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We propose a new regression-based filter for extracting signals
online in moving windows from multivariate high frequency time
series.
This fast and robust filtering procedure considers the local
covariance structure between the single time series components. It
Abstract: tackles the bias variance trade-off problem for the optimal choice of

the window width by choosing the size of the window adaptively,
depending on the current data situation. Furthermore, the signals
are estimated at the recent point in time.

Moreover, we present an advanced algorithm of our filter for
replacing missing observations in real time. Thus it can be applied
in online-monitoring practice.
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ABSTRACT

We propose a new regression-based filter for extracting signals online from multivariate
high frequency time series. It separates relevant signals of several variables from noise and
(multivariate) outliers.

Unlike parallel univariate filters, the new procedure takes into account the local covari-
ance structure between the single time series components. It is based on high-breakdown
estimates, which makes it robust against (patches of) outliers in one or several of the com-
ponents as well as against outliers with respect to the multivariate covariance structure.
Moreover, the trade-off problem between bias and variance for the optimal choice of the
window width is approached by choosing the size of the window adaptively, depending on
the current data situation.

Furthermore, we present an advanced algorithm of our filtering procedure that includes
the replacement of missing observations in real time. Thus the new procedure can be applied
in online-monitoring practice. Applications to physiological time series from intensive care

show the practical effect of the proposed filtering technique.
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1 INTRODUCTION

In intensive care the patient’s condition is supervised by an online-monitoring system
that provides measurements of several physiological variables once per second. The measured
data are noisy non-stationary multivariate time series with patterns such as trends and level
changes as well as steady periods. Moreover, the variables are correlated, and the time
series may contain technically induced outliers or measurement artifacts and missing values.
Common alarm systems are based on lower and upper thresholds, set for each variable. Those
systems trigger an alarm if an observation lies outside the specified thresholds. Because of
frequent outliers, many false positive alarms occur. This high rate of false alarms induces a
desensitization of the clinical staff to relevant alarms.

We develop a new multivariate, robust, and adaptive regression-based filter for separat-
ing clinically relevant signals from noise and outliers in real time; the rate of false positive
alarms can be lowered by applying the alarm-thresholds to the online filtered signals instead

of applying them to the raw measurements.

Consider a multivariate time series of dimension k, i.e., a sequence of observations y(t)
of T random variables Y () = (Yi(t),...,Y%(t))" € R* ¢t =1,..., T, for which we assume,
that it can be decomposed into a true but unknown underlying signal overlaid by noise and
outliers, i.e.,

Y(t) = plt)+et)+n), t=1,... T (1)

In this simple additive working model p(t) = (py(t), ..., ur(t))" denotes the k-dimensional
underlying signal at time ¢, whose components are assumed to vary smoothly most of the
time but can also show sudden level shifts and trend changes. The observational noise arises
from g(t) € R¥, where €(t),...,ex(t) are errors generated by a symmetric distribution with
zero median and time-dependent covariance matrix Cov(e(t)) = X(t) € R***. The errors of
some components of Y (¢) may be correlated, i.e., Cov [g;(t), €;(t)] = 04(t), may be unequal
to zero for i # j. n(t) € R* denotes an outlier term, i.e., impulsive spiky noise that can

appear for more than one component at different points in time.
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Since time series from intensive care often show trends, Davies, Fried, and Gather (2004)
find that regression-based filters, which approximate the signal by a locally linear function
within a moving time window, lead to better results than location-based filters like the com-
mon moving average or the running median (Tukey, 1977). Due to the frequent occurrence
of outliers, it is reasonable to use robust regression filters.

We consider two kinds of moving window filters: ones that estimate the signal with a
certain time delay, called delayed, and filters that estimate the signal at the present point in
time, called online.

In a simulation study Davies et al. compare delayed univariate time series filters based
on robust regression techniques with respect to robustness, efficiency, and computing time;
a filter based on Repeated Median (RM) regression (Siegel, 1982) provides best compromise
results. Gather, Schettlinger, and Fried (2006) show that the online version of the RM
filter (online RM, oRM) also outperforms other online filters. For a time window of width
n containing the observations {y(t —n +1),...,y(t)} of a univariate time series, the oRM

regression functional T,z = <BORM oM ) is defined by

. + —ult —
poEM(t) = med { med y( nts)—ylt—n+v) } (2)
s€e{l,...,n} v#s, vE{l,...,n S —
and °"™M(t) =  med {y(t —n+ S) — BOEM (1) (s — n)} (3)
se{l,..n}

so that the oRM regression line is given by
gt —n+s) = M (@t) + 3OFM(4) (s —n), s=1,...,n.

The oRM functional has a finite sample replacement breakdown point of [n/2] /n ~ 50%,
which is the highest possible value for a regression equivariant functional (Rousseeuw and
Leroy, 1987). The oRM filter also provides good efficiency even at non-contaminated samples
(Gather, Schettlinger, and Fried, 2006) and needs little computing time (Bernholt and Fried,
2003).

The (0)RM filter is applied in a moving window of fixed width, leading to a bias variance

trade-off: large windows lead to signal estimations with low variability, which is desired when
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the observed time series is smooth and does not show abrupt level shifts or trend changes; on
the other hand, a small window width yields signal estimations with small bias, and abrupt
trend changes and level shifts are spotted with a small time delay. For real time application
in intensive care, a fixed optimal choice of the window width does not exist because the data
structure is not known beforehand.

Schettlinger, Fried, and Gather (2008) propose the univariate adaptive online Repeated
Median (aoRM) filter, which tackles the trade-off problem by choosing the window width
adaptively depending on the current data situation. However, correlations between the
variables are not taken into account when this univariate filter is applied separately to each
component of a multivariate time series.

Lanius and Gather (2007) propose the multivariate Trimmed Repeated Median-Least
Squares (TRM-LS) regression as a fast, robust, efficient but non-adaptive two-step filtering
procedure based on RM and multivariate Least Squares regression. This filter determines
the local covariance structure in order to detect and remove (multivariate) outliers. However,
the signal vector is estimated at the center of a moving time window {t — w, ... ,t,... .t + w}
of a fixed odd width n = 2w + 1 which leads to the bias variance trade-off described above.
Furthermore, application of this filter causes signal estimations with a delay of w time units.

Our new filtering procedure combines the advantages of the univariate aoRM filter and
the multivariate TRM-LS regression: it is multivariate, works online, and the window width

is chosen adaptively.

After describing the univariate aoRM filter and an online version of the multivariate
TRM-LS method, we introduce the newly combined adaptive online Trimmed Repeated
Median-Least Squares (a0TRM-LS) filter and an algorithm that includes the treatment of
missing values in Section 2. Section 3 demonstrates the use of the filtering procedure by
means of applications to multivariate online-monitoring time series from intensive care. Fur-
thermore, we propose two options that lead to improved filtering outputs for the examined

data. Finally, Section 4 provides a summary and a brief discussion.
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2 THE NEW FILTERING PROCEDURE
2.1 The adaptive online Repeated Median (aoRM) filter

The aoRM filter, proposed by Schettlinger, Fried, and Gather (2008), is based on an oRM
estimate (2, 3) calculated in a moving time window for which a data-driven window width
selection takes place at each point in time based on an idea by Gather and Fried (2004). The
filtering procedure is able to trace sudden changes such as level shifts or trend changes with
small time delay while also yielding a smooth representation when the time series shows only
long-term trends and slow changes.

Corresponding to model (1) with k& = 1, Schettlinger et al. assume that a univariate
time series can be represented by a decomposition into an underlying signal, observational
noise, and an outlier-generating process. As a general working model they assume that the
univariate signal within a time window {t —n+1,...,t} of length n, n <t < T, can be

approximated by a straight line:
Y(t—n+s) = plt)+B0) - (s —n) +(t,s) +nlt.s), s=1,...,n. (4)

Here p(t) is the signal level at the rightmost position of the window sample, i.e., at the
recent point in time ¢, and (3(t) is the associated slope within the time window; &(¢,s)
denotes symmetric observational noise with zero median and time-dependent variance and
n(t, s) an outlier-generating process.

While for the simple oRM filter the window width n is fixed, for the aoRM procedure it
can vary over time and hence is denoted by n(t). The main steps to determine the aoRM

aoRM (t)

signal estimate ji at time t are the following:

1. Approximate the signal at time ¢ by ™™ (t), i.e., by an oRM signal estimate (3)

calculated from the observations in the time window {t —n(t) +1,...,t}.

2. Evaluate the signal estimate i°%M(t)

If 4°fM(t) is adequate, store the signal estimation, referred to as %M (¢).
If 4°®M(t) is not adequate, decrease the window width by one, i.e., set n(t) to n(t) — 1

and go to step 1.
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The aoRM procedure requires the specification of a minimum and maximum window width
such that n(t) € {nmin, - - Nmaz - The lower bound n,,;, ensures robustness against a cer-
tain number of outliers in each time window, and the upper bound n,,,, limits the computing
time. These values are user-specific and depend on the application. For example, for the
application to high frequency online-monitoring time series as in Section 3, we set n,,;, = 50
and n,,., = 100. For the first iteration we use the minimal window width, i.e., we get the
first signal estimation at time t = n(t) = n,;,. However, any other value in {n,in, - - -, Nz }
is possible.

At step 2 the oRM signal estimate from step 1 is evaluated. Schettlinger et al. use a
test procedure based on the fact that an oRM fit results in an equal number of positive
and negative residuals. If this equality is not achieved for a small number nj, of the most
recent residuals, the signal estimate could differ distinctly from the observed time series and,
therefore, it cannot be considered as adequate. In this case the window width is reduced to
n(t) — 1 by removing the oldest, i.e., leftmost observation. Then pu(t) is re-estimated in this
smaller window by the oRM level (3), and the test is performed again. This is repeated until
either the signs of the most recent residuals are 'balanced” or the window width equals the
lower bound 7,,;,. An explicit explanation of the test procedure at step 2 is given below.

In order to update the window for the next point in time ¢ + 1, the new window width is
set to n(t + 1) = min{n(t) + 1, Ny, }. That is, the observation at time ¢ + 1 is incorporated
into the window sample, and if n(¢) + 1 exceeds the maximum window width, the oldest
observation is removed from the window. A flow chart for the complete aoRM algorithm

(A1) is shown in Figure 1.

The ’test of appropriateness’ at step 2 is based on the fact that the (0)RM regression
results in as many positive as negative residuals if the data come from a continuous distri-
bution (Gather and Fried, 2004). Then the median of the (0)RM error distribution in the
time window {t — n(t) + 1,...,t} is zero. Schettlinger et al. claim that, if the residual signs

are also balanced for a small number n;, of the most recent observations, the signal estimate
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| start: time window {¢t —n(t) + 1,...,t} with t = n(t) = nmin |

'

| oRM regression in time window {t —n(t) +1,...,t} [

'

is n(t) > nmin?

¢ yes

] are the signs of the recent ny, o0RM residuals balanced? ‘

| ves J no

store the oRM signal store the oRM signal decrease window width:

estimation j1°FM (t) estimation j1°FM (t) n(t) — n(t) —1

' \

L—| update window: n(t+ 1) = min{n(¢) + 1,nmax }; set t +1 to ¢ ]

Figure 1: The aoRM algorithm (Al).

1°"M (t) can be considered as adequate. To check this, they test whether the median med’*

of the n;, most recent errors (t,s), s € I, I, = {t —nj, + 1,...,t}, is equal to zero or not:
Ho: med* =0 wvs. H;: med #0.
As test statistic the sum of the n;, most recent residual signs is used, i.e.,

T = ngn [TORM(t, s)],

sel

where r°fM (¢ s), s = 1,...,n(t), denote the residuals from an oRM fit (2, 3) in the time
window {t —n(t) +1,...,t}, and sgn(-) is the sign function with sgn(0) = 0. If |T'| is too
large, either the negative or the positive residuals prevail within the subset I;, and Hy is
rejected. As critical values for the test decision modified quantiles of the distribution of T,
derived by means of simulations, are used.

Based on a simulation study by Schettlinger et al., we suggest to choose a fixed value for
ng,. If ng, > nyin/2, we set ny, = min {ny, , [n(t)/2]} in order to prevent that the subset I
includes more than half of the residuals within the time window. However, n;, determines
the number of shifted or trend-changed observations that is required to entail a reduction of
the window width. Hence, the choice of nj, depends on the application. For high-frequency
measurements from clinical online-monitoring good results are achieved using n;, = 20 or

nrp = 30.
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2.2 The online Trimmed Repeated Median-Least Squares (oTRM-LS) filter

The second source of our new procedure is based on the TRM-LS regression proposed
by Lanius and Gather (2007). This is a multivariate time series filter based on the idea
of univariate Trimmed RM filters (Bernholt, Fried, Gather, and Wegener, 2006). Lanius
and Gather assume that each signal component of the multivariate time series is locally
linear. They use the TRM-LS filter to fit k£ straight lines to the k-variate time series in a
moving window {t —w,...,t,...,t +w} of a predetermined fixed width n = 2w + 1. Then
the k levels of the regression lines at time ¢ form the k-dimensional signal estimation vector
plRM-LS (t) € R%. Thus the signal is estimated with a delay of w time units, and only odd
window widths n = 2w + 1 can be chosen.

Based on the TRM-LS filtering procedure we develop the multivariate online TRM-
LS filter (0TRM-LS), that uses the time window {t —n+ 1,...,t}, also allowing for even

window widths n. Corresponding to (4) in the univariate case we assume
Y(t—n+s) = pl)+B80)-(s—n)+elt.s)+nt,s), s=1,...,n. (5

Here p(t) € R* is the vector of the k signal levels at time ¢ and B(t) € R* the vector
of the k associated slopes in the time window; n(t,s) € R* denotes an outlier term, i.e.,
impulsive spiky noise and &(t, s) € R*¥ symmetric observational noise with zero median and
time-dependent covariance matrix. The noise of some components may be correlated, i.e.,
Cov [g(t,5),;(t, s)] = 04(t, s) may be unequal to zero for i # j.

In order to determine the oTRM-LS signal vector p®" " ~L5(#) at time ¢, t > n, the

oTRM-LS algorithm (A2) applies the following steps:

1. In the time window {t —n +1,...,t} determine the k£ univariate oRM estimates of
the level 1M (t) from (3) and the slope $°FM(t) from (2) for each of the variables

Y;, 1 =1,... k. Then the level and slope vector are given by
ot (8)

= (™M@, M)
~oRM

and B (1) = (B0, B (0)T.
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2. Determine the k-dimensional oRM residual vectors within the time window by
oRM o ~ oRM ~oRM B
roMt—n+s) = yt—n+s)— | E)+B () (s—n)|, s=1,...,n.
3. Use a robust method to estimate the local error covariance matrix 3(t) € R¥** based

on the sample of residuals 7™M (t —n +s) € R s =1,... n.

4. Determine the subset S; C {1,...,n} of time points within the window, corresponding
to those oRM residual vectors, which possess a squared Mahalanobis distance w.r.t.

the local structure of covariance, that is not larger than a fixed value dy, i.e.,

Sy = {s:l,...,n : T'ORM(t—n—i—s)Tf](t)_lfrORM(t—nqu)Sdo}.

5. Based on the trimmed window sample {y(t —n+s) : s € S;} perform a multivariate
Least Squares regression to obtain estimates of the k signal levels at time ¢, referred

to as puT ML (1) € RE

At step 3 the local error covariance matrix 3(t) is estimated based on the residual vectors
in the time window. To avoid a masking effect caused by (multivariate) outliers, a robust
estimator should be used. Lanius and Gather suggest the fast computable orthogonalized
Gnanadesikan- Kettenring estimator (OGK) by Maronna and Zamar (2002). The maximum
possible explosion breakdown point of the OGK is equal to that of a univariate estimator of
scale the OGK depends on. In a comparison study, Lanius and Gather (2007) find the robust
Q. (Rousseeuw and Croux, 1993) to be a suitable univariate scale estimator. It possesses a
maximal breakdown point of 50% if the data do not show ties within the time window.
The @,, estimation of the local univariate scale o;(t), i = 1,...,k, is determined based
on the oORM residuals {r¢®™(t —n +1),...,7?"(t)}. Due to collinear data, the estimate
6?” (t) is possibly very small or equal to zero. Thus the OGK, estimation of the error
covariance matrix X(¢) may become singular. In order to obtain a non-singular 3(¢), Lanius

and Gather compute the OGKg, estimation based on
6" () = max{o7" (), v}, (6)

9
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where 1 is an appropriate lower threshold for the variability, for example ¥ = 0.02.
At step 4 of the oTRM-LS algorithm (A2) an upper bound dy must be chosen. For

symmetric observational noise with zero median, each squared Mahalanobis distance
d(s) =™t —n+ )2 Mt —n+s), s=1,...,n, (7)

approximately equals the sum of £ squared observations from a standard normal distribution.
Hence, a typical choice is dy = X7, ,, Where x3 , is the a-quantile of a y*-distribution with
k degrees of freedom. We follow a proposal by Maronna and Zamar (2002), where dj is
adapted via the median of the distances d(1),...,d(n):

2, med,r, 0 {d(s)}

2
Xk:0,5

dy =

2.3 The adaptive o TRM-LS (a0 TRM-LS) filter

The new aoTRM-LS filter evolves from a combination of the univariate aoRM and the
multivariate o TRM-LS filter and adopts the same working assumption (5) as in the previous
section. It requires the prior specification of the same input values as the aoRM filter, i.e.,
the number nj, of residuals within the window that are used for the test of adequacy of

the signal estimation and the extreme values for the window widths n,,;, and n,,4,. The

aoTRM-LS algorithm (A3) works as follows:
0. Start: set t = n(t) = Nunin-

1. In the time window {t —n(t) +1,...,t} obtain an adapted individual window width
ni(t) € {nmin,...,n(t)}, i = 1,... k, for each component by the univariate aoRM

procedure.
2. Determine an overall window width ny,(t) := min{ny (), ..., ng(t)}.

3. Apply the oTRM-LS algorithm (A2) to the multivariate sample in the time window

{t = ny(t)+1,...,t} and store the signal estimation vector at time ¢, referred to as

ﬂaoTRMfLS(t) c Rk

10
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4. Update process:
Incorporate the next observation vector y(t + 1).
Set n(t 4+ 1) = min{ny,(t) + 1, Nmaz }-
Set t+ 1 to t.
Go to step 1.

At step 1 the univariate aoRM algorithm (A1) is applied to each of the k univariate time
series in the window {¢t — n(t) + 1,...,t} to determine the individual window width n;(t) for
each variable Y7, ..., Y}.

Based on the n;(t), at step 2 an overall window width ny,(t) is evaluated, which is the size
of the multivariate window sample at time ¢. In order to ensure that the working assumption
(4) of a locally linear signal is true for each individual time series component such that the
multivariate assumption (5) can also assumed to be valid, the overall window width 7, (%)
is chosen as the minimum of the £ individual window widths.

Step 3 consists of the application of the multivariate o TRM-LS algorithm (A2) to the k-
variate time series in the time window {t — n,(t) + 1,...,t} to obtain the signal estimation
vector T PM=ES (1) Hence, at time ¢ the output of the a0TRM-LS filter is equal to that
of the oTRM-LS filter if n,,(t) is equal to the fixed width n used for the oTRM-LS filter.

At step 4 the window sample is updated for the next point in time ¢ + 1. This is done
by incorporating the observation vector y(t+ 1) into the window sample so that the window
width is increased by one to n(t+1) = n,,(t) + 1. If the width of the updated time window is
larger than the maximum bound n,,,., the oldest, i. e., leftmost observation vector is removed

from the window sample. Afterwards, we set ¢t + 1 to t and start the next iteration.
2.4 The treatment of missing values
In intensive care the monitored time series frequently show missing values either at sin-

gle or at successive points in time and either concerning one, several, or all components. A

missing observation of the ith component is denoted by y;(-) = (o), i =1,... k.

11
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The oTRM-LS algorithm (A2), which is performed at step 3 of the aoTRM-LS algorithm
(A3), includes the estimation of a local error covariance matrix X(t) € R¥** based on the
residuals of k& univariate oRM regressions. This estimation cannot be done if there are
missing values in the observation vectors and thus missing values in the residual vectors.
Obviously, there is a loss of information if only residual vectors without missing values are
used for estimating 3(¢).

Since it is possible to perform the oRM regression if at least two non-missing observa-
tions are present within a time window {t —n+1,...,t}, we suggest to replace missing

observations y;(t — n + s) = (e) by the corresponding level of the oRM regression line
Gi(t —n+s) = ™ () + G () - (s — ) (8)

with ¢ = 1,...,k and s = 1,...,n. Thus the corresponding residuals are zero, and 3(t)
can be determined by the OGKg, estimator. Obviously, the OGKy, estimation ﬁ](t) is
‘compressed’ since zero residuals are inliers in this situation. However, an implosion of 2(t)
is excluded by (6), and zero residuals inhibit a masking effect such that there is no loss of
robustness associated with the replacement of missing values.

The substitution of missing observations by the respective oRM level guarantees the
applicability of the oTRM-LS regression (and hence an aoTRM-LS output) if there are at
least two non-missing window observations. However, it is possible that even less than two
observations are available in the time window. Furthermore, we are interested in a reliable
signal estimation. Therefore, we need a certain minimum number of non-missing values in a
time window. Moreover, we have to keep in mind that the signal is estimated at the present
point in time ¢, and the aoRM test is based on the n;, most recent observations. Hence, we
apply the aoTRM-LS signal extraction at time ¢ only for those variables Y; which offer at
least ¢ observations at the recent n, points in time {t —n, + 1,... ¢t} with ny < n,,. That

is, at time ¢ we consider only those k(t) variables Y; with i € J(¢) C {1,...,k}, where

J(t) = {z': L.k« #{y(t—ng+s) # (o), s=1,...,n,} Zq}
and k(t) := #{3(t)}. At time ¢ the signal is not estimated for those k — k() variables Y;

12
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with i ¢ J(t), i.e., the associated entries in the signal estimation vector M ~L5(t) are

missing values.

If there are more than ¢* = n, — ¢ observations of a variable missing at the recent n,
points in time, the signal is not estimated for that component at the respective time point
t. For example: if we choose n, = 30 and ¢ = 25, a patch of ¢* + 1 = 6 subsequent missing
observations causes an interruption of the signal estimation for a duration of ¢ = 25 points
in time. Due to these considerations, for high-frequency online-monitoring data we suggest
to choose n, € [20, 30] NN and ¢ € [0.5n,, 0.75n,] N N.

In the following, we present an advanced aoTRM-LS algorithm (A3a, Figure 2) that
contains the treatment of missing observations and therefore yields an output in any data

situation. Note that the output is possibly a missing value if there is too little data infor-

mation.
| start: observations of k variables Y7,...,Y) in time window {t — n(t) + 1,...,t} with ¢t = n(t) = nmin ‘
—»] consider only those k(t) variables Y; with i € J(t); set ﬂ?OTRM_LS(t) = (o) for i ¢ 3(t) ‘
es set ﬂ?DTR]M_LS(t) _ (.)

is k‘(t) =07 e

nol

perform the univariate aoRM procedure for each Y;, ¢ € J(¢), in the time

for all i = 1,...,k; set now(t) = n(t)

window {t —n(t) +1,...,t} to obtain k(¢) individual window widths n;(t)

yes | store the aoRM signal estimation, referred
is k(t) =17 |—>

nol

| set the overall window width moy (t) = min{n;(t), 7 € J3(¢)} |

'

perform univariate oRM regression for each Y;, ¢ € J(t), in the window {t — now(t) + 1,...,t}]

to as ﬂ‘inRMfLS(t); set noy (t) = ni(t)

replace missing values by the respective oRM level ¢BM (¢ — noy(t) +5), s =1,...,nov(t)

'

for Y;, ¢ € J(t), perform the remaining steps of the multivariate oTRM-LS algorithm

and store the signal estimations ﬂ;wTRM_KQ (t)

—‘ update window w.r.t. all k variables: n(t + 1) = min{nov(t) + 1, nmaz}; set t +1 to t |<—

; remove replaced values from the sample

Figure 2: The aoTRM-LS algorithm including the treatment of missing values (AS3a).
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% At each time  we consider only those k(t) variables Y; with i € J(¢) and set 2" M =15 (4) =
2 (o) for i ¢ J(t). If k(t) = 0, we set nyy(t) = n(t) and per M =L5(t) = (o) for alli = 1,. .., k,
2 and the iteration at time t is finished. Otherwise, the univariate aoRM procedure is per-
7 formed for each Y;, i € J(t), in the time window {t —n(t) +1,...,t} to obtain the k(t)
8

9 individual window widths n;(t). If k(t) = 1, the aoRM signal estimation a2 (t), i € 3(t),
10

11 is stored, we set the overall window width n,,(t) = n;(t), and the iteration at time t ends.
12 . . N .
13 If k(t) > 2, we set ny,(t) = min{n;(¢), ¢ € I3(t)} and perform the univariate oRM regression
1;1 for each of the k(t) variables in the time window {t — n,,(¢t) + 1,...,¢} based on the non-
is missing window observations. Then missing observations are replaced by the corresponding
ig level of the oRM regression line (8), and the remaining steps of the o TRM-LS algorithm can
20 be executed to obtain the k() signal estimations " ®M=L9(t), i € J(t). Afterwards the
21

22 replacements of the missing observations are removed from the window sample. Finally, the
23

24 update process in done as described in A3 regarding all k& variables.

25

26

27

28 3 APPLICATION

29

30 In this section we apply the proposed aoTRM-LS filter to online-monitoring data mea-
31

32 sured at a frequency of once per second on an intensive care unit and suggest further options
33

34 for improving the signal filtering.

gg We extract the signals retrospectively from an observed multivariate time series of a
2573 patient including the variables

39

40 e systolic, mean, and diastolic arterial blood pressure (ABP.S, ABP.M, ABP.D),

41

42

43 e heart rate (HR) and pulse (PLS),

44

45 e and systolic, mean, and diastolic pulmonary artery blood pressure (PBP.S, PBP.M,
46

47

48 PBP.D).

49

50 The aim is to filter out noise and irrelevant outliers while clinically relevant level shifts and
51

52 trends are preserved. In practice, the signal filtering has to be performed in real time.

53

54

55

56 14

57

58

59

60
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Figure 3 shows 600 seconds of the observed time series (grey). In order to ease the
visualization, the particular univariate time series are shifted up- or downwards, respectively,
by a fixed amount. The plotted a0TRM-LS signal extraction (black) is based on the filter
settings Nymin = 50, Mmee = 100, and n;, = 20. We choose n, = 20 and ¢ = 15 for the

treatment of missing values.

250

200

ABP.S
150 - :

ABP.M \d'

100 | ABPD
PLS
HR

50
PBPR.S
PBP.M - U ——
PBP.D S S

O |

I T T T T T T T T 1
11:30 11:31 11:32 11:33 11:34 11:35 11:36 11:37 11:38 11:39 11:40
time

Figure 3: Online-monitoring measurements (grey) of eight physiological variables and

a0 TRM-LS signal extractions (black).

The unfiltered time series of the arterial blood pressures exhibit two conspicuous peaks
around time 11:32:30 and 11:38, that both caused a threshold alarm. Since the peaks are
assessed by a physician to be clinically irrelevant, we regard the given alarms as false positive.
Furthermore, several observations are missing, for example concerning the pulmonary artery
blood pressures after 11:35.

The aoTRM-LS filter yields the first signal estimation at time t = n,,;, = 50. The
observed time series is smoothed, i.e., observational noise is suppressed, and the two peaks

are neglected. For the first peak the filter detects 10 and for the second peak 14 subse-
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quent outlying observations. These outliers are removed from the window sample before the
multivariate Least Squares regression is performed. Thus two false alarms would have been
avoided within these ten minutes if the filter had been applied in real time.

As can be seen for the pulmonary artery blood pressures after 11:35, the signal is not
estimated when too many observations are missing. Since we choose n, = 20 and ¢ = 15, the
signal estimation is interrupted once n, —g¢+1 = 6 of the 20 most recent window observations
are missing, and it is resumed as soon as ¢ = 15 new non-missing measurements are present
in the time window.

Since the signal is estimated robustly at the right end of the time window, level shifts and
trend changes are traced with a certain time delay. This delay depends on the chosen inputs
ny, and N,,: the smaller ny,, the sooner level shifts and trend changes cause a decrease of

the window width; the smaller n,,;,, the sooner level shifts and trend changes are traced.

Although the filter neglects noise and outliers as requested, it shows two drawbacks:

1. After sudden level shifts or trend changes the filtering outputs often deviate distinctly

from the measurements and even exceed the range of the window observations.

2. When we apply the aoTRM-LS and the oTRM-LS filter to multivariate online-moni-
toring time series from intensive care, we observe that the signal estimations bear
conspicuous similarity to each other if the minimum window width n,,,;, of the aoTRM-
LS and the fixed window width n of the oTRM-LS filter are chosen equally. That is,

there is no obvious effect of the window width adaption for this type of data.
In order to overcome these drawbacks, we suggest two simple options for improving the signal

estimation.

3.1 Improvements
After sudden level shifts or trend changes in the observed time series, the signal estimates
often deviate distinctly from the measurements. Such deviations occur since the signal is

estimated robustly: a trend change is not detected until there are enough observations

16
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that follow the new trend; until then the filter carries forward the old trend so that the
signal estimation is possibly greater (less) than the maximum (minimum) of the window
observations. Sudden level shifts induce such distinct deviations in a similar way:.

We suggest to restrict the signal estimations to the observational range of the window

sample, i.e., we set

eI () = max {y"" (1), min {u(t) , y"* (1)} } (9)
where y"(t) is the minimum and 3!"**(¢) the maximum of the observations of variable Y;,
i € J(t), in the time window {t — n,,(t) + 1,...,t}. This restrict-to-range-rule may cause

constant signal values over some time. However, since the filter output never exceeds the

range of the window sample, we obtain less biased signal estimations.

The above-described similarity of the oTRM-LS and aoTRM-LS signal estimates is in-
duced by the fact that the aoTRM-LS output at time ¢ is equal to that of the o TRM-LS filter
if noy () = n. Intensive care online-monitoring time series often exhibit structural changes so
that at least one individual window width is close to or equal to n,,;, most of the time. Since
the overall window width n,,(t) is determined by the minimum of the individual window
widths n;(t), it is ny,(t) & Ny, for a large part of time points ¢.

In order to determine n,,(t), we cannot replace the minimum by the mean or median,
for instance, due to the assumption of local linearity in (5). Our proposed solution is based
on the fact that the observed variables in clinical online-monitoring show a certain block
dependence structure, see Figure 3. Here we find three blocks of highly correlated variables:
the block of arterial blood pressures, the block of pulmonary artery blood pressures, and
the block of heart rate and pulse. Hence, for ’instable’ multivariate time series that exhibit
a known block dependence structure, we suggest to apply the aoTRM-LS filter not to the
whole multivariate time series but separately to each particular correlation block. Thus a
small n,(t) effects only the variables in the corresponding block but not those that do not
refer to that block. For intensive care time series the proposed blockwise aoTRM-LS filtering

yields signal estimates which are less volatile than the 'simple’ aoTRM-LS signal estimates.
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In order to improve the filter output for the online-monitoring time series from Figure 3,
we apply the aoTRM-LS filter separately to the three blocks composed of the arterial blood
pressures, of the pulmonary artery blood pressures, and of heart rate and pulse, and restrict
the estimates to the observational range by (9). The input settings are chosen according to
the first application, i.e., Ny = 50, Nyper = 100, ng, = 20, n, = 20, and ¢ = 15. Figure 4

shows the online-monitoring data (grey) and the extracted signals (black).

250
200
ABP.S
150
ABP.M
100 | ABPD
PLS W
HR W
50
PBP.S ——e
PBP.M SVNIVY SN SEPPT UV SIPL VI W S
PBP.D e e e R

O -
I T T T T T T T T T 1
11:30 11:31 11:32 11:33 11:34 11:35 11:36 11:37 11:38 11:39 11:40
time

Figure 4: Online-monitoring measurements (grey) of eight physiological variables and signal

extractions by blockwise ao TRM-LS filtering with restrict-to-range-rule (black).

The blockwise aoTRM-LS filtering results in smoother signal extractions compared to
the signals filtered by the 'simple’ a0 TRM-LS method in Figure 3, as can be seen concerning
the time series of heart rate and pulse. The effect of the restrict-to-range-rule (9) is obvious
when the signal estimations are constant. At some of these positions the signal estimations
from Figure 3 deviate distinctly from the measurements, e.g., the pulse signal extractions

around time 11:32 and 11:33.
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4 SUMMARY

The adaptive online Trimmed Repeated Median-Least Squares filter (a0TRM-LS) is de-
veloped specifically for the online extraction of relevant signals from noisy non-stationary
multivariate time series. It combines the advantages of two existent filters: the univariate
adaptive online Repeated Median filter (aoRM) and the delayed multivariate Trimmed Re-
peated Median-Least Squares regression (TRM-LS). The aoTRM-LS filter robustly separates
relevant signals of k-variate time series from noise and outliers at the right end point of a
moving time window whose width is adjusted according to the present data structure. Fur-
thermore, the local covariance structure of the variables is considered for the online signal
estimation and detection of multivariate outliers.

The problem of frequently occurring missing observations, which arise for example in
physiological online-monitoring time series from intensive care, is overcome by a simple
replacement strategy which works in real time. However, in order to guarantee that the
signal estimation is based on a sufficiently large and current set of observations, the signal
is extracted only if enough recent non-missing observations are present.

Applications to physiological time series from intensive care show that the aoTRM-LS
filter can be improved further: firstly, by a simple bounding rule that restricts the signal
estimations to the observational range and thus diminishes the bias; secondly, the variability
of the signal extraction can be reduced by applying the filter to separated blocks of highly
correlated variables. However, the variables must possess a well-known block dependence

structure for this purpose.

Most intensive care online-monitoring units apply threshold alarm systems that trigger
an alarm when either the upper or lower threshold is crossed. Due to frequent outliers these
alarm systems involve up to 90% false positive alarms (Chambrin et al., 1999). This non-
satisfying low specificity can be expected to be considerably increased by the aoTRM-LS
filter if the alarm thresholds are applied not to the measurements but to the online sepa-

rated signals instead. However, since correct alarms must not be suppressed, a sensitivity of
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100% is required. That is, the filter must be able to distinguish between clinically relevant
structural changes in the data and (patches of) irrelevant outliers. If we define the difference
between a structural change and a patch of outliers by the number of deviant observations,

we can choose the inputs ny, and n,,;, accordingly and obtain 100% specificity and sensitivity.

©CoO~NOUTA,WNPE

11 The new aoTRM-LS filter is provided in the R-package robfilter (Fried and Schett-
13 linger, 2008) by the function madore.filter (). This package also offers several univariate

robust filtering methods, for example the oRM and the aoRM filter.
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