
HAL Id: hal-00514341
https://hal.science/hal-00514341

Submitted on 2 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accuracy of Power-Divergence Statistics for Testing
Independence and Homogeneity in Two-Way

Contingency Tables
Miguel A. García-Pérez, Vicente A. Núñez-Antón

To cite this version:
Miguel A. García-Pérez, Vicente A. Núñez-Antón. Accuracy of Power-Divergence Statistics for Testing
Independence and Homogeneity in Two-Way Contingency Tables. Communications in Statistics - Sim-
ulation and Computation, 2009, 38 (03), pp.503-512. �10.1080/03610910802538351�. �hal-00514341�

https://hal.science/hal-00514341
https://hal.archives-ouvertes.fr


For Peer Review
 O

nly
 

 
 

 
 

 
 

Accuracy of Power-Divergence Statistics for Testing 

Independence and Homogeneity in Two-Way Contingency 
Tables 

 
 

Journal: Communications in Statistics - Simulation and Computation 

Manuscript ID: LSSP-2008-0137 

Manuscript Type: Original Paper 

Date Submitted by the 
Author: 

23-Jun-2008 

Complete List of Authors: García-Pérez, Miguel; Universidad Complutense, Facultad de 
Psicología 
Núñez-Antón, Vicente; Universidad del País Vasco, Fac. de CC. 
Económicas y  Empresariales, Dpto. de Econometría y Estadística 

Keywords: 
poer-divergence statistics, contingency tables, independence, 
homogeneity 

Abstract: 

The small-sample accuracy of seven members of the family of 
power-divergence statistics for testing independence or 
homogeneity in contingency tables was studied via simulation at 
test sizes of .01 and .05 with marginal distributions that could be 
uniform or skewed and with sample sizes including sparseness 
conditions. The likelihood ratio statistic rejected the null hypothesis 
too often even with large table density, and none of the other five 
statistics outperformed Pearson’s X2. A non-asymptotic variant of 
the latter was even more accurate with table densities of 1 
observation/cell. These results advise against the use of the 
likelihood ratio statistic. 

  

Note: The following files were submitted by the author for peer review, but cannot be converted 

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation



For Peer Review
 O

nly

contingency.zip 

 

 

Page 1 of 13

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
Accuracy of Power-Divergence Statistics

for Testing Independence and
Homogeneity in Two-Way Contingency

Tables

MIGUEL A. GARCÍA-PÉREZ∗†AND VICENTE NÚÑEZ-ANTÓN‡

23rd June 2008

Abstract

The small-sample accuracy of seven members of the family of power-
divergence statistics for testing independence or homogeneity in contin-
gency tables was studied via simulation. The likelihood ratio statistic G2

and Pearson’s X2 statistic are among these seven members, whose behavior
was studied at nominal test sizes of .01 and .05 with marginal distributions
that could be uniform or skewed and with a set of sample sizes that in-
cluded sparseness conditions as measured through table density (i.e., the
ratio of sample size to number of cells). The likelihood ratio statistic G2

rejected the null hypothesis too often even with large table density, whereas
Pearson’s X2 was sufficiently accurate and only presented a minor misbe-
havior when table density was less than 2 observations/cell. None of the
other five statistics outperformed Pearson’s X2. A non-asymptotic variant
of X2 solved the minor inaccuracies of Pearson’s X2 and turned out to
be the most accurate statistic for testing independence or homogeneity,
even with table densities of 1 observation/cell. These results clearly advise
against the use of the likelihood ratio statistic G2.
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∗Departamento de Metodoloǵıa, Universidad Complutense, Madrid, Spain
†Address for correspondence: Miguel A. Garćıa-Pérez, Departamento de Metodoloǵıa, Fa-
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1 Introduction

Consider a sample of N paired observations that are cross-classified in an I × J
contingency table, and let (i) Oij be the observed frequency in cell ij, (ii) Oi+ =∑J

j=1 Oij be the i-th row marginal, (iii) O+j =
∑I

i=1 Oij be the j-th column
marginal, and (iv) Eij = Oi+O+j/N be the expected frequency in cell ij. Two-
way contingency tables are the order of the day in many areas of the social and
behavioral sciences for testing association between categorical variables (tests of
independence) or for the comparison of distributions across populations (tests of
homogeneity), although these tables are also used for fitting loglinear models to
categorical data (Wickens, 1998). Pearson’s X2 statistic and the likelihood ratio
statistic G2 are most frequently used for testing independence or homogeneity in
many areas of research (Cressie and Read, 1989), but they are only two members
of a continuous family of power-divergence statistics (Cressie and Read, 1984).

The power-divergence statistic of index λ ∈ < is given by

RC(λ) =
2

λ(λ + 1)

I∑
i=1

J∑
j=1

Oij

{(
Oij

Eij

)λ

− 1

}
(1)

with RC(−1) and RC(0) defined by continuity. This family includes Pearson’s X2

(RC(1)) and the likelihood ratio statistic G2 (RC(0)) as well as other statistics
such as Freeman-Tukey’s T 2 (RC(−1/2)), the modified likelihood ratio statistic
GM2 (RC(−1)), and Neyman’s modified X2 statistic (RC(−2)). For all λ, RC(λ)

follows a discrete distribution that converges asymptotically to a continuous chi-
square distribution on (I − 1)(J − 1) degrees of freedom, although the rate of
this convergence for different λ is unknown. Then, for any given sample size,
asymptotic significance levels may mis-state actual levels.

A number of papers have investigated the conditions under which tests based
on Pearson’s X2 statistic are accurate (Berry and Mielke, 1988; Bradley, Bradley,
McGrath, and Cutcomb, 1979; Koehler, 1986; Lewis, Saunders, and Westcott,
1984; Mart́ın Andrés and Herranz Tejedor, 2000). Wickens (1989, p. 30) sum-
marized these conditions as follows:

1. For tests with 1 degree of freedom, all Eij should exceed 2 or 3

2. With more degrees of freedom, Eij ' 1 in a few cells is tolerable.

3. In large tables up to 20% of the cells can have Eij appreciably less than 1.

4. The total sample should be at least 4 or 5 times the number of cells.

5. Samples should be appreciably larger when the marginal categories are not
equally likely.
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Yet, it is unclear whether these conditions generalize to all members of the power-
divergence family, particularly to the widely used likelihood ratio statistic G2. To
the authors’ knowledge, the only study to that effect was carried out by Rudas
(1986), who determined empirical 90% and 95% points for testing independence
with X2, G2, and RC(2/3) in 2 × 2, 2 × 3, 2 × 4, 2 × 6, 3 × 3, 3 × 6, and 5 × 6
tables with small sample sizes (15, 25, 35, 45, and 55 for tables with 5 or fewer
degrees of freedom, 25, 35, 45, 55, 65, 75, 85, and 95 for 3 × 6 tables, and 50,
75, 100, and 125 for 5 × 6 tables). Rudas found that X2 and RC(2/3) render
similar results that match reasonably well the percentage points arising from the
asymptotic χ2 distribution, whereas G2 appeared unsuitable because it rejected
the null hypothesis too often.

Despite these results, and also despite the broader family of power-divergence
statistics, the likelihood ratio statistic G2 continues to be regarded as virtually the
only alternative to Pearson’s X2 statistic for testing independence or homogeneity
in contingency tables, and its use continues to be recommended with only non-
specific warnings regarding its potential inaccuracies (Cressie and Read, 1989;
Wickens, 1989, 1998). Everitt (1992, p. 72) disregarded all this evidence and
expressed a clear preference for the likelihood ratio statistic G2 over Pearson’s
X2. Here we describe the results of a thorough analysis that addresses directly the
small-sample accuracy (i.e., the actual Type-I error rate) of seven members of the
family of power-divergence statistics when testing independence and homogeneity
for a broad range of table dimensions and sample sizes. Our analysis includes
either uniform marginal distributions or skewed marginal distributions in a way
that allows addressing the relevance of the five conditions summarized by Wickens
(1989) and listed above. Skewed marginal distributions are particularly revealing
because they result in small expected frequencies in one or more cells for all tables,
something that threatens the accuracy of the test (see Section 7.7.3 in Agresti,
1990). Our results indicate that a simple measure of sparseness (namely, table
density defined as N/IJ) influences the accuracy of the tests and that Pearson’s
X2 statistic is the most robust to sparseness conditions whereas the likelihood
ratio statistic G2 performs remarkably unsatisfactorily. A comparison with the
non-asymptotic version of X2 proposed by Berry and Mielke (1988) indicates that
the latter clearly improves the performance of Pearson’s X2 statistic.

2 Method

Tables were generated under the independence and homogeneity sampling models
with table dimensions between 2×2 and 8×12. Marginal distributions were either
uniform or skewed (but of the same type for rows and columns in any given table).

Under the independence sampling model, uniform marginal distributions im-
ply that the probability of an observation’s falling in row i is 1/I and the probabil-
ity of an observation’s falling in column j is 1/J , whereas skewed marginal distri-
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butions imply that the probability of an observation’s falling in row i is 2i/I(I+1)
and the probability of an observation’s falling in column j is 2j/J(J + 1). Then,
under the independence model the probability of an observation’s falling in cell
ij is just the product of the marginal probabilities of row i and column j. We
used sample sizes N between 100 and 800 in steps of 100.

Under the homogeneity sampling model, column margins were fixed accord-
ing to a uniform or skewed distribution as appropriate. These fixed numbers of
observations were then randomly distributed across rows according to the proba-
bility functions for uniform or skewed row margins, as described in the preceding
paragraph. The fixed number of observations at each column depended on the
selected form of the marginal distribution for columns. With uniform marginal
distributions, O+j = nint(N∗/J), where nint(·) represents the nearest integer;
with skewed distributions, O+j = nint(2N∗j/J(J + 1)). We used here the same
set of initial sample sizes N∗ as described in the preceding paragraph for the inde-
pendence sampling model, but the final set of sample sizes N =

∑J
j=1 O+j turned

out to be slightly different on occasion as a result of the rounding operations in-
volved here. Another consequence of the differences between independence and
homogeneity sampling models is that tables in which the number of rows and
columns are swapped (e.g., 2×5 and 5×2) yield different situations in the latter
case but not in the former.

As an index of sparseness, we define the density of a table as N/IJ (in units
of observations per cell, or obs/cell). Density thus indicates the number of obser-
vations that would fall in each cell in the case of a perfect uniform distribution
of N (breakable) observations across IJ cells.

In each condition (table size, sample size, sampling model, and form of mar-
ginal distributions), 20,000 tables were generated none of whose rows or columns
were empty of observations. Each of the N observations was randomly assigned
to a cell in the table according to the corresponding probability distribution un-
der the null hypothesis, and pseudo-random numbers required for this purpose
were obtained with NAG subroutines G05DAF and G05DYF (Numerical Algo-
rithms Group, 1999). For each table, power-divergence statistics were computed
for λ ∈ {−1/2, 0, 1/3, 1/2, 2/3, 1, 3/2}. The empirical Type-I error rate for each
power-divergence statistic was computed as the proportion of tables whose sta-
tistic value exceeded the critical value for a size-a test for α ∈ {.05, .01}, that
is, the value cα satisfying P (χ2

(I−1)(J−1) ≥ cα) = α, where χ2
(I−1)(J−1) is a chi-

square random variable with (I − 1)(J − 1) degrees of freedom. Figure 1 shows a
graphical illustration of our approach, which also serves to present the motivation
for our study by showing that the small-sample distribution of power-divergence
statistics does not always resemble the asymptotic distribution.

4
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3 Results

3.1 Tests Using the Asymptotic Distribution

Figure 2 shows the empirical Type-I error rate of the test of independence as a
function of table density for each of the seven power-divergence statistics (rows),
with either uniform marginal distributions (left column) or skewed marginal dis-
tributions (right column).

Ideally, all data points should fall on the horizontal lines at the nominal signif-
icance level, but there are apparent differences across power-divergence statistics
in this respect. In one extreme, Pearson’s X2 statistic (the power-divergence
statistic of index λ = 1; see the sixth row in Figure 2 yields the nominal signif-
icance level throughout the range of table densities when marginal distributions
are uniform, and requires table densities above 2 obs/cell with skewed marginal
distributions, although the size-.01 test is somewhat less accurate than the size-
.05 test (compare the spread of data points around the applicable horizontal line
in the upper and lower bundles). In the other extreme, Freeman-Tukey’s T 2

(the power-divergence statistic of index λ = −1/2; see the first row in Figure
2) requires table densities above about 40 obs/cell (with uniform margins) or 60
obs/cell (with skewed margins) to behave properly. The widespread likelihood
ratio statistic G2 (the power-divergence statistic of index λ = 0; see the second
row in Figure 2) also requires densities above about 20 obs/cell (with uniform
margins) or 40 obs/cell (with skewed margins) to be accurate. Results for the
test of homogeneity are omitted because they were indistinguishable by eye from
those reported in Figure 2 for the test of independence.

3.2 Variants Using Concordant Estimates of Expected Fre-
quencies

All of the results reported in Figure 2 were obtained with expected frequencies
computed as usually, that is, Eij = Oi+O+j/N . It should be noted that these
are maximum-likelihood estimates of the expected frequencies and, thus, they are
consonant with the metric used by the likelihood ratio statistic. Read and Cressie
(1988, p. 32) claimed that it would be reasonable to estimate expectations using
the metric that is consonant with the power-divergence statistic that is to be
used for testing the null hypothesis. Thus, one might surmise that the results
would differ if this approach were taken and, for instance, Pearson’s X2 statistic
were computed using minimum-X2 estimates of expected frequencies. Clearly,
the results would nevertheless stay the same for the likelihood ratio statistic
G2. Computing expected frequencies using the matching minimum-divergence
estimate is difficult in the case of tests of independence for lack of a closed-form
expression for the estimator, but Read and Cressie (1988, p. 32) showed that the
minimum power-divergence estimate of index λ for expected frequencies in tests

5
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of homogeneity is given by

Eij =
O+j

[∑J
l=1 Oλ+1

il /Oλ
+l

]1/(λ+1)

∑I
k=1

[∑J
l=1 Oλ+1

kl /Oλ
+l

]1/(λ+1)
(2)

We thus repeated our analysis under the homogeneity sampling model by
computing expected frequencies according to equation (2), but the results did
not improve in any significant respect. The only differences occurred for table
densities below 10 obs/cell, and the effect took the form of a general reduction
of the empirical Type-I error rate in this range of small densities. As a conse-
quence, the accuracy of Pearson’s X2 statistic deteriorated (compare the top row
in Figure 3 with the sixth row in Figure 2). The most beneficial effect occurred
for the power-divergence statistic of index λ = 3/2 and, although the results
in these conditions (see the bottom row in Figure 3) represent a noticeable im-
provement over the corresponding results shown in the bottom row in Figure 2
for the same statistic computed from maximum-likelihood estimates of expected
frequencies, these results do not represent an improvement over the conventional
use of Pearson’s X2 statistic computed from maximum-likelihood estimates of
expected frequencies (which were shown in the sixth row of Figure 2).

3.3 Tests Using the Non-Asymptotic Distribution

Read and Cressie (1988, ch. 5) showed that moment-correction terms for general
λ can be derived that presumably increase the small-sample accuracy of power-
divergence goodness-of-fit statistics in one-way multinomials, and Garćıa-Pérez
and Núñez-Antón (2001) presented results indicating that the accuracy of the
statistics improves when these correction terms are used. In the case of contin-
gency tables, similar moment-correction terms can also be derived for Pearson’s
X2 statistic, but the derivation for general λ does not appear to be feasible.
The moment-corrected version of Pearson’s X2 statistic is the basis of the non-
asymptotic test proposed by Berry and Mielke (1988), who claimed that this test
is more accurate in sparse tables than the asymptotic test based on the original
X2 statistic.

Berry and Mielke (1988) also reported that the non-asymptotic test has some
limitations (besides its formidable computational cost, which can be afforded with
the help of the software provided by Berry and Mielke, 1986). Specifically, they
claimed (i) that the test performs better for the independence than for the homo-
geneity model, (ii) that it does not perform well with 2× 2 tables with N = 20,
and (iii) that it performs poorly for tables with less than 3 degrees of freedom.
These conclusions are a consequence of what we believe is an incorrect strategy
for data analysis, as discussed next. Berry and Mielke judged the accuracy of
the test by comparing the actual distribution of p-values with the theoretical
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distribution. Consider the case of 2 × 2 tables with N = 20, equal marginals,
and the independence model (i.e., the conditions for which data were reported in
the top-left column of Table 1 in the paper of Berry and Mielke). The reported
distribution of p-values yielded observed proportions of .8857, .0635, .0372, .0092,
.0032, and .0012 respectively within the bins (.1, 1], (.05, .1], (.01, .05], (.005, .01],
(.001, .005], and [0, .001], which implies expected proportions of .900, .050, .040,
.005, .004, and .001, respectively. Berry and Mielke concluded that the non-
asymptotic test does not perform well because of a significant goodness-of-fit test
carried out on these data. But this omnibus goodness-of-fit test is assessing the
similarity between the theoretical and empirical distributions of p-values through-
out the entire range, when the truth is that only the agreement at the right tail
matters when it comes to considering the accuracy of statistical tests (Read,
1984). From the data reported by Berry and Mielke and reproduced above, it
follows that the proportion of p-values at or below .05 (i.e., the empirical Type-I
error rate) is .0372 + .0092 + .0032 + .0012 = .0508 and that the proportion of
p-values at or below .01 is .0092 + .0032 + .0012 = .0136. Looking at the results
in this way, we see little justification for the conclusion that the non-asymptotic
test performs poorly. More interestingly, the asymptotic test does not seem to
perform poorly either when the results of Berry and Mielke are analyzed in this
way: In the same conditions, the empirical Type-I error rates at the .05 and .01
levels are .0481 and .0109, respectively.

Rather than re-analyzing the results presented by Berry and Mielke (1988)
as just discussed (and primarily because of the small range of conditions that
they included in their study), we decided to run our own simulations under the
conditions spanned by our previous analyses. The moment-corrected X2 statistic
has a Pearson Type III distribution with a parameter that depends on the row
and column marginals and, then, the reference distribution varies across tables
of the same size. For this reason, we varied slightly our strategy and computed
the moment-corrected X2 statistic and its p-value for each particular table using
the subroutine of Berry and Mielke (1986) and then computed the proportion of
tables (out of the 20,000 that we simulated per condition) whose p-value was at or
below a = .05 or .01 (as applicable). Note that this approach is thoroughly anal-
ogous to our previous approach of comparing the conventional power-divergence
test statistic for a given table with the critical value for a size-a test from the
asymptotic distribution, which can only be used when the reference distribution
does not change from table to table.

Figure 4 shows the results. Moment correction did improve the accuracy of
Pearson’s X2 statistic particularly at low table densities, which thus makes this
statistic exquisitely accurate regardless of table density, test size, and form of
marginal distributions (compare the top row in Figure 4 with the sixth row in
Figure 2). Interestingly, when its outcomes are analyzed as we did, this statistic
does not seem to have any of the limitations reported by Berry and Mielke (1988),
namely, different performance in the homogeneity and independence sampling
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models (compare the top and bottom rows in Figure 4) and poor performance in
tables with less than 3 degrees of freedom or in 2 × 2 tables with small sample
sizes.

4 Conclusion

Although all the members of the family of power-divergence statistics converge
asymptotically to a chi-square distribution, they do so at different rates and,
hence, their small-sample accuracy is not guaranteed. Our results indicate that
Pearson’s X2 statistic (the power-divergence statistic of index λ = 1) yields the
most accurate tests of independence and homogeneity even with sparse tables,
only failing to reach the nominal rejection rates when table density is below
2 obs/cell. The superior accuracy of Pearson’s X2 statistic compared to the
remaining members of the family of power-divergence statistics was also found in
studies on goodness-of-fit statistics in one-way multinomials (Garćıa-Pérez and
Núñez-Antón, 2001; Read, 1984).

The minor inaccuracies of Pearson’s X2 statistic at low table densities can
be remedied with recourse to moment-correction terms that render a moment-
corrected statistic with a Pearson Type III distribution. In these conditions,
the corrected X2 statistic is extremely accurate with table densities as low as 1
obs/cell. Garćıa-Pérez and Núñez-Antón (2001) reported the same result when
similar moment-correction terms were used to modify Pearson’s X2 statistic for
use in goodness-of-fit tests in one-way multinomials.

In sum, our results advise against the use of the likelihood ratio statistic G2

for testing independence or homogeneity in contingency table analysis. Among
the other members of the family of power-divergence statistics, only the use of
Pearson’s X2 statistic is advisable either in its original form (when table den-
sity is at or above 2 obs/cell) or with moment correction (when table density
is lower). In the latter case, the software provided by Berry and Mielke (1986)
greatly facilitates the computation of the moment-correction terms and the de-
termination of a p-value from the reference Pearson Type III distribution. An
interesting consequence of our results is that the set of conditions summarized by
Wickens and stated in the Introduction for the accuracy of Pearson’s X2 statistic
in contingency table analysis can be replaced by a simple rule that looks into
table density to determine whether or not moment-correction terms are required
to guarantee accurate tests.
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Figure 1: Illustration of the approach taken in this paper. Each panel shows a
histogram of power-divergence statistics (the likelihood ratio statistic G2 in the
top row and Pearson’s X2 statistic in the bottom row) for testing independence.
Data come from 20,000 5 × 5 tables with sample sizes of N = 100 (left column)
and N = 200 (right column). Table density was thus 4 obs/cell in the left
column and 8 obs/cell in the right column. Marginal distributions were uniform.
The continuous curve depicts the asymptotic χ2 distribution on 16 degrees of
freedom. The vertical lines in each panel indicate the critical limits for a size-α
test based on the asymptotic distribution, with the leftmost line corresponding
to α = .05 (i.e., cα = 26.296) and the rightmost line corresponding to α = .01
(i.e., cα = 32.000). Percentages printed above these lines indicate the empirical
Type-I error rate that those critical limits produce, whose agreement with the
nominal Type-I error rates (5% and 1%, respectively) varies with sample size
for the likelihood ratio statistic G2 (top row) but not so much for Pearson’s X2

statistic (bottom row).
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Figure 2: Empirical Type-I error rates of the omnibus size-.05 (upper bundle
in each panel) and size-.01 (lower bundle in each panel) test of independence as
a function of table density for each member of the power-divergence family of
statistics (rows) and for either uniform marginal distributions (left column) or
skewed marginal distributions (right column). Results are reported for tables of
dimensions between 2 × 2 and 8 × 12 with sample sizes between 100 and 800 in
steps of 100. Different symbols indicate results for tables with different numbers
of rows (solid triangles: 2 rows; solid circles: 3 rows; gray circles: 4 rows; open
circles: 5 rows; solid squares: 6 rows; gray squares: 7 rows; open squares: 8 rows).
The horizontal lines across each panel, at ordinates of 5% and 1%, indicate the
nominal Type-I error rates.
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Figure 3: Empirical Type-I error rate of the power-divergence statistics of indices
λ = 1 (top row) and λ = 3/2 (bottom row) in tests of homogeneity when expected
frequencies are computed by minimizing the power-divergence measure of the
same index. Graphical conventions as in Figure 2.
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Figure 4: Empirical Type-I error rate of the moment-corrected, non-asymptotic
X2 statistic of Berry and Mielke (1988) in tests of independence (top row) and
homogeneity (bottom row). Graphical conventions as in Figure 2.
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