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Statistical Modelling of Temporal Dependence in Financial Data
via a Copula Function

Modelling temporal dependence via copula

Abstract

In financial analysis it is useful to study the dependence between two or more time series
as well as the temporal dependence in a univariate time series. This paper isconcerned with
the statistical modelling of the dependence structure in a univariate financialtime series using
the concept of copula. We treat the series of financial returns as a first order Markov process.
The Archimedean two-parameter BB7 copula is adopted to describe the underlying dependence
structure between two consecutive returns, while the log-Dagum distributionis employed to model
the margins marked by skewness and kurtosis. A simulation study is carried out to evaluate the
performance of the maximum likelihood estimates. Furthermore, we apply the model to the daily
returns of four stocks and, finally, we illustrate how its fitting to data can be improved when the
dependence between consecutive returns is properly described through a copula function.

Key words: Log-Dagum distribution, Archimedean copula function, Markov process, Tail depen-
dence, Returns.

1 Introduction

The stylized facts (Cont, 2001) which characterize financialmarkets have been the focus of several

studies, many of which have emphasized the fact that the empirical distribution of financial returns is

far from the Normal model since it tends to be asymmetric and heavy-tailed. As alternatives to the

classical Gaussian model, a few parametric distributions of financial assets, allowing for skewness

and fat tails, have been proposed in the literature. The choice among these is usually a matter of

analytical and numerical tractability.

It is generally unrealistic to assume independence betweenconsecutive observations in financial

time series. For example, financial data may show a temporal dependence structure of its volatility

which is often referred to asvolatility clustering: large (small) absolute returns tend to follow large

(small) absolute returns. Indeed, there may exist different forms of nonlinear dependence which need

to be properly modelled. Since the seminal paper by Engle (1982), a wide variety of ARCH-type

models has been introduced to take into account the volatility clustering. However, the traditional

assumption of independent and identically distributed (i.i.d.) innovations carried out in the ARCH-

type model seems to be inappropriate (Bingham and Schmidt, 2005).
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Recently, the copula function has been employed to overcome the problem of modelling simul-

taneous dependence between two or more time series. Copulas have already been widely used in

finance and economics since one can describe any multivariate distribution by modelling its margins

and its copula separately (see, e.g., Frees and Valdez, 1998; Klugman and Parsa, 1999; Embrechts et

al., 2003; Cherubini et al., 2004; Hürlimann, 2004; Mendes and Souza, 2004).

Besides the simultaneous dependence between several time series, it is also important to model

(nonlinear) temporal dependence in a univariate time series. One possibility is to treat the time series

as a Markov process. To model a stationary Markov process, Joe (1997) described a parametric

approach for both copulas and marginal distributions. Thisauthor considered a wide class of copulas

and applied a one-parameter copula to daily environmental data.

Bouyé et al. (2002) investigated the dynamic dependence in non-Gaussian time series using differ-

ent types of Archimedean copula functions for nonlinear autoregressive dependence. Chen and Fan

(2006) proposed to capture nonlinear temporal dependence in univariate time series through a class

of stationary Markov models characterized by nonparametric marginal distributions and parametric

copula functions. Savu and Ng (2005) applied Chen and Fan semiparametric copula approach to

modelling the duration of ultra-high-frequency data as an alternative to the autoregressive conditional

duration model.

In order to overcome limits connected with independence andnormality, in this paper, we propose

to model - in a univariate time series - the dependence between two consecutive financial returns using

a copula approach with skewed and heavy-tailed margins. We mainly follow Joe (1997) in adopting

a parametric approach for both the marginal distributions and the copula function. A two-parameter

Archimedean copula family, called BB7, is chosen to describe the temporal dependence in a Markov

process. Then, the marginal returns are modelled through the log-Dagum distribution (Domma and

Perri, 2009) that allows for skewness and heavy tails.

The remaining part of the paper is structured as follows. Section 2 is devoted to the copula ap-

proach: the BB7 copula function and its main features are introduced emphasizing various measures

of dependence and the salient characteristics of the log-Dagum model. In Section 3 we deal with the

maximum likelihood estimates of the model. A simulation study, assessing the stability of the esti-

mation procedure, is carried out in Section 4, while in Section 5 we report the results of an empirical

study performed on four real time series, point out some stylized facts and fit the BB7 copula approach

to data. Finally, Section 6 summaries the work and offers some suggestions for further research.
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2 The Copula Approach

The aim of this section is to construct a model for financial returns which allows for temporal de-

pendence, skewness and tail heaviness. In describing one-dimension time series we need to model

the temporal dependence and the univariate margins. In so doing, it is useful to introduce notation

and some preliminary results. More specifically, in the firstpart of the section we illustrate how the

general properties of the copula function make it a suitabletool for modelling dependence between

two or more random variables. We focus on the two-parameter Archimedean BB7 copula and provide

original results on ordering dependence properties as wellas on the derivation of dependence mea-

sures such as Kendall’s tau and the medial correlation coefficient (Blomqvist, 1950). In the second

part of the section, we apply the copula approach to the distribution of financial returns. In particular,

following Joe (1997), we attempt to describe the behavior ofa univariate time series through a first

order Markov process whose components are log-Dagum distributed.

2.1 Basic concepts

The copula is a multivariate distribution with Uniform(0, 1) margins. Key references on this topic are

Nelsen (1999), which is a excellent primer, and Joe (1997) which provides a comprehensive review

from a mathematical perspective. For the aim of this paper, we will consider a two-dimensional

copula and, without loss of generality, introduce notationfor bivariate distributions.

It is known that the dependence between the random variablesX andY is fully described by the

joint distribution function

FXY (x, y) = P (X ≤ x, Y ≤ y) .

The idea of separatingFXY (x, y) in two parts, one which refers to the dependence structure and the

other which describes the marginal behavior only, leads to the concept of copula. A bivariate copula,

defined on the unit squareI2 = [0, 1] × [0, 1], is a bivariate distribution function with univariate Uni-

form margins onI. The connection between the joint distribution function oftwo random variables

and their margins through a copula is established by Sklar’stheorem. LetX andY be continuous ran-

dom variables with distribution functionFX(x) andGY (y) and joint distribution functionFXY (x, y),

respectively. Then, there exists a copulaC such that for all(x, y) in R
2

FXY (x, y) = C (FX(x), GY (y)) . (1)

If FX(x) andGY (y) are continuous,C is unique.

The converse of Sklar’s theorem is particularly useful for modelling bivariate distribution because

it implies that any group of univariate distributions can bejoined together with different copulas to

3
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define a valid multivariate distribution. This means that (1) can be rewritten to provide a method for

obtaining a copula from the joint distribution functionFXY (x, y)

C(u, v) = FXY

(
F−1

X (u), G−1
Y (v)

)

whereF−1
X (u) andG−1

Y (v) are the inverse functions of the two margins and(u, v) ∈ I2.

In addition to the copula function, conditional and densitycopula are also defined. The first deriva-

tive of the copula function, for instance with respect tou, yields the conditional copula ofV given

U = u

C2|1(v|u) =
∂C(u, v)

∂u
.

The expression ofC1|2(u|v) is defined accordingly. Furthermore, the density copula is given by

c(u, v) =
∂2C(u, v)

∂u∂v
.

Copulas offer a natural way to study and measure dependence between random variables. There

exist different dependence measures useful in the applications. For instance,Kendall’s tau

τXY = P [(X1 − X2) (Y1 − Y2) > 0] − P [(X1 − X2) (Y1 − Y2) < 0]

defined as probability of discordance of two pairs of random vectors, say(X1, Y1) and(X2, Y2), and

described by the same joint bivariate distributionFXY (x, y), can be written as

τXY = 4

∫

I2

C(u, v)
∂2C(u, v)

∂u∂v
dudv − 1.

Moreover, themedial correlation coefficientfor a pair(X,Y ) of continuous random variables

MXY = P [(X −MX) (Y −MY ) > 0] − P [(X −MX) (Y −MY ) < 0]

whereMX andMY denote the medians ofX andY , can be easily expressed as

MXY = 4FXY (MX ,MY ) − 1 = 4C
(

1
2
, 1

2

)
− 1.

In many fields, such as finance, insurance and economics, one important aspect is the dependence

in the tails of a multivariate distribution. Tail dependence describes the behavior of the variables

when extreme events occur. Intuitively, upper (lower) quadrant tail dependence is defined as limiting

probability that one margin exceeds (does not exceed) a certain threshold given that the other margin

has already exceeded (has not already exceeded) a threshold.

4
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The most common measures of tail dependence are the tail dependence coefficients. It is well-

known that(X,Y ) is upper tail dependent if the following limit exists and is positive

λU = lim
p→1−

P
[
X > F−1

X (p) | Y > F−1
Y (p)

]
.

Consequently,(X,Y ) is upper tail independent ifλU = 0. The quantityλU is theupper tail depen-

dence coefficient.

Similarly, thelower tail dependence coefficientis defined as

λL = lim
p→0+

P
[
X < F−1

X (p) | Y < F−1
Y (p)

]

and(X,Y ) is said to be lower tail dependent ifλL ∈ (0, 1]. It is worth pointing out that, in gen-

eral, copula families depend on one or more parameters, calledassociation parameters. Most of the

traditional dependence measures are functions of these parameters. However, in many situations we

need models that allow for a different degree of lower and upper tail dependence. For instance, in

finance or insurance, more emphasis is given to dependence between extreme losses than between

extreme gains. This kind of asymmetry in the tail dependencecan be modelled, for instance, through

Archimedean copulas.

2.2 The Archimedean BB7 copula

The Archimedean family of copulas has a wide range of applications in different fields. Its common

use stems from the fact that they are easy to construct and possess many nice properties (see Nelsen,

1999; Joe, 1997). Each family belonging to this class can be expressed by

C(u, v) = ϕ−1 (ϕ(u) + ϕ(v))

whereϕ(t) : [0, 1] → [0,∞) is thegenerator functionthat is continuous, strictly decreasing, convex

andϕ(1) = 0.

Although several common one-parameter Archimedean copulas have been extensively applied,

they are not suitable to describe tail dependence because the lower and upper tail coefficients are, in

general, expressed as functions of the unique association parameter. The possibility of distinguishing

the dependence in the upper quadrant tail from that in the lower tail was the key criterion which led

to the choice of the copula. In particular, the use of Archimedean copulas, in this paper, is restricted

to the family named BB7 in Joe’s classification (Joe, 1997)

C(u, v; θ, δ) = 1 −
{

1 −
[(

1 − ūθ
)−δ

+
(
1 − v̄θ

)−δ − 1
]− 1

δ

} 1

θ

, θ ≥ 1; δ > 0

5

Page 7 of 30

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

whereū = 1 − u, v̄ = 1 − v and generator functionϕ(t) =
[
1 − (1 − t)θ

]−δ − 1. The lower and

upper tail dependence for the BB7 copula areλL = 2−1/δ andλU = 2− 21/θ, respectively. It is worth

emphasizing that parameterθ allows us to capture the upper tail dependence only, whereasδ is related

to the lower tail dependence. For this characteristic, the BB7copula plays an important role among

all the two-parameter Archimedean copulas.

For the methodological developments that we will focus on later, we now report the conditional

and density BB7 copula

C2|1(v|u; θ, δ) =
(
1 − ω− 1

δ

) 1

θ
−1

ω− 1

δ
−1
(
1 − ūθ

)−δ−1
ūθ−1

and

c(u, v; θ, δ) =
(
1 − ūθ

)−δ−1
ūθ−1

(
1 − v̄θ

)−δ−1
v̄θ−1

(
1 − ω− 1

δ

) 1

θ
−2

× ω− 2

δ
−2
[
(θ − 1) + θ (δ + 1)

(
ω

1

δ − 1
)]

.

whereω =
(
1 − ūθ

)−δ
+
(
1 − v̄θ

)−δ − 1.

These aspects are now integrated with our findings on dependence properties and measures.

Joe (1997) asserts that the concordance of the BB7 copula increases asθ rises whenδ ≤ 1 and

conjectures that the concordance also increases inθ when δ > 1. Here we provide some results

regarding Stochastic Monotonicity. In order to prove that the BB7 family satisfies the Stochasti-

cally Increasing Ordering, we start from the result of Capéràa and Genest (1993): ifϕ−1 is differen-

tiable, thenY is stochastically increasing inX or X is stochastically increasing inY if and only if

g(t) = ln
(
−∂ϕ−1(t)

∂t

)
is convex on(0,∞). Indeed, with the BB7 copula, it is a simple matter to verify

that

∂2g(t)

∂t2
=

(δ + 1)

δ(1 + t)2
+

(θ − 1)
{

δ(1 + t)−2
[
(1 + t)

1

δ − 1
]

+ (1 + t)
1

δ
−2
}

δ2θ
[
(1 + t)

1

δ − 1
]2 > 0

for any t > 0, δ > 0 andθ > 1. We remind the reader that the Stochastic Monotonicity implies

the Tail Monotonicity properties and this satisfies the Positively Quadrant Dependence properties.

Consequently, the correlation coefficient (ρ), Kendall’s tau (τ ), Spearman’s rho (ρS) and the medial

correlation coefficient (M) all assume non-negative values (Lehmann, 1966).

Now we revisit two measures of dependence in terms of the two parameters of the BB7 copula.

Proposition. Kendall’s tau index for copula BB7 is given by

τXY (θ, δ) = 1 − 4

δθ2

[
B

(
2,

2

θ
− 1

)
− B

(
δ + 2,

2

θ
− 1

)]
(2)

6
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for δ > 0 andθ < 2, whereB(p, q) is the Beta function.

Proof. For Achimedean copulas, Kendall’s tau can be written (Joe, 1997) as

τXY = 1 − 4

∫ ∞

0

u

[
∂ϕ−1(u)

∂u

]2

du. (3)

For the BB7 copula

∂ϕ−1(u)

∂u
= − 1

θδ
(1 + u)−

1

δ
−1
[
1 − (1 + u)−

1

δ

] 1

θ
−1

which, replaced in (3), gives

τXY (θ, δ) = 1 − 4

δ2θ2

∫ ∞

0

u(1 + u)−
2

δ
−2
[
1 − (1 + u)−

1

δ

] 2

θ
−2

du.

Setting firsty = 1 + u and thenx = y− 1

δ , after some algebra, we get

τXY (θ, δ) = 1 − 4

δθ2

[∫ 1

0

x(1 − x)
2

θ
−2dx −

∫ 1

0

xδ+1(1 − x)
2

θ
−2dx

]

= 1 − 4

δθ2

[
B

(
2,

2

θ
− 1

)
− B

(
δ + 2,

2

θ
− 1

)]
.

�

As regards the medial correlation, after simple algebra, itis possible to show that

MXY (θ, δ) = 3 − 4

{
1 −

[
2
(
1 − 2−θ

)−δ − 1
]− 1

δ

} 1

θ

. (4)

In Figure 1 the behavior of Kendall’s tau and the medial correlation coefficient is illustrated. Both

the indices show that the amount of dependence increases as either θ andδ increase.

2.3 Copula and Markov process

The concepts earlier introduced for a generic variable(X,Y ) are now adapted to the case of(Yt−1, Yt)

which are two consecutive random variables of a stationary Markov process.

Let us assume{Yt : t = 1, 2, ..., T} to be a first order stationary Markov process with continuous

state space. Then, its properties are completely determined by the joint distribution functions ofYt−1

andYt, sayF (yt−1, yt). From Sklar’s theorem, we can expressF (yt−1, yt) in terms of the marginal

distribution function ofYt and the copula function ofYt−1 andYt. In this way, the copula approach

is suggested as a tool for modelling a stationary Markov process: instead of specifying the joint

distribution function ofYt−1 andYt directly, one can specify the marginal distribution function of Yt

and the copula function ofYt−1 andYt.

7
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Figure 1: Kendall’s tau and medial correlation coefficient.

From now on, we reserve the notationYt to denote the financial return betweent andt − 1

Yt = ln Pt − ln Pt−1

wherePt is the value of a financial asset (a stock, an exchange rate or amarket index) at timet. The

Markovian property seems to be an appropriate assumption for describing the behavior of the returns

since it can be observed empirically that current returns are usually affected by their recent past. We

restrict our attention to the first order process by assumingthat only the immediate past is relevant for

the current returns.

We consider that the returnYt and the lagged valueYt−1 are random variables with identical con-

tinuous marginal distribution functionsF (yt; α) andF (yt−1; α), for the hypothesis of stationarity,

and joint distribution function given by

F (yt−1, yt; α, ξ) = C (F (yt−1; α), F (yt; α); ξ)

whereα andξ denote the vectors of marginal and association parameters,respectively. Our aim is

to model the conditional behavior ofYt given its immediate pastYt−1. In this sense, the conditional

copula can be used to define thetransition distribution functionand thetransition density functionof

{Yt} (Joe, 1997)

H (yt | yt−1; α, ξ) = P [Yt ≤ yt | Yt−1 = yt−1] = C2|1 (F (yt; α) | F (yt−1; α); ξ)

8
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h (yt | yt−1; α, ξ) = c (F (yt−1; α), F (yt; α); ξ) f(yt; α). (5)

In the sequel we will refer to this approach as theconditional approach, whereas the termmarginal

approachwill be used for modellingYt regardless of temporal dependence (that is under i.i.d. hy-

pothesis). For the purpose of modelling the dependence of returns, we assume thatC(·, ·; ·) is the

Archimedean BB7 copula function described in§ 2.2. Moreover, since returns tend to be asymmetric

and heavy-tailed, we propose to model their marginal behavior through the log-Dagum distribution

whose basic characteristics are summarized in the next section.

2.4 Characteristics of the marginal distributions

The log-Dagum random variable is obtained by a logarithmic transformation of Dagum random vari-

able (Dagum, 1977, 1980). This distribution, recently investigated in Domma and Perri (2009), seems

to be a flexible parametric family for modelling skewed and leptokurtic distributions, since it takes

values onR and the shape is always leptokurtic. Moreover, it can be bothsymmetric and asymmetric

(positive or negative).

A wide variety of parametric models has been considered in the literature to deal with asymmetric

and heavy tailed distributions. We mention, the family of theα-Stable distributions (Rachev and Mit-

tnik, 2000), the skew t-Student distribution (Theodossiou, 1998; Jones and Faddy, 2003), the normal

inverse Gaussian (Barndorff-Nielsen, 1997), the power exponential distribution (T̈oyli et al. 2002),

the beta-type distributions (McDonald and Xu, 1995), the Tukey-type distributions (Fischer et al.,

2007), and many others discussed, for instance, in Kleiber and Kotz (2003). The choice among these

is usually a matter of analytical and numerical tractability. The distribution we consider possesses

interesting shape characteristics, has no particular analytical and computational limitations and its

cumulative distribution function, quantiles, mode and moments are given in a closed form. Moreover,

the computational aspects concerning the maximum likelihood (ML) estimates do not involve great

complexity. These reasons should make the log-Dagum distribution a competitive model for data

marked by skewness and kurtosis.

Moreover, there is a certain analogy between log-Dagum and some other well-known distributions.

For instance, its density may be considered as a reparameterization of the type I generalized logistic

distribution (see Balakrishnan, 1992) and, thus, as a special case of the exponential generalized beta

distribution of second type (McDonald and Xu, 1995).

A random variableX is log-Dagum distributed,X ∼ LDa(β, λ, ν), if its distribution function is

FX (x; β, λ, ν) =
(
1 + λe−νx

)−β
(6)

9
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wherex ∈ R andβ, λ, ν > 0. The probability density function is

fX (x; β, λ, ν) = βλνe−νx
(
1 + λe−νx

)−β−1
.

From (6) it is easy to verify that the mode of the distributionis m = ν−1 ln (λβ), always exists and

is unique. Moreover, by solving equationFX (x; β, λ, ν) = p with respect tox, we obtain the simple

and closed expression for thep-thquantile

xp =
1

ν
ln

(
λ

p−
1

β − 1

)
.

The first three moments, that will be useful in§ 4.3, are

E (X) =
ln (λ) + Ψ (β) − Ψ (1)

ν
(7)

E
(
X2
)

=
[Ψ′ (β) + Ψ′ (1)] + [ln (λ) + Ψ (β) − Ψ (1)]2

ν2
(8)

E
(
X3
)

=
[Ψ′′ (β) − Ψ′′ (1)] + 3 [ln (λ) + Ψ (β) − Ψ (1)] [Ψ′ (β) + Ψ′ (1)]

ν3

+
[ln (λ) + Ψ (β) − Ψ (1)]3

ν3
(9)

whereΨ (.), Ψ′ (.), Ψ′′ (.) are the digamma, trigamma and tetragamma functions, respectively (see,

e.g., Davis, 1970). After simple algebra, the standardizedthird and fourth moments are given, respec-

tively, by

E
(
Z3
)

=
[Ψ′′ (β) − Ψ′′ (1)]

ν3
β

E
(
Z4
)

=
[Ψ′′′ (β) + Ψ′′′ (1)]

ν4
β

+ 3

whereνβ =
√

Ψ′ (β) + Ψ′ (1) andΨ′′′ (.) is the pentagamma function. We observe thatE (Z4) is

always greater than 3 becauseΨ′′′(β) > 0, for anyβ > 0. Consequently, the log-Dagum distribution

always turns out to be leptokurtic and, thus, it can be used tomodel data with fat tails.

3 Maximum Likelihood Estimation

Fitting the BB7 copula model to the Markov process{Yt : t = 1, 2, ..., T}, with Yt ∼ LDa(β, λ, ν),

requires the estimation of the marginal and association parameters. From the different ML estimation

10
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procedures for copulas we have adopted thefull maximum likelihoodmethod in which the marginal

and association parameters are estimated simultaneously.

Given the dependent observationsy1, . . . , yT , the log-likelihood function based on the transition

density (5) is

ℓ (α; ξ) =
T∑

t=1

ℓMar,t(α) +
T∑

t=2

ℓCon,t(α; ξ) (10)

where

ℓMar,t(α) = ln f(yt; α) = ln (βλν) − νyt − (β + 1) ln
(
1 + λe−νyt

)

and

ℓCon,t(α; ξ) = ln c (F (yt−1; α), F (yt; α); ξ)

= (θ − 1) ln ū − (δ + 1) ln
(
1 − ūθ

)
+ (θ − 1) ln v̄ − (δ + 1) ln

(
1 − v̄θ

)

+

(
1

θ
− 2

)
ln
(
1 − ω− 1

δ

)
−
(

2

δ
+ 2

)
ln ω + ln

[
(θ − 1) + θ (δ + 1)

(
ω

1

δ − 1
)]

with marginal and association parametersα = (β, λ, ν) andξ = (δ, θ).

Maximization of (10) subject to the constraintsβ, λ, ν, δ > 0 andθ > 1 leads to the ML estimates

of all the parameters of the conditional approach. This optimization problem does not admit any

explicit solution and requires numerical procedures whichcould well be computationally intensive.

Under regularity conditions, the ML estimates ofα andξ are consistent and asymptotically normally

distributed. Moreover, the negative inverse Hessian matrix of (10) evaluated at the ML estimates can

be used as an estimated covariance matrix of the ML estimators (Joe, 1997).

On the other hand, the maximization of
∑T

t=1 ℓMar,t(α) under constraints yields the ML estimates

of parametersα of the marginal approach.

Common dependence measures are usually expressed as function, sayφ(.), of association param-

etersξ. ML theory provides us with useful results concerning the estimation of the dependence mea-

sures. In particular, under usual regularity conditions, the asymptotic properties of the ML method

ensure that
√

n
[
φ(ξ̂) − φ(ξ)

]
−→ N(0,Σξ)

whereξ̂ is the ML estimates ofξ and

Σξ =

[
∂φ(ξ)

∂ξ

]′
I−1(ξ)

[
∂φ(ξ)

∂ξ

]

with I(ξ) the Fisher information matrix in a single observation.
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4 Simulation Study

A simulation study is now carried out to assess the ML estimation procedure and to investigate, for

a finite sample size, the behavior of the ML estimates. The main idea is to generateK indepen-

dent samples ofT observations from a first order Markov process modelled by the BB7 copula and

with log-Dagum margins. For each sample the ML estimates of both the association and marginal

parameters are computed and an empirical version of the meansquare error (MSE) is provided.

In this section, the algorithm for evaluating the performance of ML estimates of the association

and marginal parameters is described first and, then, data generation and the choice of starting values

are discussed in detail. Final simulation results completethe section.

4.1 Estimation

As the likelihood function cannot be maximized analytically, the ML estimates of the parameters are

found by numerical methods involving the starting points mentioned in§ 4.3 as initial estimates in

the optimization routine. We implemented in MATLAB a procedure based on a sequential quadratic

programming method. With this method, the function adoptedsolves a quadratic programming sub-

problem at each iteration. An estimate of the Hessian of the log-likelihood is updated at each iteration

using the BFGS formula.

The procedure for assessing the performance of ML estimatesis based on the following steps:

1. choose real values of parametersβ, λ, ν, θ, δ which specify the marginal distribution and the

copula;

2. establish sample sizeT ;

3. generateK random samples of data vectors(yt−1,yt) of sizeT following the procedure illus-

trated in§ 4.2;

4. determine the initial values,β0, λ0 andν0, for the marginal parameters andθ0, δ0, for the asso-

ciation parameters, according to the criteria described in§ 4.3;

5. calculate, for thek-thof theK samples of sizeT , the ML estimateŝβ(k)
T , λ̂

(k)
T , ν̂

(k)
T , θ̂

(k)
T , δ̂

(k)
T ;

6. compute the mean of the estimates over allK samples,µ(ζ̂T ) = K−1
∑K

k=1 ζ̂
(k)
T whereζ̂

(k)
T

stands for each element of the vector(β̂
(k)
T , λ̂

(k)
T , ν̂

(k)
T , θ̂

(k)
T , δ̂

(k)
T ) for the corresponding parameter

ζ amongβ, λ, ν, θ, δ;
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7. determine the sample bias,b(ζ̂T ), and the sample mean square error,MSE(ζ̂T ), of the ML

estimates calculated at the previous step

b(ζ̂T ) = µ(ζ̂T ) − ζ, MSE(ζ̂T ) = K−1

K∑

k=1

(ζ̂
(k)
T − ζ)2.

4.2 How to simulate the data

To generate the data we use the algorithm based on the conditional BB7 copula distribution and the

quantiles of the log-Dagum marginal distribution.

Pairs of consecutive data from a first order Markov process may be thought of as observations

of a pair of variables(Yt−1, Yt) with joint distributionF . We are assuming thatF (yt−1, yt) is de-

fined through the two-parameter BB7 copula functionC(u, v; θ, δ) with marginsLDa(β, λ, ν). Thus,

we only need to find a suitable sequence of(u, v), for each fixed value of the parameters vector

(β, λ, ν, θ, δ), in order to obtain the corresponding pairs of observations(yt−1, yt). The data genera-

tion algorithm works as follows:

step 1: generate a random number, sayu1, from a Uniform(0, 1) such that, for anyv,

0 ≤ C2|1(v|u1; θ, δ) ≤ 1;

step 2: iterate the following procedureT + 1 times: generatewi from a Uniform(0, 1) and compute

vi as the (numerical) solution of the equationC2|1(v|ui; θ, δ) = wi whereui = vi−1, i =

1, ..., T + 1, butu1 defined at step 1;

step 3: the simulated data are the pair of vectors(yt−1,yt) with i-th element

y
(i)
t−1 =

1

ν
ln


 λ

u
− 1

β

i − 1


 , y

(i)
t =

1

ν
ln


 λ

v
− 1

β

i+1 − 1


 , i = 1, . . . , T.

4.3 How to choose starting values

The choice of suitable starting points is an important issuein all numerical optimization algorithms.

In this context, we adopt two distinct procedures to choose the initial values for the marginal and

association parameters in order to encompass their different meanings.

Marginal parameters. Appropriate starting values for marginal parameters,β, λ andν, are obtained

by themethod of momentsequating the first three sample moments to the correspondingthree mo-

ments of the log-Dagum distribution, given in (7)-(9), and solving the equations with respect to the

unknowns.
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Let M̃r be the sample moment of orderr of Yt. Firstly, we obtain an estimate ofβ, sayβ0, solving

numerically the equation
Ψ′′(β) − Ψ′′(1)

[Ψ′(β) + Ψ′(1)]3/2
=

M̃3

S3
− 3

M̃1

S

beingS =

√
M̃2 − M̃1

2
.

Afterwards, the preliminary estimates forλ andν are given as functions ofβ0

λ0 = exp

{
M̃1

√
Ψ′(β0) + Ψ′(1)

S2
− Ψ(β0) + Ψ(1)

}
, ν0 =

√
Ψ′(β0) + Ψ′(1)

S2
.

Association parameters. In order to find a suitable pair of starting points for the association pa-

rameters, we perform a procedure which minimizes the difference between the medial correlation

coefficient and an empirical version of it. LetMt, M̃t andMt−1, M̃t−1 denote the population and

the sample medians ofYt andYt−1, respectively. The measure of dependence mentioned in§ 2.1 and

§ 2.2, now referred to the pair(Yt−1, Yt)

Mt−1,t(θ, δ) = P [(Yt −Mt) (Yt−1 −Mt−1) > 0] − P [(Yt −Mt) (Yt−1 −Mt) < 0]

is compared with its sample version

M̃t−1,t =
2c − T

T

wherec indicates the number of positive products of the sample median deviations, say the element-

wise products ofyt − 1M̃t andyt−1 − 1M̃t−1, where1 is a column vector of ones of conformable

size.

Note that we only consider data with positive medial correlation. The starting association parame-

ters are the pair(θ0, δ0) which solves the optimization problem

min
θ,δ

(Mt−1,t(θ, δ) − M̃t−1,t) subject to θ ≥ 1, δ > 0.

4.4 Simulation results

We restricted the simulation study to a few combinations of values of the parameters:

β = 0.5, 1.5, λ = 1, ν = 100, θ = 1.1, 1.5 andδ = 0.2, 1. Actually, we considered many other

values for the parameters, but the results were not significantly different from those obtained with

the aforementioned values. The choice of the selected values is mainly motivated by their represen-

tativeness of a wide range of ML estimates obtained in a preliminary study in which the conditional

approach was fitted to different financial data.
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Table 1:ML estimates for the parameters, bias and MSE assuming thatλ = 1 andν = 100.

bias MSE
β θ δ n β̂ λ̂ ν̂ θ̂ δ̂ β̂ λ̂ ν̂ θ̂ δ̂ β̂ λ̂ ν̂ θ̂ δ̂

0.5 1.1 0.2 25 0.6932 1.3568 116.4598 1.1221 0.18640.1932 0.3568 16.4598 0.0221 -0.01360.4727 2.1222 2783.5321 0.0477 0.0692
100 0.5452 1.1858 103.5930 1.1044 0.18980.0452 0.1858 3.5930 0.0044 -0.01020.0440 0.7962 515.0156 0.0124 0.0225
250 0.5151 1.0710 102.2144 1.1010 0.19530.0151 0.0710 2.2144 0.0010 -0.00470.0153 0.2518 220.6872 0.0061 0.0105
500 0.5052 1.0427 101.3600 1.0982 0.19840.0052 0.0427 1.3607 -0.0018 -0.00160.0065 0.0807 89.3769 0.0033 0.0055
1500 0.5021 1.0111 100.3500 1.0995 0.20030.0021 0.0111 0.3528 -0.0005 0.00030.0020 0.0208 25.5916 0.0010 0.0018

1 25 0.8420 1.2831 115.2771 1.2270 0.82240.3420 0.2831 15.2770 0.1270 -0.17760.8195 2.6240 3653.1463 0.2491 0.8745
100 0.6076 1.2394 105.4515 1.1229 0.93070.1076 0.2394 5.4514 0.0229 -0.06930.1820 1.1853 587.1129 0.0289 0.1926
250 0.5348 1.0628 101.4600 1.1096 0.97650.0348 0.0628 1.4600 0.0096 -0.02350.0275 0.2538 175.0398 0.0100 0.0812
500 0.5144 1.0375 101.3432 1.0977 0.99620.0144 0.0375 1.3431 -0.0023 -0.00380.0122 0.0021 90.0023 0.0046 0.0461
1500 0.5051 1.0098 100.4400 1.0990 1.00130.0051 0.0098 0.4416 -0.0010 0.00130.0034 0.0297 27.5113 0.0018 0.0128

1.5 0.2 25 0.6006 1.6505 134.4379 1.4323 0.25280.1006 0.6505 34.4379 -0.0677 0.05280.3462 3.4521 5677.2752 0.3219 0.1129
100 0.5599 1.2796 107.4658 1.4825 0.23420.0599 0.2796 7.4658 -0.0175 0.03420.0708 1.2631 962.1720 0.0905 0.0422
250 0.5178 1.1039 103.2698 1.4989 0.19300.0178 0.1039 3.2698 -0.0011 -0.00700.0218 0.3157 328.2868 0.0334 0.0157
500 0.5109 1.0415 101.5400 1.5013 0.19650.0109 0.0415 1.5439 0.0013 -0.00360.0090 0.0983 144.3747 0.0161 0.0077
1500 0.5041 1.0018 100.5100 1.4993 0.19870.0041 0.0018 0.5146 -0.0007 -0.00130.0026 0.0222 43.4389 0.0052 0.0026

1 25 0.7468 1.5045 129.2929 1.4857 0.91980.2468 0.5045 29.2929 -0.0143 -0.08020.6468 3.2669 5221.6529 0.4817 1.1405
100 0.6539 1.3485 107.6083 1.5031 0.97170.1539 0.3485 7.6083 0.0031 -0.02830.2768 2.1082 1223.3325 0.1618 0.3964
250 0.5435 1.1231 103.8853 1.4876 0.99260.0435 0.1231 3.8853 -0.0124 -0.00740.0519 0.5050 409.7021 0.0494 0.1139
500 0.5327 1.0398 100.8700 1.5080 0.98100.0327 0.0398 0.8722 0.0080 -0.01900.0208 0.1808 185.6391 0.0255 0.0554
1500 0.5069 1.0142 100.6791 1.4993 0.99440.0069 0.0142 0.6791 -0.0007 -0.00560.0050 0.0420 54.2930 0.0080 0.0160

1.5 1.1 0.2 25 2.8999 1.7446 114.0950 1.1303 0.23471.3999 0.7446 14.0950 0.0303 0.034713.0351 4.2341 1243.4969 0.0516 0.0899
100 2.0770 1.1908 101.7093 1.1060 0.18990.5770 0.1908 1.7093 0.0060 -0.01013.0804 1.0441 294.2359 0.0130 0.0225
250 1.6833 1.0693 101.1691 1.1021 0.19380.1833 0.0693 1.1691 0.0021 -0.00620.5081 0.2968 120.1334 0.0060 0.0105
500 1.5742 1.0461 100.7500 1.1024 0.19180.0742 0.0461 0.7500 0.0024 -0.00820.1631 0.1180 55.9578 0.0034 0.0054
1500 1.5258 1.0093 100.2800 1.0999 0.19980.0258 0.0093 0.2773 -0.0001 -0.00030.0364 0.0334 16.2936 0.0009 0.0017

1 25 3.5305 1.3960 111.0139 1.2073 0.90592.0305 0.3960 11.0139 0.1073 -0.094117.7557 3.1168 1082.5054 0.1999 0.9021
100 2.3996 1.1008 100.3061 1.1177 0.90070.8996 0.1008 0.3061 0.0177 -0.09935.1255 1.0244 261.5235 0.0254 0.2134
250 1.8504 1.0249 100.3605 1.1069 0.98420.3504 0.0249 0.3605 0.0069 -0.01581.3020 0.3120 99.2082 0.0095 0.0826
500 1.6426 1.0167 100.4500 1.1035 0.98600.1426 0.0167 0.4481 0.0035 -0.01400.2975 0.1348 52.4535 0.0053 0.0427
1500 1.5479 0.9974 100.2500 1.0994 0.99070.0479 -0.0026 0.2477 -0.0006 -0.00930.0565 0.0397 16.7592 0.0016 0.0128

1.5 0.2 25 2.4618 2.1271 123.4661 1.3801 0.24220.9618 1.1271 23.4661 -0.1199 0.04229.8025 5.8040 1922.7497 0.1973 0.1125
100 2.1517 1.3402 103.7283 1.4957 0.19980.6517 0.3402 3.7283 -0.0043 -0.00024.0101 1.8839 527.6009 0.0770 0.0315
250 1.7484 1.1031 101.9046 1.4986 0.19460.2484 0.1031 1.9046 -0.0014 -0.00540.9282 0.4026 210.5594 0.0320 0.0154
500 1.6178 1.0406 100.5600 1.5078 0.19460.1178 0.0406 0.5594 0.0078 -0.00540.2415 0.1619 96.2569 0.0150 0.0072
1500 1.5466 0.9970 99.9290 1.5051 0.19900.0466 -0.0030 -0.0706 0.0051 -0.00110.0524 0.0404 29.3305 0.0049 0.0024

1 25 3.0958 1.7938 124.5383 1.3931 0.86601.5958 0.7938 24.5383 -0.1069 -0.134014.3620 4.8516 2323.6832 0.2454 0.8617
100 2.1561 1.4806 107.7377 1.4494 0.93240.6561 0.4806 7.7377 -0.0506 -0.06765.4541 2.1766 516.8924 0.0858 0.3666
250 2.0162 1.0864 101.0619 1.5061 0.99050.5162 0.0864 1.0619 0.0061 -0.00952.7565 0.5607 196.2678 0.0432 0.1112
500 1.6641 1.0511 101.0100 1.5004 0.99250.1641 0.0511 1.0051 0.0004 -0.00750.4136 0.2147 94.9761 0.0193 0.0548
1500 1.5897 0.9763 99.7510 1.5084 0.98440.0897 -0.0237 -0.2492 0.0084 -0.01560.0925 0.0550 30.6906 0.0072 0.0173
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Since the estimation procedure of both marginal and association parameters may be of great com-

putational complexity, the simulation study has been performed with each combination of selected

parameters forK = 1000 samples with increasing sizeT = 25, 100, 250, 500, 1500.

The study allowed us to attain two goals: to check the reliability of our estimation procedure and to

investigate the behavior of the estimators for a finite sample size. The results, summarized in Table 1,

confirm the good performance of the estimators. As expected,the performance is modest for smaller

sample sizes but improves remarkably as the sample size increases. In a few cases we observe an

oscillatory behavior of the bias, that is, it registers decreases followed by slight nonregular increases.

Nevertheless, the mean square error seems to approach very small values and certainly decreases as

the sample size rises, an evident indication that all the estimates are consistent.

5 Empirical Analysis

The conditional approach is now applied to real data in orderto go beyond the normality and i.i.d.

hypotheses traditionally assumed for the distribution of financial returns. Firstly, we highlight certain

stylized facts that mark consecutive financial returnsYt andYt−1. In particular, through an empirical

study, we note evidence of non-normality in the returns, as well as the presence of dependence.

Then, we model the data with the conditional and the marginalapproach showing how the use of the

copula may considerably improve the fitting to data when dependence between consecutive returns is

ascertained.

5.1 Departure from normality and independence

For our analysis we consider the daily returns of four Italian stocks:Generalifrom January 8th, 1999

to January 7th, 2004;Banca Popolare Italiana(Bpi) from January 2nd, 1995 to August 7th, 2006;

Telecomfrom January 8th, 1999 to January 7th, 2004;Tiscali from October 27th, 1999 to January

19th, 2005.

The descriptive statistics given in Table 2 highlight that the returns are negatively or positively

skewed with a rather high level of kurtosis for Tiscali and Bpistocks. The Normal assumption for

describing the data seems to be inadequate and this is confirmed by the value of the Jarque-Bera

statistic test and the QQ-plot in Figure 2. The QQ-plot in Figure 3, instead, shows that the log-Dagum

distribution strongly fits the empirical distribution of Telecom and Generali series, whereas it is less

suitable for Bpi and Tiscali. Such behavior may be referable to the fact that the latter two series are

characterized either by high kurtosis and, as we will see later, strong evidence of temporal dependence

between consecutive returns which is indeed underrated in this marginal approach.
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Table 2:Descriptive statistics for daily returns.

Generali Bpi Telecom Tiscali

mean -0.0005 0.0002 -0.0006 -0.0008

standard deviation 0.0192 0.0171 0.0280 0.0386

skewness -0.0351 0.0600 -0.2324 1.2079

kurtosis 5.0013 20.759 5.9827 11.005

JB Test 212.12 38530 478.93 4099.8
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Figure 2:Normal QQ-plot for daily returns.

The typical i.i.d. hypothesis underlying most common statistical procedures is to be treated with

great caution when modelling financial returns. Many authors have studied the dependence between

two or more financial assets. Here, our main intention is to investigate the temporal dependence for a

financial time series.

It is well-known (see Fama, 1971; Pagan 1996) that movementsof returns in liquid markets do not

exhibit significant correlation. The lack of correlation has been widely discussed and is often cited as

17

Page 19 of 30

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Generali Telecom

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−0.1

−0.05

0

0.05

0.1

Log−Dagum Quantiles

E
m

p
ir
ic

a
l 
Q

u
a

n
ti
le

s

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Log−Dagum Quantiles

E
m

p
ir
ic

a
l 
Q

u
a

n
ti
le

s

Tiscali Bpi

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
−0.2

−0.1

0

0.1

0.2

0.3

Log−Dagum Quantiles

E
m

p
ir
ic

a
l 
Q

u
a

n
ti
le

s

−0.06 −0.04 −0.02 0 0.02 0.04 0.06
−0.1

−0.05

0

0.05

0.1

Log−Dagum Quantiles

E
m

p
ir
ic

a
l 
Q

u
a

n
ti
le

s

Figure 3:Log-Dagum QQ-plot for daily returns.

support for theefficient market hypothesis(Fama, 1991). Nevertheless, uncorrelation does not mean

that the return movements are independent. Other forms of nonlinear dependence may exist which

cannot be conveyed by the traditional dependence measures.

Common measures of nonlinear dependence are based on the autocorrelation of various powers of

the absolute returns

ρ[r] = corr(|Yt−1|r, |Yt|r). (11)

Typical choices forr are1 and2. For r = 1, the correlation is the highest, which means that the

absolute returns are more predictable than other powers of returns. The choicer = 2 provides a

measure of the phenomenon ofvolatility clusteringor volatility-volatility correlation: large/small

return variations are more likely to be followed by large/small return variations. Figure 4 shows this

phenomenon for the daily returns of the considered stocks.
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Figure 4:Daily returns and volatility cluster phenomenon.

5.1.1 Graphical assessment of dependence: the chi-plot

Thechi-plotproposed by Fisher and Switzer (1985, 2001) is a ranked-based graphical tool that reveals

more detailed and explicit information regarding the nature of dependence between two variables. In

particular it has a characteristic pattern depending on whether the variables (i) are independent, (ii)

have some degree of monotone relationship, (iii) have a morecomplex dependence structure.

For our aim, let us consider the bivariate variable(Yt−1, Yt) and let(y(i)
t−1, y

(i)
t ) be thei-th data point

(i = 1, ..., T ) from the vectors of sample observations(yt−1,yt). Moreover, letI(A) be the indicator

function taking values0 or 1 according asA is true or false. For each data point(y
(i)
t−1, y

(i)
t ) set

Zi =
1

T − 1

T∑

j 6=i

I(y
(j)
t−1 ≤ y

(i)
t−1, y

(j)
t ≤ y

(i)
t )

Wi =
1

T − 1

T∑

j 6=i

I(y
(j)
t−1 ≤ y

(i)
t−1), Gi =

1

T − 1

T∑

j 6=i

I(y
(j)
t ≤ y

(i)
t )

and

Si = sign {(Wi − 0.5) · (Gi − 0.5)}
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wheresign(·) denotes thesign function. Now, define the quantities

χi =
Zi − WiGi√

Wi(1 − Wi)Gi(1 − Gi)

and

ηi = 4Si max
{
(Wi − 0.5)2, (Gi − 0.5)2

}
.

The chi-plot is the scatterplot of the pairs(ηi, χi). At each sample point(y(i)
t−1, y

(i)
t ), χi ∈ [−1, 1]

measures the departure from bivariate independence. IfYt is a strictly increasing function ofYt−1,

thenχi = 1 for all the sample points; similarly, ifYt is a strictly decreasing function ofYt−1, then

χi = −1, i = 1, 2, . . . , T . Moreover,ηi ∈ [−1, 1] is a measure of the distance of(y
(i)
t−1, y

(i)
t ) from the

center of the dataset as expressed by the median of(yt−1,yt).

When the bivariate data come from independent margins,χi values tend to be uniformly concen-

trated in a strip around the horizontal linesχ = 0. The width of the strip is determined so that

approximately100p% of pairs (ηi, χi) lies between two control lines, sayχ = ±cp/
√

T . The cp

values1.54, 1.78 and2.18 correspond top = 0.90, 0.95 and0.99, respectively (Fisher and Switzer,

2001). However, whenYt andYt−1 are dependent, the values ofηi show clustering structures. In

particular, ifYt andYt−1 are characterized by a positive relationship,χi values will tend to be positive

and the converse for negative dependence. Dependence betweenYt andYt−1 should be revealed by

departures from this zero-centered horizontal strip.

Recently, different uses of the chi-plot have been suggested. For instance, Genest and Boies (2003)

discussed the connection between ranked marginal data and copulas. Abberger (2005) used the chi-

plot to explore local dependence in the tails of a bivariate distribution. He stated that lower/upper tail

independence is present in the data when the chi-plot inclines on the left/right side of the graph to the

zero line.

5.2 Checking for dependence

With the aim of assessing possible forms of dependence in thepairs(Yt, Yt−1), an empirical study of

the concerned time series is now performed. Preliminary results regarding monotone dependence (i.e.

nonzero grade correlation) betweenYt andYt−1 are shown in Table 3. Here we consider Kendall’s tau,

Spearman’s rho, Pearson’s correlation coefficient, the medial correlation coefficient and the measures

of nonlinear dependence,ρ[1] andρ[2], given in (11).

A slight form of monotone association emerges from the observed data even ifρ[1] andρ[2] put

more emphasis to nonlinear dependence. Nonlinear dependence is particularly evident for Tiscali,

Bpi and Generali series.
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Table 3:Measures of dependence between consecutive daily returns.

τ ρS ρ M ρ[1] ρ[2]

Generali 0.0110 0.0167 0.0523 0.0174 0.2177 0.2476
Telecom 0.0365 0.0534 0.0533 0.0079 0.1199 0.0671
Tiscali 0.0748 0.1110 0.2155 0.0675 0.3434 0.3816
Bpi 0.0374 0.0547 0.1340 0.0338 0.3348 0.1824

Generali Telecom
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Figure 5:Chi-plot for daily returns.

To investigate the structure of the dependence underlying the series more thoroughly, we integrate

the descriptive measures with the chi-plot analysis displayed in Figure 5. In general, we can observe

that χi values are centered around zero, but are not uniformly distributed alongη-axis: clustering

structures and a certain pattern of positive and negative dependence appear. More specifically, the

chi-plot for Generali series highlights the absence of any relationship between the returns forηi < 0,

whereas positive dependence is visible forηi > 0. A possible form of upper tail dependence should

be considered. For Telecom, we note a rather bent course forηi > 0 indicating a slight local positive

dependence. Moreover, mostχi values are positive and lie outside the upper control line. On the

21

Page 23 of 30

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

contrary,χi values seem to be reasonably uniformly distributed forηi < 0. No tail dependence is

shown. The graph produces approximately a horizontal diagram denoting independence between the

consecutive returns. The graphical analysis for Tiscali does not show any dependence structure for

ηi < 0 sinceχi values are uniformly concentrated around zero. On the otherhand, for positive values

of η, the chi-plot reveals the presence of positive dependence of a complex nature sinceχi values

appear in terms of increased scatter outside the upper control line. In particular, for valuesηi near to

1, χi values appear unusually high. Theseηi correspond to large peripheral returns which are of the

same sign. The evidence of peripheral dependence seems to convey upper tail dependence. As far as

the Bpi series is concerned, both positive and negative asymmetric dependencies appear. Forηi < 0

the graph traces a bent course while forηi > 0 almost allχi values are scattered outside the upper

control line. Upper tail dependence is detected. To conclude, we can state that the Bpi and Tiscali

series are marked by a prominent dependence while Generali is characterized by a modest degree of

dependence. Independence between consecutive returns seems to appear in Telecom data.

5.3 Fitting models to the data

Since the empirical analysis of the daily returns shows evidence of possible forms of dependence

between the returns, the adoption of the copula approach appears particularly appropriate to ascertain

and measure the temporal dependence betweenYt andYt−1.

This section is devoted to the comparison between the marginal and conditional approach used to

model the data. The former considers the returns as a sequence of i.i.d. observations from a log-

Dagum distribution. The latter relies on the assumption that returns are generated from a first order

stationary Markov process which here is modelled through a BB7copula function with log-Dagum

margins. The performance of the two approaches is compared by means of the values of the log-

likelihood functions and the Akaike Information Criterion (AIC)

AIC = −2ℓ + 2q (12)

whereℓ denotes the log-likelihood function evaluated in the ML estimates (either for the marginal

and conditional approach) andq is the number of parameters. Models with smaller AIC values are to

be preferred to those with larger ones.

Tables 4 and 5 report the ML estimates of the parameters of marginal and conditional models

together with the aforementioned indices. We preliminarily observe that marginal estimates are sig-

nificant for all the series, whereas the estimates of association parameters are significant for Generali,

Tiscali and Bpi.
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Table 4:ML estimates and p-value for the parameters of the marginal approach.

β λ ν ℓ AIC

Generali 0.9522 1.0225 99.586 3247.6 -6489.3
p-value 0.0000 0.0000 0.0000
Telecom 0.9083 1.1162 69.155 2771.9 -5537.9
p-value 0.0000 0.0000 0.0000
Tiscali 1.3439 0.5917 48.050 2725.1 -5444.3
p-value 0.0000 0.0000 0.0000
Bpi 1.0265 0.9350 123.9808162.4 -16319
p-value 0.0000 0.0000 0.0000

Table 5: ML estimates and p-value for the parameters of the conditional approach.
β λ ν θ δ ℓ AIC

Generali 0.9553 1.0105 100.22 1.0426 0.06023254.2 -6498.1
p-value 0.0000 0.0000 0.0000 0.0128 0.0138
Telecom 0.9115 1.1084 69.101 1.0349 0.03952772.8 -5535.5
p-value 0.0000 0.0000 0.0000 0.0666 0.0860
Tiscali 1.2658 0.6222 50.48 1.0793 0.11642775.8 -5541.6
p-value 0.0000 0.0000 0.0000 1.59E-05 5.38E-05
Bpi 1.000 0.9478 128.90 1.0478 0.08228232.3 -16455
p-value 0.0000 0.0000 0.0000 9.00E-07 1.68E-07

Looking at AIC for Tiscali and Bpi series, it is quite evident that the conditional approach based on

the BB7 copula shows a better fitting to data than the marginal approach. The conditional approach

seems to hold for Generali returns as well. On the contrary, the marginal approach should be adopted

for modelling Telecom series.

These results are perhaps not surprising since Tiscali and Bpi series are marked by stronger depen-

dence than Generali and Telecom series, as shown in the previous empirical analysis. This is further

confirmed by the fact that the estimates of the association parameters,θ andδ, are highly significant

for the Tiscali and Bpi series, significant for Generali, but not for Telecom. This means that when tem-

poral dependence characterizes the series, an approach which allows for this aspect is to be preferred.

On the other hand, when there is no dependence, it would be better to adopt a more parsimonious

approach that ignores it. Thus, the marginal approach is supposed to fit better to data which show

independence, and the conditional approach should be favoured otherwise, even if the series denote

a low level of dependence. Our results confirm this expectation. Moreover, in the light of these con-

siderations, the log-Dagum QQ-plot of Figure 3 should be nowmore informative and be explained

in terms of dependence,ceteris paribus. The poor fitting of the marginal log-Dagum approach for

Tiscali and Bpi series may also be ascribed to the ascertainednonnegligible temporal dependence.
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Table 6:ML estimates and p-value for medial correlation(M) and Kendall’s tau(τ).

M τ

Generali 0.0485 0.0510
p-value 0.0002 0.1889
Telecom 0.0358 0.0384
p-value 0.0007 0.2962
Tiscali 0.0880 0.0939
p-value 0.0000 0.0430
Bpi 0.0602 0.0642
p-value 0.0000 0.0187

Furthermore, the QQ-plot highlights a very good marginal fitting for Telecom and Generali series

where the temporal dependence is quite irrelevant. This should further strengthen the validity of the

conditional approach when temporal dependence is found.

Table 6 provides the ML estimates for Kendall’s tau and the medial correlation coefficient obtained

by substituting in (2) and (4) the ML estimates ofθ and δ. The medial correlation coefficient is

significantly different from zero for all the series, while Kendall’s tau appears significant for Bpi and,

to a lesser extent, for Tiscali. Similar conclusions may be drawn from Table 7 which reports the ML

estimates of the measuresλL = 2−1/δ andλU = 2− 21/θ discussed in§ 2.2. TheλL estimates are not

significantly different from zero whileλU are highly significant for Tiscali and Bpi and significant for

Generali, as expected from the results highlighted in§ 5.2.

The estimated dependence measures seem to be consistent with the previous considerations be-

cause they highlight particular forms of dependence (global or local) only for the series which exhibit

marked temporal dependence.

These outcomes are very promising since they support the choice of the conditional approach for

modelling the temporal dependence in univariate time series. This conclusion is not limited to the use

of the BB7 copula, it is definitely more general and we expect that it holds for other choices of the

copula as well. We recommend, therefore, the copula approach for situations in which non-negligible

dependence is found in the observed data. In this sense, a preliminary analysis of the data may provide

useful indications on the type and the level of the dependence.

6 Final Remarks

In many applications, the hypotheses of independence and normality of the data are usually assumed

for convenience because easier to be handled. However, there are situations where neglecting depen-

dence and non-normality effects may yield misleading models and unrealistic estimates of unknown
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Table 7:ML estimates and p-value forλL andλU .

λL λU

Generali 9.97E-06 0.0558
p-value 0.4241 0.0092
Telecom 2.42E-08 0.0462
p-value 0.4690 0.0579
Tiscali 0.0026 0.0993
p-value 0.2578 2.05E-06
Bpi 0.0002 0.0623
p-value 0.2727 1.86E-07

parameters. The care of dependence and non-normality becomes important to extend the standard

model towards more efficient ones. Nevertheless, if the previous assumptions are relaxed, much less

tractable models are necessary.

This paper is an attempt to deal with temporal dependence between consecutive returns in uni-

variate financial time series. We have assumed that the financial return at timet − 1 influences the

behavior of the return at timet. In this spirit, a conditional approach has been employed. Financial

returns have been modelled through a first order stationary Markov process using a copula function

and taking into account departure from Normal distribution. In particular, to describe the dependence

structure underlying a time series we have considered the Archimedean two-parameter BB7 copula

whereas, in order to capture skewness and kurtosis that markthe data, we have chosen the log-Dagum

distribution. Finally, the conditional approach has been compared through empirical analysis with the

marginal one. The latter relies on the independence assumption between consecutive returns which

are log-Dagum distributed.

Our main findings highlight that the conditional approach performs better than the marginal one

for time series which exhibit structures of temporal dependence. Models based on the conditional

approach should better fit the data and provide a more reliable representation of reality. This aspect

assumes particular importance, for instance, in finance where it is hard for financial institutions and

regulators to avoid dramatic underestimation of appropriate risk measures. However, we observe

that the results obtained in the paper are not only relevant for financial applications, but also for

the analysis of any real-life time series where the assumption of independence and normality seems

inappropriate.

Obviously, to understand more fully the potential of this approach, further investigations are re-

quired. Some problems are still open and need an in-depth study. For instance, it would be useful

to analyze the characteristics of the conditional distribution of a variable at timet given its behavior

at t − 1. At the same time, we could extend the concept of temporal dependence by considering a
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higher-order Markov process and assess the performance of our approach for forecasting analysis.
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Economie Appliqúee, 30, 413–437.

[12] Dagum, C. (1980). The generation and distribution of income, the Lorenz curve and the Gini
ratio.Economie Appliqúee, 33, 327–367.
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