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Systems for multivariate on-line surveillance (e.g. outbreak detection), are investigated. Optimal systems for statistical surveillance are based on likelihood ratios. Three systems are compared; based on each marginal density, based on the joint density and based on the Hotelling's T2. The effect of dependency between the monitored processes is investigated, and the effect of correlation between the change times. When the first change occurs immediately, the three methods give similar delay of an alarm, in the situation with independency. For late changes, T2 has the longest delay, both for independent processes and for processes with a positive covariance.

 [START_REF] Neftci | Optimal prediction of cyclical downturns[END_REF], [START_REF] Hamilton | A new approach to the economic analysis of nonstationary time series and the business cycle[END_REF], Andersson, et al. (2004)), in hormone cycles [START_REF] Royston | Identifying the fertile phase of the human menstrual cycle[END_REF]), in influenza cycles (Baron (2002)) and in financial cycles [START_REF] Frisén | Financial surveillance[END_REF], [START_REF] Bock | Aspects on the control of false alarms in statistical surveillance and the impact on the return of financial decision systems[END_REF]). Other areas are detection of growth retardation of foetuses [START_REF] Petzold | Surveillance in longitudinal models. Detection of intra-uterine growth restriction[END_REF]) or monitoring of prematurely born children [START_REF] Löfqvist | Longitudinal Postnatal Weight and Insulinlike Growth Factor I Measurements in the Prediction of Retinopathy of Prematurity[END_REF]). Yet another is detection of an increased level, emerging from a source and spreading spatially [START_REF] Järpe | Surveillance of spatial patterns[END_REF]). On-line monitoring is based on repeated decisions: at each time point, a new observation becomes available and a new decision is made as to whether the process has changed or nor. The methodology of statistical surveillance is appropriate.

Statistical surveillance is a methodology for discriminating between two events, "the change has occurred" and "the change has not occurred". The time of change is unknown.

The time scale can differ between applications (days, weeks, months), but common to all surveillance are the repeated decisions, made at each time point. The decision is made using an alarm statistic and an alarm limit. In industrial quality control charts (e.g. xbarcharts), an alarm can be given as soon as an observation crosses the alarm limit [START_REF] Shewhart | Economic Control of Quality of Manufactured Product[END_REF]). There is always a risk for a false alarm, but the parameters of the surveillance method are chosen so that we know the false alarm property. For motivated alarms, i.e. when the change actually happens, we want a quick detection. Since we have repeated decisions, size and power are not appropriate measures. Instead we have a tradeoff between false alarms and the delay of a motivated alarm. The false alarms can be controlled by a fixed average run length, ARL 0 . Besides the Shewhart method, the EWMA method [START_REF] Roberts | Control Chart Tests Based on Geometric Moving Averages[END_REF]) and the CUSUM method [START_REF] Page | Continuous inspection schemes[END_REF]) can be mentioned. In many situations we monitor several processes, which may change simultaneously or at different times. One example is business cycle monitoring, where changes in the import and export series probably can be seen before changes in unemployment, but where all these series measure the underlying business cycle. There are different approaches in multivariate monitoring: the data can be reduced to a scalar at each time or we can use separate alarm systems for each process in combination with an inference rule like union intersection. Also, multivariate versions of univariate methods have been suggested, for example MEWMA and MCUSUM. Important aspects are the correlation between the change times and the dependency between the processes themselves.

The aim of this paper is to compare different multivariate surveillance systems. In Section 3, optimality in surveillance is discussed and in Section 4 some of the different approaches to multivariate surveillance are reviewed. In Section 5 the results of a simulation study are presented and Section 6 contains a discussion.

Model

In this paper we study the situation when two processes may change at different time points (τ X and τ Y ) and where the τ:s can be dependent.

The aim is to detect an increase in the expected value. With two series, we want to detect the first change (the first increase). The observations (X, Y), up to decision time s, are modeled according to
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where ρ=correlation between X(t) and Y(t).

The variables X(t) and Y(t) are (possibly) dependent but not X(t) and X(t-j), Y(t) and Y(t-j) or X(t) and Y(t-j). Surveillance of processes with autocorrelation is treated in Frisén andSonesson (2005), Petzold, et al. (2004), Knoth and Schmid (2004) and [START_REF] Okhrin | Surveillance of univariate and multivariate linear time series[END_REF]. The aim is to detect the first change in either of the µ vectors (µ X and µ Y ). One application might be detection of the start of an influenza epidemic (an increase from a constant base line). The Swedish institute for infectious disease control receives weekly information about confirmed cases (laboratory diagnosed) and suspected cases.

The development is roughly captured through the following parametric model for µ, which will be used for both X and Y in a simulation study below.

µ(t):
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where β 1 < 0, β 2 > 0. Thus, for τ X =τ Y , X and Y have the same distribution and they are independent (or dependent) conditional on τ. The model above might be too crude in a real situation, but is used here to demonstrate the inferential aspects of multivariate surveillance.

A bivariate Geometric distribution is used for (τ X , τ Y ), with parameters (ν 01 , ν 10 , ν 11 ).

The marginal distributions are τ X ∼Geo(ν and τ Y is hence forward denoted ψ.

Optimality and evaluation of multivariate surveillance

Statistical surveillance is a methodology for discriminating between the two events, namely C="the change has occurred" and D="the change has not occurred". By an alarm system we decide whether D or C is the most likely.

Statistical surveillance is used for on-line detection of an important change in the underlying process, for instance a change in the expected value. For e.g. daily data, a new decision is made each day, based on the available data. When there is enough evidence of a change, an alarm is called. The alarm limit in the surveillance system is set so that the alarm system yields a specified false alarm risk.

In univariate surveillance we observe the process X at each decision time s=1, 2, … At time s the vector of available observations is denoted x s ={x(1),x(2),...,x(s)}. At an unknown time, τ, there is a change in the distribution of X, so that
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The events D and C are specified according to the change of interest (a simple case is a change in the mean, from µ0 to µ1). In a multivariate situation the aim is often to detect the first change in any of the p monitored processes, τ (1) =min[τ 1 ,...τ p ].

The time of alarm, t A , is defined as the first time that the alarm statistic exceeds the alarm limit. The alarm limit is set so that the false alarm property has a specified value. In quality control, it is common to use the average run length to the first false alarm, ARL 0 =E[t A τ=∞]. Sometimes the median run length is used, MRL 0 , instead of the [START_REF] Wong | WSARE: What's Strange about Recent Events[END_REF]). In many theoretical work (e.g. [START_REF] Shiryaev | On optimum methods in quickest detection problems[END_REF]), the false alarm probability is used, which summarize the false alarm distribution using the distribution of τ, such that PFA= 1 ( ) ( )
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For an on-line system, the ability to detect a change quickly is important, i.e. a short delay for motivated alarms. For most surveillance methods, the delay of an alarm depends on when the change does occur, in relation to the start of the surveillance. The delay is often longest when the change occurs at the start (τ=1). The conditional expected delay of an alarm (see [START_REF] Frisén | Evaluations of likelihood ratio methods for surveillance. Differences and robustness[END_REF]) is defined as
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Many evaluations are made using τ=1, e.g CED(1) which is equivalent to ARL 1 -1.

However it is important to consider other change point times also. In multivariate surveillance regarding the first change, τ (1) , the following delay measure has been suggested [START_REF] Wessman | The surveillance of several processes with different change points[END_REF])

CED(t 1 , t 2 ) = E[t A -τ (1)  t A ≥τ (1) , τ X =t 1 , τ Y =t 2 ].
Optimal alarm systems are based on the full likelihood ratio between C and D [START_REF] Shiryaev | On optimum methods in quickest detection problems[END_REF], [START_REF] Frisén | Optimal Surveillance[END_REF]), ( )

( ) S s f x C f x D ,
where x s = {x(1),x(2),...,x(s)}. The full likelihood ratio minimizes the expected delay for a fixed false alarm probability [START_REF] Frisén | Statistical surveillance. Optimality and methods[END_REF]). Optimality is further discussed in Section 
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This is the Shewhart method, used in e.g. an xbar-chart. Contrary to using only the latest observation, the CUSUM and EWMA methods cumulate the observations. CUSUM is the maximum of the likelihood ratios at the decision time s. The EWMA method uses an exponentially weighted moving average and for certain values of the smoothing constant,

EWMA is approximately the same as LR [START_REF] Frisén | Optimal surveillance based on exponentially weighted moving averages[END_REF]).

When it is important to detect if there has been a change since the start of the surveillance, we specify C ={τ≤s}={{τ=1}, {τ=2}, ..., {τ=s}} and D={τ>s }. Then the full likelihood ratio consists of s components
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where w i =P(τ=i)/P(τ≤s) and k s = k⋅P(τ≥s)/P(τ<s). Contrary to C={τ=s} we now consider a composite event C={τ≤s} and the full likelihood ratio will include all observations {x(1), ..., x(s)}. Here it is optimal to use all observations in the sense that the expected delay is minimized.

When P(C) = 1-P(D), the likelihood ratio is equivalent to using the posterior probability (alarm when ( )

s P C x k > )
. This is often used in hidden Markov model approaches (HMM), see e.g. [START_REF] Koskinen | A Classifying Procedure for Signalling Turning Points[END_REF]. 

Different approaches to multivariate surveillance

In a multivariate setting there are p processes {X 1 , X 2 , ..., X p } for which ( ( ) ), ( ) ( ( ) ),
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An overview of multivariate surveillance is given in [START_REF] Sonesson | Multivariate surveillance. Spatial surveillance for public health[END_REF], who categorize different approaches to multivariate surveillance; reduction of dimensionality, reduction to one scalar statistic, parallel surveillance, vector accumulation and simultaneous solution. In this paper we compare reduction to scalar, parallel surveillance and simultaneous solution.

Reduction to one scalar statistic at each time

The p X-processes can be reduced to a scalar at each time, for example by a (weighted) mean. [START_REF] Wessman | Some Principles for surveillance adopted for multivariate processes with a common change point[END_REF] showed that when the processes have identical change times (τ 1 =τ 2 =...=τ p =τ), there exists a sufficient univariate reduction of the variables {X 1 , ..., X p }. Thus, without loss of information, the multivariate data can be reduced to a scalar statistic and then univariate surveillance can be applied. The sufficiency also holds when the changes times are not identical but the lag times between them are known.

When the changes occur at different time points, a problem with a reduction is to determine which variable that caused the alarm. [START_REF] Javaheri | Average run length comparison of multivariate control charts[END_REF] suggest a follow-up with discriminant an lysis. [START_REF] Jolayemi | A model for the statistical design of multivariate control charts with multiple control regions[END_REF] constructs multiple control regions for two assignable causes. [START_REF] Mason | Decomposition of T2 for multivariate control chart interpretation[END_REF] decompose T2 into independent components, each reflecting an individual variable Xj. Abu-Shawiesh and Abdullah ( 2001) study surveillance of two correlated processes where both scale and location change. The T2 statistic is based on robust estimates of location and scale. This approach is compared to the ordinary T2. [START_REF] Mason | Systematic patterns in T-2 charts[END_REF] find that AR processes result in a U-shaped T2 curve.

Another reduction is to use the minimum and maximum values at each time, as is done in [START_REF] Sepúlveda | A simulation approach to multivariate quality control[END_REF]. [START_REF] Kang | On-line monitoring when the process yields a linear profile[END_REF] model the variable Y as a function of the variable X and monitor the slope and intercept by T2 statistic as well as the residuals (deviations from reference line). [START_REF] Aparisi | Generalized variance chart design with adaptive sample sizes. The bivariate case[END_REF] reduce the covariance matrix through the determinant or the trace. This scalar is monitored, using univariate Shewhart, EWMA and CUSUM.

Guerrero-Cusumano (1995) uses an entropy measure instead of the determinant. [START_REF] Stoumbos | On the properties and design of individuals control charts based on simplicial depth[END_REF] reduce the multivariate data to a probability measure which shows how "central" the observation is. [START_REF] Lu | Control chart for multivariate attribute processes[END_REF] study correlated variables and the proportion of non-conforming units. The multivariate data are reduced to a scalar by weighting together the nonconforming units and then monitored by univariate Shewhart.

Cheng and Liu (2000) use a rank measure for how outlying an observation is and then the univariate rank variable is monitored using a Shewhart approach. [START_REF] Koskinen | A Classifying Procedure for Signalling Turning Points[END_REF] suggest the use of a weighted index, which is monitored using univariate methods. A similar approach is used in [START_REF] Talluri | A methodology for monitoring system performance[END_REF]. summarize the anti ranks in a statistic which is monitored using univariate CUSUM.

There are several suggested methods which are a multivariate variation of a univariate method, such as MEWMA and MCUSUM. [START_REF] Crosier | Multivariat Generalizations of Cumulative Sum Quality-Control Schemes[END_REF] and [START_REF] Pignatiello | Comparisons of Multivariate CUSUM Charts[END_REF] used an MCUSUM on the same form as as the univariate CUSUM, only with matrixes instead of scalars.

Bodden and Rigdon (1999) use a multivariate EWMA and smooth all p processes using the same constant, λ, and then the vector of the smoothed values is reduced by the T2 statistic. This approach is also used in [START_REF] Love | A Weibull process failure mechanism for the economic design of MEWMA control charts[END_REF] and [START_REF] Molnau | A program for ARL calculation for multivariate EWMA charts[END_REF] and by [START_REF] Stoumbos | Robustness to non-normality of the multivariate EWMA control chart[END_REF], who show that if the smoothing constant equals 1 (no smoothing) and the process is not normally distributed, then the ARL 0 is over estimated if the alarm limits are determined under normality assumptions. But for a small smoothing constant, the ARL 0 is not so biased, even if the normality assumption is violated. A small smoothing constant gives approximately equal weight to all observations, which is approximately normal according to the central limit theorem. [START_REF] Lowry | A multivariate exponentially weighted moving average control chart[END_REF] use EWMA smoothing with separate λ values, and then reduction by the T2 statistic. The λ values are determined so as to minimize the ARL1. [START_REF] Yumin | An improvement for mewma in multivariate process control*1[END_REF] suggests that if the X processes are correlated, they should be transformed into principal components, which are then smoothed separately. [START_REF] Runger | Improving the performance of the multivariate exponentially weighted moving average control chart[END_REF] reduce the dimension by a transform similar to principal component analysis, then the transformations are smoothed using the same λ and then the T2 statistic is calculated from the smoothed series. [START_REF] Gan | Joint monitoring of process mean and variance[END_REF] constructs a control chart with the smoothed variance on one axis and the smoothed mean on the other, called a combined EWMA [START_REF] Hawkins | Multivariate Quality Control Based on Regression-Adjusted Variables[END_REF] applied a univariate CUSUM to a linear combination of the variables {X 1 , X 2 , ..., X p }. [START_REF] Wessman | Some Principles for surveillance adopted for multivariate processes with a common change point[END_REF] showed that if the p processes have identical change times, then data can, without loss of information, be reduced to a univariate index.

Parallel surveillance

The marginal density of each process can be monitored. One drawback is that no information about the dependency structure is used. The surveillance system for X 1 is only concerned with τ 1 , and correspondingly for X 2 , X 3 etc. For process X j at time s, we have alarm statistic p(x js ) and alarm limit k j s . An alarm is called when p(x js ) > k j s , where

x js ={x j (1), x j (2), ..., x j (s)}.

The time of alarm of X j is t Aj =min t: p(x jt ) > k j t .

The time of alarm for the whole system is defined as t A = min {t A1 , t A2 , ..., t Ap }. (4) [START_REF] Does | Handling multivariate problems with univariate control charts[END_REF] uses separate surveillance for of each process (each principal component) in a case study. In [START_REF] Woodall | Multivariate Cusum Quality Control Procedures[END_REF] a univariate CUSUM is used for each of the p processes.

Simultaneous solution

In a simultaneous solution, the joint distribution of the p processes can be used. Shiryaev (1963) showed that the likelihood ratio between C and D is optimal in the sense that is maximized the expected utility, E[u], where u equals 
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The optimality was proven for the situation when τ follows a Geometric distribution (with parameter ν). If the function h(t A -τ) is a constant, b, the utility is maximized when the delay, t A -τ, is minimized [START_REF] Frisén | Statistical surveillance. Optimality and methods[END_REF]). The minimal expected delay was shown to hold also for a situation where τ is not Geometrically distributed [START_REF] Andersson | The impact of intensity in surveillance of cyclical processes[END_REF]).

Here we study the situation when we want to detect the first change, τ (1) = min[τ 1 , τ 2 , ..., τ p ] and then the utility can be written as

( ) (
)
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where t A is the time of alarm for the whole system (e.g. ( 4)). The distribution of τ (1) depends on the p-variate distribution for (τ 1 , ..., τ p ). For p=2, we use the bivariate Geometric distribution, see e.g. [START_REF] Marshall | A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families[END_REF]. Then τ (1) follows a Geometric distribution [START_REF] Sun | A characterization of a bivariate geometric distribution[END_REF]) and the optimality holds: the likelihood ratio maximizes the expected utility. [START_REF] Wessman | The surveillance of several processes with different change points[END_REF] investigated the situation where C={τ (1) =s}. In this paper we investigate C={τ (1) ≤s}={{τ (1) =1},...,{τ (1) =s}}. The D event is specified as {τ (1) >s}.

Below the optimal surveillance system is derived from the likelihood ratio. Since P(C) = 1-P(D), the likelihood ratio is equivalent to the posterior probaility

( ) ( ) /( ( ) ( )) = ∩ ∩ + ∩ > s s s s P C m P m C P m C P m D k ,
where m s ={m(1),..., m(s)}={{x 1 (1), ..., x p (1)},..., {x 1 (s)..., x p (s)}} and k is a constant limit. 
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For C={τ (1) ≤s} and D={τ (1) >s}, the likelihood ratio equals
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The weights, w t s =P(τ (1) =t)/P(τ (1) ≤s), and the limit, k s =k'⋅P(τ (1) >s)/P(τ (1) ≤s), depends on the distribution of τ (1) , which in turn depends on the joint distribution of (τ 1 , ..., τ p ). The time of alarm is defined as t A = min t: LR(m s ) > k s .

Three suggested methods for multivariate surveillance

In this paper we compare results from three methods for multivariate surveillance; the T2 method (a reduction), a method for parallel surveillance and a simultaneous solution, derived from the optimal, full likelihood ratio.

The T2 method

An early multivariate method is the T2 method of [START_REF] Hotelling | Multivariate Quality Control[END_REF]. The statistic is assumed to have a known covariance matrix. The T2 is an example of a reduction. We assume that X and Y have the same distribution, conditional on τ X and τ Y . Thus an alarm is given when
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Parallel likelihood ratio systems

The parallel surveillance system in this paper, denoted LRpar, is based on separate likelihood ratio systems for X and Y. For X the likelihood ratio alarm statistic is
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where µ D and µ C are defined in (3) and τ is assumed to follow a geometric distribution with intensity ν. The time of alarm for X is defined as

t AX = min[LR X (s) > k X s ]
where k X s =k⋅(Pτ X >s)/P(τ X ≤s). The LR Y (s) statistic and t AY are defined correspondingly.

The time of alarm for the LRpar system is the first time for which either alarm system gives an alarm, i.e. t A =min{t AX , t AY }. If X and Y are independent, the distribution of t A is a direct function of the distributions of t AX and t AY .

The two alarm limits, k X s and k Y s , are adjusted to yield a specified false alarm property for the whole system. If there is no particular information regarding the cost for false alarms, then it is natural to have the same false alarm property for the two methods (e.g. equal ARL 0 ). If inspection and restoration costs are not the same for the processes, [START_REF] Serel | Univariate (X)over-bar control charts for individual characteristics in a multinormal model[END_REF] suggest different type I errors.

Simultaneous solution using the joint likelihood ratio

Recall from Section 4.1.3 that the optimal surveillance method for C={τ (1) ≤s} consists of s weighted partial likelihood ratios The event {τ (1) = t} consists of three sub-events: 

{τ X =t ∩ τ Y >t},
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Since we want to detect changes in the µ vectors, the expression above is written as
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where f(x s , y s ) is the bivariate normal distribution in (1) and (2). When X and Y are independent X and Y, the expression above simplifies to 0 ( )
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where the first two components are those used in LRpar. The weights are 0
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where the bivariate distribution of (τ X , τ Y ) is governed by the intensity parameters ν 1. , ν .1 and ν 11 . The information regarding (τ X , τ Y ) is also included in the alarm limit, k s =k'⋅P(τ (1) >s)/P(τ (1) ≤s), see Section 4.1.3. 

Alarm regions for the three methods

The methods T2, LRpar and LRjoint are made comparable by adjusting their respective alarm limits so that the probability of false alarm, PFA, equals 0.1, where

PFA=

(1) 1 ( ) ( )
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The alarm regions are illustrated in Figure 1, for different values of ψ (correlation between the change times) and different values of ρ (dependency between X and Y).

<FIGURE 1>

For LRpar, an alarm is called if at least one of X or Y deviates largely from the D-state.

For LRjoint (when X and Y are independent), an alarm is called when either X or Y or (X+Y) deviates from the D-state. The same holds for T2. For both LRjoint and T2, the shape of the alarm region changes as ρ and ψ changes, but not for LRpar.

Results

The methods (T2, LRpar and LRjoint) are made comparable by all having PFA=0.1, where PFA is summarized using the bivariate Geometric distribution that results in a specified ψ (correlation between τ X and τ Y ).

LRpar and LRjoint have similar run length distributions (thus similar median run length, MRL 0 ), whereas T2 has a higher MRL 0 , see Figure 2. For all methods, the run length distribution is similar for ρ=0 and ρ=0.5 (dependency between X and Y), but very different for ψ=0 versus ψ=0.8 (correlation between τ X and τ Y ). The density of τ (1) is used to weight together the alarm times in PFA. As ψ tends to 1, the alarms tend to be more uniformly distributed and MRL 0 is longer. For both T2 and LRpar, the alarm limit 

<FIGURE 2>

Motivated alarms: the first change occurs immediately

CED(t 1 ,t 2 ) is presented for τ (1) =1, i.e. when the first change occurs immediately.

<FIGURE 3>

The effect of correlation between the change times

The delay is shortest when both changes occur immediately (τ X =τ Y =1), independent of ψ.

When independent change times are assumed (ψ=0), T2 has the shortest delay, but the three methods give similar delay. For the two likelihood ratio methods, the similarity was indicated by the similar alarm regions in Figure 1. At (τ X = τ Y =1), LRjoint has slightly shorter delay, compared to LRpar. LRjoint consists of three components (CD, DC, CC, see section 4.2.2), whereas LRpar is based on two components (CD and DC).

When a positive correlation is assumed between the change times (ψ=0.8), LRjoint is superior at (τ X = τ Y =1). LRjoint assigns a large weight to the CC component and when the changes actually occur simultaneously, LRjoint has a short delay.

The effect of the X-processes under surveillance being dependent

For immediate changes in both processes (τ X =τ Y =1), the T2 has the shortest delay and LRpar the longest, when X and Y are independent (ρ=0). However, for ρ=0.5, LRpar has shortest delay and LRjoint longest. This is further discussed in 4.2.2. 

Motivated alarms: the effect of the change times

The delay CED(t 1 ,t 2 ) is presented for t 1 ={1, 5, 10} and t2=1, 2, ..., 14.

<FIGURE 4a>

<FIGURE 4b>

<FIGURE 4c>

The effect of correlation between the change times

For all methods, CED is longer when ψ>0. For LRpar, the delay is generally longer as a result of the higher alarm limit. The same holds for T2. Also for LRjoint, the delay is generally longer, but there is also a larger difference between CED(t,t) and CED(t,∞), exemplified by CED(5,5)=3.5 and CED(5,14)=4.2. For ψ>0 the LRjoint works well when the changes do actually occur simultaneously.

Both for ψ=0 and ψ=0.8, simultaneous changes have shortest delay for all method, i.e. CED(t,t)<CED(t,j), j≠t. For CED(t,t), both X and Y are in C-state at each time point.

For the two LR methods, later changes have shortest delay (e.g. CED(1,1)>CED(5,5)), whereas T2 has the same delay for e.g (τ X = τ Y =1) as for (τ X = τ Y =5).

As one change time tends to infinity, the CED-curve depends only on the other change time (CED(∞, t) depends only on t).

The effect of the processes under surveillance being dependent

For LRpar the CED-curves are practically the same for ρ=0 and ρ=0.5.

For LRjoint, the simultaneous change situation, τ X =τ Y , is quicker detected if the processes are independent. The same holds for T2.

For T2, the CED-curve only depends on the distance (t 1 -t 2 ), see [START_REF] Andersson | Hotelling's T2 method in multivariate on-line surveillance[END_REF]. For ρ=0, LRpar and LRjoint have similar CED-curves. For ρ=0.5, LRpar has a shorter delay for simultaneous changes (τ X =τ Y ), compared to LRjoint, Figure 4a-4c. One reason for the long delay of LRjoint is the assumption that ψ=0. Another was pointed out in [START_REF] Wessman | The surveillance of several processes with different change points[END_REF] who investigated multivariate surveillance for the situation C={τ (1) =s} and showed that if changes occur in all processes, the probability of detecting it is lower if the observations are highly correlated.

For ρ=0, the CED(t,t) is much smaller than CED(t,∞) for all three methods. But for ρ=0.5, when we use LRjoint or T2, the CED(t,t) is approximately the same as CED(t,∞), exemplified for LRjoint by CED(5,5)=3.3 and CED(5,14)=3.3.

When ρ=0.5, both LRjoint and T2 yield long delay for "almost simultaneous changes", so that CED(t, |t-1|) > CED(t,∞), see Figure 4b and4c (exemplified for LRjoint by CED(5,6)=3.5 and CED(5,14)=3.3). Consider T2, based on the Mahalanobis distance

M τX,τY (t) = ( ) ( ) 2 2 '( ) '( ) 2 ( '( ))( '( )) ρ + - X t Y t X t Y t .
In a simple shift situation (0 to θ) with simultaneous changes, we have

E[M τX,τY (t)] = θ 2 (2 -2ρ)
, for all values of t.

When τ X ≠τ Y , we have This makes E[M i,i (t)] smaller than (or equal to) E[M i,j (t)], when ρ is close to 1, indicating longer delay for simultaneous changes. In this simulation study, however, the change is from a constant level to an increasing function, making the expressions more complex. For ρ close to 1, we again find smaller values for E[M i,i (t)] than for E[M i,j (t)],

E[M τX,τY (t)] = θ 2 , for τ (1) ≤t<τ (2) E[M τX,τY (t)] = θ 2 (2 -2ρ), for t≥τ (2)
indicating a long delay for simultaneous changes (and vice versa for ρ close to 0). But for ρ=0.5 the values of E[Mi,j (t)] for different t are not necessarily monotone as a function of τ X -τ Y and this causes the non-monotonic CED-function (for T2 we have CED(10,5) = 4.1, CED(10,9)=4.3, CED(10,10)=4.0).

Discussion

Warning systems are used in many areas: public health, bio terrorism, radiation, pregnancy, intensive care patients. Very often, several processes can be used to detect an underlying change. Then we need a warning (or surveillance) system for multivariate data. When monitoring more than one process, we must consider the dependency between the processes and the correlation between the change times. Surveillance of autocorrelated processes is an important area, though not treated in this paper.

Three methods of multivariate surveillance are compared. In the Hotellings T2 the multivariate data is reduced to a scalar at each time point. In the LRpar method, the likelihood ratio method is applied to each marginal process. The LRjoint method is optimal according to the Shiryaev criterion and is derived from the joint likelihood ratio.

The alarm limits of each of the three systems are adjusted to yield the same false alarm probability.

We investigate the effect of a positive correlation between the change times (the correlation between τ X and τ Y is denoted ψ). We also investigate the effect of a positive 20 covariance between the processes (X and Y), conditional on τ X and τ Y (the covariance is denoted ρ). The LRjoint is the only method that uses the information of ψ in the alarm statistic. Both T2 and LRjoint incorporate the information of ρ.

The evaluation is made using the delay of an alarm, in relation to the first change time.

The methods are first compared for independent change times (ψ=0). For immediate changes in both processes (τ X =τ Y =1), T2 has the shortest delay, followed by LRjoint and then LRpar. T2 allocates the alarms early, whereas the two LR methods have few early alarms. LRjoint has a slightly shorter delay than LRpar, since LRjoint includes three components, corresponding to a change in either X or Y or both, whereas LRpar includes only two components (change in either X or Y) which is not optimal for simultaneous changes. However, the difference is small since ψ=0 (we do not expect many simultaneous changes). For later simultaneous changes (τ X =τ Y ), LRjoint is slightly better than LRpar, whereas T2 here yields a long delay. T2 allocates the alarms early and also T2 uses only observations from the current time point, thus it is not based on more data at later time points (as opposed to the LR methods). The T2 use of only the observations at the current time point corresponds to the Shewhart method in univariate surveillance. T2 is a reduction, which is sufficient at simultaneous change times, but the method is not always optimal for τ X =τ Y . For different change times (τ X ≠τ Y ), LRpar has the same delay as LRjoint and T2 has the longest delay, because of the alarm allocation.

Next we investigate the effect of a positive correlation between the change times (ψ=0.8). For τ X =τ Y =1, LRjoint has the shortest delay, followed by T2 and then LRpar.

LRjoint uses the information that the change times are likely to occur simultaneously and T2 benefits from allocating the alarm early. For τ X =τ Y =t, t>1, LRjoint has the shortest We also compare the methods in the situation when X and Y have a positive covariance (ρ=0.5). For τ X =τ Y =1, LRpar has the shortest delay, followed by T2 and then LRjoint. For τ X =τ Y =t, t>1, LRpar gives shorter delay than LRjoint (although LRjoint now works better than T2). For LRjoint, one reason for the long delay for τ X =τ Y is the assumption of ψ=0, which results in a low weight for the "simultaneous change component". Both T2 and LRjoint do include the components of the Mahalanobis distance, which tend to be smaller for simultaneous changes when ρ is large, see [START_REF] Wessman | The surveillance of several processes with different change points[END_REF]. If X and Y are independent and change simultaneously, this is a stronger indication than if they change simultaneously when they are positively dependent and thus the delay is shorter in the independent situation. The values of the Mahalanobis distance depends on the type of change (here we have a change from a constant level to an increasing function) as well as ρ. In a simple situation with a shift, the Mahalanobis distance (M) is a monotone function of the distance between the change times: for ρ close to 0, the delay will be shortest for simultaneous changes and for ρ close to 1 the delay will be longest for simultaneous changes. This also holds for a more complex change, but for ρ=0.5 (which was investigated here) the association is not so clear-cut, which results in a non-monotonic delay curve.

In this paper we only deal with positive dependency. A negative correlation between the change times, ψ<0, implies that the change times do not coincide. Then it would be Then the alarm region would constitute of large values of (X+Y) and the alarm region for ρ<0 would be similar to that of a positive correlation between the change times (ψ>0). 
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