψ = 0, σ = 1 and a 1 = 0. M = 5, 000 replications. e 5% nominal level. ζ i ∼ U[1, 2], i = 1, . . . , δN and ϕ i,p ∼ U[0.1, 0.35] v i e			
								w w				
								O n l O n l	
										y y	
	whose stationarity properties the residual-based tests attempt to detect. Also, it does not
	require a left-hand side variable.							

Table VI -

 VI Size of other Cointegration Tests, AR(p) ErrorsNote:ρ i = 1, ψ = 0, σ = 1 and a 1 = 0. M = 5, 000 replications. 5% nominal level. ζ i ∼ U[1, 2], i = 1, . . . ,δN and ϕ i,p ∼ U[0.1, 0.35]

	T	N	10	20	50	100	150	10	20	50	100	150
			(i) Z ρNT -1				(ii) Z tNT				
	10		0.070 0.143 0.364 0.701 0.876	0.692 0.906 0.999 1.000 1.000
	30		0.343 0.502 0.811 0.978 0.999	0.463 0.668 0.940 0.998 1.000
	50		0.347 0.519 0.802 0.966 0.995	0.393 0.609 0.900 0.994 1.000
	100		0.392 0.538 0.809 0.963 0.995	0.411 0.609 0.892 0.991 0.999
	250		0.380 0.506 0.762 0.938 0.984	0.458 0.650 0.906 0.992 1.000
	500		0.400 0.521 0.767 0.942 0.987	0.515 0.704 0.939 0.997 1.000
			(iii) Zρ N T -1				(iv) DF * t				
	10		0.000 0.000 0.000 0.000 0.000	0.010 0.008 0.015 0.026 0.039
	30		0.128 0.194 0.329 0.548 0.708	0.094 0.077 0.083 0.110 0.137
	50		0.256 0.403 0.686 0.912 0.976	0.127 0.130 0.121 0.146 0.167
	100		0.384 0.583 0.869 0.989 0.999	0.171 0.153 0.143 0.170 0.182
	250		0.471 0.689 0.939 0.995 1.000	0.179 0.163 0.163 0.170 0.190
	500		0.514 0.716 0.955 0.999 1.000	0.206 0.166 0.158 0.180 0.200
			(v) DF * ρ					(vi) Υ LR				
	10		0.100 0.124 0.229 0.401 0.540	0.580 0.792 0.976 0.999 1.000
	30		0.111 0.106 0.135 0.172 0.227	0.053 0.048 0.043 0.038 0.040
	50		0.108 0.119 0.123 0.163 0.192	0.057 0.054 0.045 0.051 0.048
	100		0.119 0.117 0.123 0.142 0.166	0.065 0.063 0.059 0.066 0.069
	250		0.122 0.118 0.118 0.131 0.149	0.080 0.082 0.086 0.100 0.117
	500		0.129 0.117 0.117 0.140 0.153	0.076 0.096 0.102 0.125 0.144

Table VII -

 VII Size-Adjusted Power of the P Tests with AR(p) Errors

					ADF					λ trace		
	T	N	10	20	50	100	150	10	20	50	100	150
	(i) P χ 2										
	10		0.108 0.120 0.096 0.079 0.064	0.546 0.788 0.982 1.000 1.000
	30		0.058 0.053 0.048 0.033 0.034	0.041 0.033 0.038 0.031 0.018
	50		0.077 0.081 0.086 0.116 0.124	0.044 0.040 0.058 0.042 0.020
	100		0.149 0.215 0.378 0.600 0.735	0.079 0.069 0.170 0.168 0.106
	250		0.663 0.898 0.998 1.000 1.000	0.300 0.344 0.861 0.942 0.905
	500		0.975 1.000 1.000 1.000 1.000	0.707 0.858 1.000 1.000 1.000
	(ii) P Φ -1										
	10		0.017 0.005 0.001 0.000 0.000	0.468 0.699 0.955 0.998 1.000
	30		0.039 0.026 0.016 0.008 0.006	0.036 0.028 0.033 0.020 0.009
	50		0.069 0.063 0.069 0.085 0.093	0.041 0.036 0.041 0.029 0.012
	100		0.155 0.218 0.406 0.640 0.780	0.066 0.056 0.140 0.129 0.076
	250		0.589 0.833 0.995 1.000 1.000	0.211 0.260 0.721 0.863 0.781
	500		0.927 0.997 1.000 1.000 1.000	0.534 0.717 0.996 1.000 1.000
	(iii) P t										
	10		0.045 0.022 0.004 0.000 0.000	0.502 0.728 0.962 0.998 1.000
	30		0.045 0.034 0.023 0.011 0.008	0.036 0.028 0.032 0.022 0.009
	50		0.073 0.071 0.077 0.091 0.103	0.040 0.036 0.044 0.029 0.013
	100		0.157 0.222 0.406 0.635 0.776	0.068 0.059 0.147 0.139 0.079
	250		0.610 0.847 0.995 1.000 1.000	0.246 0.287 0.769 0.890 0.825
	500		0.951 0.999 1.000 1.000 1.000	0.619 0.781 0.999 1.000 1.000

Note: Half of the series has ρ i ∼ U[0.9, 1], ρ i = 1 else. ψ = 0, σ = 1 and a 1 = 0. M = 5, 000. 5% nominal level. ζ i ∼ U[1, 2], i = 1, . . . , δN and ϕ i,p ∼ U

[0.1, 0.35] 

Table VIII -

 VIII Size-Adjusted Power of other Cointegration Tests, AR(p) Errors

	T	N	10	20	50	100	150	10	20	50	100	150
			(i) Z ρNT -1				(ii) Z tNT				
	10		0.089 0.156 0.438 0.785 0.935	0.732 0.925 1.000 1.000 1.000
	30		0.461 0.669 0.944 0.998 1.000	0.560 0.797 0.986 1.000 1.000
	50		0.556 0.752 0.969 0.999 1.000	0.574 0.802 0.985 0.999 1.000
	100		0.692 0.863 0.992 1.000 1.000	0.667 0.868 0.995 1.000 1.000
	250		0.799 0.924 0.999 1.000 1.000	0.804 0.937 0.999 1.000 1.000
	500		0.872 0.960 1.000 1.000 1.000	0.873 0.967 1.000 1.000 1.000
			(iii) Zρ N T -1				(iv) DF * t				
	10		0.000 0.000 0.000 0.000 0.000	0.009 0.006 0.008 0.015 0.027
	30		0.208 0.314 0.607 0.875 0.968	0.140 0.145 0.202 0.316 0.434
	50		0.481 0.718 0.969 0.999 1.000	0.255 0.276 0.395 0.559 0.701
	100		0.838 0.975 1.000 1.000 1.000	0.385 0.448 0.620 0.812 0.915
	250		0.996 1.000 1.000 1.000 1.000	0.530 0.601 0.802 0.939 0.983
	500		1.000 1.000 1.000 1.000 1.000	0.596 0.688 0.874 0.970 0.995
			(v) DF * ρ					(vi) Υ LR				
	10		0.096 0.134 0.230 0.417 0.582	0.569 0.794 0.982 1.000 1.000
	30		0.149 0.172 0.248 0.364 0.484	0.048 0.038 0.041 0.034 0.018
	50		0.200 0.232 0.340 0.501 0.619	0.052 0.049 0.064 0.047 0.022
	100		0.274 0.341 0.499 0.688 0.811	0.087 0.075 0.186 0.182 0.115
	250		0.393 0.467 0.671 0.851 0.938	0.310 0.355 0.853 0.941 0.899
	500		0.465 0.550 0.762 0.912 0.973	0.701 0.854 1.000 1.000 1.000

For an overview of panel data models relying on N → ∞ asymptotics see[START_REF] Hsiao | Analysis of Panel Data[END_REF].

[START_REF] Gutierrez | On the Power of Panel Cointegration Tests: A Monte Carlo Comparison[END_REF] provides a power study of these tests. He does however not analyze the finite sample size, whence our study should be viewed as complementary to his.

It is however not clear whether this attractive performance would be available in practice, as these numbers are based on size-adjusted critical values and as the Zρ N T -1 test appears to be rather undersized at least for small T (cf. TableII).
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We also parameterized DGP B with other combinations of distributions for the ζi and ϕ i,pi . The additional results, which were qualitatively very similar, are available upon request.

Indeed, Tables III-VIII report that the λ trace -based P tests and the Υ LR test are generally less powerful than the residual-based tests under DGPs A and B.
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