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ABSTRACT

Measures of distributional symmetry based on quantiles, [.-moments and trimmed [-moments
are briefly reviewed, and (asymptotic) sampling properties of commonly used estimators con-
sidered. Standard errors are estimated using both analytical and computer-intensive methods.
Simulation is used to assess results when sampling from some known distributions; bootstrap-
ping is used on sample data to estimate standard errors, construct confidence intervals and
test a hypothesis of distributional symmetry. Symmetry measures based on 2- or 3-trimmed
[.-moments have some advantages over other measures in terms of their existence. Their

estimators are generally well-behaved, even in relatively small samples.
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1. INTRODUCTION

Symmetry measures based on a distribution’s quantiles, for example the quartiles or the
octiles, have a long history, and go back at least to Bowley (1937). These measures have
a number of advantages; for instance, they exist for all probability distributions, they are
easy to define and simple to estimate from sample data. More recently measures based on L-
moments and trimmed [.-moments have been proposed. There are some superficial similarities
between these measures and the quantile measures, but they are more sophisticated in terms
of existence, definition and estimation.

This paper investigates properties of these types of symmetry measure, including sampling
properties of their estimators. Quantile measures are considered in Section 2, and L-moments,
trimmed [-moments and measures based on them in Section 3. For both types of measure
straightforward sample estimators are introduced, and their sampling distributions consid-
ered, one aspect being methods for determining their standard errors at least approximately.
The properties of the estimators are investigated for a number of standard distributions, viz.
the standard normal, the uniform on the interval (0, 1), the exponential with mean 1, and
where possible, the standard Cauchy. Calculated standard errors are compared with values
obtained by simulation. The methods are also applied to data sets which come from an un-
known probability distribution, and in these cases bootstrap methods are used to determine
a confidence interval for the distribution’s symmetry measure, and to test for distributional
symmetry. Coverage properties for these confidence intervals are assessed by means of a small
scale simulation study. Normal Q-Q plots have been used to give an informal indication of
how close simulated distributions of estimators are to normality; they are not always included
when they indicate normality is reasonable. Computing was carried out using the R system

for statistical computing (R Development Core Team (2008)).

DATA SETS

Two data sets, each regarded as a single sample from an unknown population, are used
throughout to illustrate aspects of the methods. They are the aircraft window strength data
set (sample size n = 31) and the ceramic strength data set (sample size n= 240) taken from
NIST/SEMATEC (2006) e-Handbook of Statistical Methods. Five-number summaries of

these data sets consisting of the two extremes and the three quartiles are as follows:

2
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data set n 5 number summary

aircraft window strength | 31 | 18.8 25.5 29.9 35.9 45.4

ceramic strength 240 | 382 660 698.5 731.5 816

Normal Q-Q plots are given in Figure 1.1. The ceramic strength data set is clearly not from a
normal distribution, but from a distribution which is strongly asymmetric with a long lower
tail. On the other hand, the aircraft window strength data set may come from a symmetric
distribution, possibly a normal distribution. Indeed, the standard Kolmogorov-Smirnov test

for normality has p-value 0.074.

Figure 1.1: Normal Q-Q plots for the aircraft window strength and ceramic strength data

sets.

normal quantile
normal quantile
0
Il

20 25 30 35 40 45 400 500 600 700 800

aircraft window strength ceramic strength

2. MEASURES OF SKEWNESS BASED ON QUANTILES

One of the earliest symmetry measures for distributions based on quantiles is the quartile-
based measure often referred to as Bowley’s coefficient (e.g. Bowley (1937)). It compares the
distance of the upper quartile (F71(0.75) = @3, say) from the median (F~1(0.5) = M,
say) with the distance of the lower quartile (F/°=1(0.25) = @1, say) from the median relative

to the interquartile range, Q3 — @1, and is given by

F71(0.75) — 271(0.5) + F71(0.25) .
F=1(0.75) — F=1(0.25) ’ ()

Q3 —2M + _

©S="0 0

where F'~! is the inverse of the cumulative distribution function.

Further quantile measures can be defined in a similar way; a generalisation of Bowley’s

3
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coeflicient is to define for fixed a, 0 < o < 0.5, an a-quantile symmetry coefficient by

Y1 =) = 2F71(0.5) + FH(a)
- - ®

S(a) =

Bowley’s coefficient is given by Q.5 = 5(0.25); the octile symmetry coefficient O.S = 5(0.125)
has also received some attention. S(«) takes the value 0 for any symmetric distribution;
otherwise it lies in the interval [-1, +1]. As an illustration, for the exponential distribution
with mean 1, S(0.25) = In(4/3)/In(3) = 0.2619 and S(0.125) = In(16/7)/In(7) = 0.4248.
However, it is possible to find non-symmetric distributions for which S(a) = 0.

An obvious drawback of S(a) as a measure of symmetry is that it ignores symmetry in the
tails of the distribution outside the upper and lower a-quantiles; a smaller value of @ may
be preferred to a larger one. An alternative is to average the numerator and denominator
in Equation (2) separately over @, 0 < o < 0.5. If a uniform weighting for « is used, it is

straightforward to show that the resulting symmetry measure will be given by

T 1< W< 41 (3)
E(|X — M)’ -

where = E(X) is the mean of the distribution. However, this measure can only be defined
for a distribution whose mean exists, unlike S(a) in Equation (2) which always exists. For
a symmetric distribution, ¥ = 0, and for the exponential distribution with mean 1, ¥ =

(1—1n2)/In2 = 0.4427.

2.1 A SAMPLE ESTIMATOR OF S(a)
When a sample of size n is taken from a parent distribution with cumulative distribution
function F(z), a commonly used estimator of S(«) is the sample equivalent form of Equation

(2), that is
F=1(1—a) = 2F71(0.5) + ' ()
F-1(1-a) — F-1(a) .

5(0) = (1)

where F“l(a) is the inverse of the sample cumulative distribution function, i.e. the sample
quantile function, so F“1(0.25) is the sample lower quartile.

For a symmetric parent distribution, S’(oz) will be unbiased, but typically will be biased

otherwise.

4
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ASYMPTOTIC VARIANCE OF S(a)

Kendall, Stuart and Ord (1987, Chapter 10) give a method for obtaining the asymptotic
(large sample) variance of 5’(04), and they derive an expression for this variance in the case
a = 0.25. Writing Q, = F~'(a) and M = F~1(0.5), and denoting the probability density
function of the parent distribution evaluated at }, by f, and at M by fas, in the case of

general «, the asymptotic variance takes the form:

ar (Ste)) = n(@l_;— Q. {or-en (fLM - f?i)

e (7= 7))

+ da(l - 20) K%)QJF (Ql‘ﬂ}igMﬂ} 5)

For the symmetric case, fo, = fi—a, M — Qo = Q1—o — M and Q1-o — Q4 = 2(Q1-0 — M),

whence Equation (5) reduces to

~ 1 1 20 4o
w500 = g (7 - k) ®

Table 2.1 shows the value of nvar (5’(04)) for @ = 0.25,0.125 and 0.05 for some standard
distributions. Note that for the Cauchy distribution, in contrast to the other distributions,

variability in S(«) increases as o decreases.

Table 2.1: Value of nvar (S(a)) from Equations (5) or (6), as appropriate, for several

standard probability distributions.

a=02 a=0.125 a=0.05

standard normal 1.8390 1.1514 1.0002

10

9

Wb

uniform on (0, 1) 2

exponential, mean 1 1.7824 0.9838 0.7260

standard Cauchy | 2.4674 3.9128 9.8916

SAMPLING DISTRIBUTION OF S(a)
The exact sampling distribution of S(a) for a sample of size n is difficult to determine in
general. The numerator and denominator defining S(«) in Equation (4) are both linear com-

binations of sample quantiles, and hence of some of the central order statistics. From Serfling

5
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(1980, p91) asymptotically they have a bivariate normal distribution. Application of The-
orem 3.3.A in Serfling(1980, p122) shows that S(a) is asymptotically normally distributed,
with mean S(«) and variance given by Equations (5) or (6), as appropriate. Depending on
the form of the parent distribution, the sample size n may have to be exceedingly large for
this result to hold, even approximately.

Simulation may be used to give an indication of the form of the sampling distribution of S(a)
when sampling from a particular distribution. Some results for the estimators $(0.25) and
5’(0.125) with samples of sizes n = 30, 300 for the distributions in Table 2.1 are presented in
Tables 2.2 to 2.5 and Figures 2.1 to 2.4. These results are based on simulations of 10,000
samples. These simulated distributions are summarised by means of quartiles, mean and
standard deviation, and a normal Q-Q plot. When n is large enough the standard deviation of
the simulated distribution and the asymptotic standard error of S(a) derived from Equations
(5) or (6), as appropriate, should be close in value.

From Tables 2.2 to 2.5 and Figures 2.1 to 2.4 the asymptotic standard error appears to
overstate the standard error of the estimator for all the distributions, although the bias is
small when n = 300. For the symmetric distributions, the sampling distributions have shorter
tails than a normal distribution when n = 30. This feature is not unexpected as quantile
measures of symmetry are constrained to lie in the interval [-1, +1]. In the large sample
(n = 300) case for these distributions, the sampling distributions of both estimators are well
described by the normal distribution apart from some extreme tail discrepancies.

For the exponential case the bias of the estimators is evident when n = 30, but is not so

noticeable when n = 300. The sampling distributions for all the estimators are negatively

skewed with short upper tails, although the skew is not particularly strong when n = 300.

2.2 ESTIMATING QUANTILE SYMMETRY MEASURES FROM DATA

In many applications the form of the distribution from which a data set has been sampled
will not be known, in particular whether or not the parent distribution is symmetric. For a
given value of a, S(a) defined in Equation (4) can be used to estimate S(«). Conclusions
about S(a) can then be based on confidence intervals for S(«), or on testing a hypothesis

about S(a), for example that S(a) = 0.

6
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Table 2.2: Statistics from simulated sampling distributions for three quantile symmetry

estimators 5’(04), a=0.25, 0.125 and ¥ using samples of sizes n = 30, 300 from a standard

normal parent distribution; asymptotic SD for 5’(0/) from Table 2.1.

a=0.25 a=0.125 1%

n=30 n=300| n=30 n=300|n=30 n=2300

lower quartile | -0.1595 -0.0528 | —-0.1287 -0.0426 | -0.113  -0.037
median | 0.0018  0.0005 | 0.0010 -0.0006 | —0.001  0.001

upper quartile | 0.1679  0.0529 | 0.1282  0.0417 | 0.112 0.038
mean | 0.0025 -0.0001 | -0.0002 -0.0008 | —0.001 —0.001

SD | 0.2345  0.0777 | 0.1873  0.0619 | 0.164 0.054

asymptotic SD | 0.2476  0.0783 | 0.1959  0.0620 - -

Table 2.3: Statistics from simulated sampling distributions for three quantile symmetry

estimators 5(&), o = 0.25, 0.125 and ¥ using samples of sizes n = 30, 300 from a uniform

parent distribution; asymptotic SD for 5(&) from Table 2.1.

a=0.25 a=0.125 v

n=30 n=300 n=30 n=300|n=30 n=2300

lower quartile | —=0.1720 -0.0534 | —0.1443 —0.0460 | —0.141 —0.045
median | -0.0041  0.0005 | -0.0015 0.0008 | —0.002 —0.001

upper quartile | 0.1639  0.0560 | 0.1358  0.0459 | 0.137 0.044
mean | —0.0032  0.0011 | -0.0034 0.0006 | —0.001 —0.001

SD | 0.2382  0.0807 | 0.1986  0.0664 | 0.196 0.067

asymptotic SD | 0.2582  0.0816 | 0.2108  0.0667 - -

Page 8 of 27

In general, it would not be safe to assume that the sampling distribution of S(a) is even
approximately normal. It may be for a very large sample from a parent distribution which
is not heavily skewed, in which case an estimate of the standard error based on Equation
(5) would be needed. This itself requires estimates of the density at the median and at the
upper and lower o quantiles. It therefore seems appropriate to use nonparametric bootstrap

methodology to obtain confidence intervals for S(a) and to test the hypothesis that S(«) = 0.
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1
2
3 ~ ~ ~
4 Figure 2.1: Normal Q-Q plots for S(0.25), 5(0.125) and ¥ for samples of size n = 30, 300
5
6 from the standard normal distribution (10,000 simulations).
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48
49 Bootstrap sampling was carried out using the standard non-parametric bootstrap procedure
22 in the R system (R Development Core Team (2008)) with 10,000 resamples to obtain standard
gg errors of the skewness estimators and 95% confidence intervals (Cls) for §(0.25) and S(0.125).
54 Confidence intervals were generated using the bias corrected and adjusted (BCa) bootstrap,
55
56 the method advocated by Efron and Tibshirani (1993). Section 2.4 shows some results from
57
58 a small scale simulation study of the coverage rates of BCa bootstrap Cls for S(0.25) and
59
60 5(0.125) using the distributions in Table 2.1.
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Figure 2.2: Normal Q-Q plots for §(0.25), §(0.125) and W for samples of size n = 30, 300

from the uniform distribution on (0, 1) (10,000 simulations).
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In addition, the numerator and denominator of 5’(04) in Equation (4) are both linear com-
binations of the sample order statistics, so are L-estimators. Hutson and Ernst (2000),
abbreviated to HE, show how to determine the exact nonparametric bootstrap estimates of
the mean, the variance and the covariances for L-estimators, from which an approximation to

the bootstrap standard error of the ratio of two such estimators can be found using Fieller’s

Theorem; that is for random variables X and Y with px = E(X) and py = E(Y) # 0,

var (;) = [(M—X>2 var(Y) — 2 <'M—X> cov(X,Y) + var(X)| . (7)

py |\ py py
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Table 2.4: Statistics from simulated sampling distributions for three quantile symmetry

estimators 5’(04), o =0.25, 0.125 and ¥ using samples of sizes n = 30, 300 from an

W = (.4427; asymptotic SD for S(a) from Table 2.1.

exponential (mean 1) parent distribution for which S(0.25) = 0.2619, S(0.125) = 0.4248 and

a=0.25 a=0.125 7
n=30 n=300|n=30 n=300|n=30 n=300
lower quartile | 0.0871  0.2092 | 0.3055 0.3838 | 0.319 0.408
median | 0.2566  0.2611 | 0.4281 0.4240 | 0.434 0.442
upper quartile | 0.4126  0.3127 | 0.5423  0.4632 0.539 0.477
mean | 0.2433  0.2597 | 0.4161 0.4223 | 0.421 0.441
SD | 0.2315  0.0767 | 0.1722  0.0572 | 0.160 0.052
asymptotic SD | 0.2437  0.0771 | 0.1811  0.0573 - -

Table 2.5: Statistics from simulated sampling distributions for three quantile symmetry

estimators 5(&), a=0.25, 0.125 and ¥ using samples of sizes n = 30, 300 from a standard

Cauchy parent distribution; asymptotic SD for S(a) from Table 2.1.

a=10.25 a=10.125 v

n=30 n=300 n=30 n=300|n=30 n=2300

lower quartile | —0.1892 —0.0590 | —0.2397 -0.0758 | —0.344 —0.238

median | 0.0013  0.0020 | 0.0007  0.0024 | —-0.003 —0.006

upper quartile | 0.1889  0.0629 | 0.2395  0.0785 | 0.340 0.226
mean | 0.0004  0.0016 | -0.0003 0.0015 3 -
SD | 0.2661  0.0895 | 0.3296  0.1121 - -
asymptotic SD | 0.2868  0.0907 | 0.3611  0.1142 - -

The HE computations require the evaluation of the exact bootstrap estimates of the covari-
ances between all the order statistics which occur in the numerator and in the denominator
of S(a) in Equation (4). Expressions for such covariances are given in HE Equations (3.1)
and (3.2). For larger data sets, e.g. when n is in excess of 50, computations using the fully
expanded expressions for the coefficients in the covariances may become numerically unreli-

able when they are formed from the sums of terms of opposite signs of increasing magnitude.
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To avoid this, a simple remedy is to use a standard numerical quadrature procedure as, for
example, found in the R system, to evaluate the integral expressions for these coefficients
which are given in HE Equations (3.3) and (3.4).

Some numerical results for the two data sets are presented in Table 2.6. The table gives both
estimated and ‘exact’ HE bootstrap standard errors for S(a), a = 0.25,0.125, along with
the bootstrap 95% Cls for the corresponding S(«). In all cases, the estimated and the HE
standard errors are close to each other. For the window strength data, the Cls contain 0,
indicating no evidence of asymmetry with either of these measures. From the 95% Cls for
the ceramic strength data there is no evidence of asymmetry with S(0.25), but there is some

evidence of asymmetry with §(0.125).

Figure 2.3: Normal Q-Q plots for 5(0.25), S(0.125) and W for samples of size n = 30, 300

from the exponential distribution with mean 1 (10,000 simulations).
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Figure 2.4: Normal Q-Q plots for $(0.25) and S(0.125) for samples of size n = 30, 300 from

the standard Cauchy distribution (10,000 simulations).
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Table 2.6: Bootstrap standard errors (estimated and HE) for S(), a = 0.25, 0.125 and W,

and 95% bootstrap confidence intervals for S(a) and ¥ for the aircraft window strength (n

31) and ceramic strength (n = 240) data sets.

window strength

ceramic strength

a=102 «a=0.125 v a=0.25 a=0.125 v
S(oe) 0.154 0.169 0.150 -0.077 -0.173 —-0.201
est’d SE 0.421 0.308 0.330 0.102 0.064 0.062
HE SE 0.419 0.298 - 0.103 0.065 -
95% CI | -0.60, 0.75 —0.52, 0.64 | —0.44, 0.63 | -0.29, 0.11 -0.30,-0.05 | -0.32, —0.08
12
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BOOTSTRAP HYPOTHESIS TESTS ABOUT S(«)

Bootstrap methods were also used to test the null hypothesis Hy : S(a) = 0, loosely the
symmetry hypothesis. First, for the data set y, ..., y,, with median M, a symmetric version
was constructed comprising the 2n values y;, 2M —y;, i=1,...,n (Davison and Hinkley
(1997), p78). Then 10,000 bootstrap samples were taken to estimate the sampling distribution
of 5’(&) under Hy. The estimated p-value for the test is the proportion of simulated values
whose absolute value is at least as large as |S(a)|. For the window strength and ceramic

strength data sets, the p-values for testing Hy with @ = 0.25,0.125 are:

window strength ceramic strength
a=0.25 0.829 0.386
a=0.125 0.666 0.007

The p-values are, of course, subject to bootstrap sampling error, but confirm the conclusions

made about symmetry from the 95% Cls for these data sets.

2.3 ESTIMATING ¥
Similar simulation and bootstrap approaches can be applied to the estimation of W, the
average quantile symmetry measure defined in Equation (3). As mentioned before, this
measure only exists for distributions with a mean, so cannot be defined for the Cauchy
distribution.
For a random sample of size n, the corresponding sample statistic

X-M

V="
v

?

where X is the sample mean, M is the sample median and V = %zn]XZ — M|, is an
estimator of W. The sampling distribution of ¥ will not be known in delneral, so is most
easily investigated by simulation. Similarly, given sample data, bootstrapping can be used
to make inferences about W.

Tables 2.2-2.5 and Figures 2.1-2.3 also include some results for W based on the same sample
sizes for the distributions considered before. For the normal and uniform cases, W is an
unbiased estimator of W, and its sampling distribution is symmetric. In both these cases

when n = 300 the distribution is close to being normal, but when n = 30 the distributions

are slightly short-tailed. For the exponential distribution, U appears biased, the bias reducing

13
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with increasing n. The sampling distribution of ¥ approaches normality much more slowly
than for either of the two symmetric distributions. When n = 300, the distribution still has
a noticeable negative skew. As the Cauchy distribution has no moments, neither does ¥, and
its sampling distribution is very heavy tailed relative to the normal distribution.
Bootstrapping was used in the same way as for estimating the quantile measures of skewness
both to estimate the standard error of W and to obtain Cls for W. Results for the two data
sets, i.e. aircraft window strength data (n = 31) and ceramic strength data (n = 240), are
given in Table 2.6.

A bootstrap test of the null hypothesis Hy : W = 0 was carried out in the same way as before.
The resulting p-values are: for the window strength data 0.763, and for the ceramic strength
data 0.002. The bootstrap confidence interval and test results indicate that it would not be
unreasonable to assume that the window strength data come from a symmetric distribution,

but the ceramic strength data come from a distribution with a negative skew.

2.4 COVERAGE RATES FOR BOOTSTRAP CONFIDENCE INTERVALS

Coverage rates for 90% and 95% BCa bootstrap Cls for S(0.25), S(0.125) and ¥ from the
four distributions in Table 2.1 were estimated from 200 simulations each using 2000 bootstrap
samples. Results are presented in Table 2.7 for the sample size n = 30. The standard errors
of the coverage rate estimators for the 90% and 95% Cls are 2.1% and 1.5%, respectively.
Generally, the estimated coverage rates are in line with the corresponding nominal values,

and in a similar study using a sample size n = 300, all the estimates were in line.

Table 2.7: Estimated coverage rates for BCa bootstrap 90% and 95% Cls for 5(0.25),
5(0.125) and W for four distributions using a sample size n = 30. Results from 200

simulations using 2000 bootstrap samples.

5(0.25) | S(0.125) v

90% 95% | 90% 95% | 90% 95%
normal 88.5 94.5 |1 91.0 96.0 | 92.5 97.5

uniform 92.0 96.5 | 90.5 95.5 | 87.0 90.5

exponential | 90.5 95.5 | 91.0 98.5 | 88.0 95.5

Cauchy 93.0 98.0 | 89.5 96.0 | - -
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3. MEASURES OF SKEWNESS BASED ON L-MOMENTS

L-moments and trimmed L-moments are discussed by Hosking (1990) and Elamir and Se-
heult (2003), respectively. These quantities naturally give rise to skewness measures for
distributions which bear superficial similarities to S(a) in Equation (2).

The r** L-moment of a distribution, \,, is defined in terms of the expected values of the

order statistics in a random sample of size r,r = 1,2, ..., if they exist. In particular, using
the notation X, for the k' order statistic in a random sample of size m, k =1, ..., m,
1 1
M =E(Xya)=p, = §E(X2:2 — Xi:2) andA3 = §E(X3:3 —2Xo:3+ X1:3), (8)

as long as the expectations exist. Ay is clearly the distribution’s mean; As is a measure of
spread or scale, and is half of Gini’s mean difference; A3 is a measure of skewness in that for
a random sample of size 3, it gives a multiple of the expectation of the difference between
the distances of the largest and the smallest values from the median, so is 0 for symmetric
distributions. A unitless measure of skewness can then be defined as 73 = A3/X2, with
—1 < 13 < +1. For a symmetric distribution 73 = 0 as long as the required expectations
exist. Elamir and Seheult (2003) call the sample sizes used in these definitions ‘conceptual
sample sizes’ to distinguish them from the number of observations taken, i.e. the sample size
n, in order to make inferences.

Now if E (| X|*), ¢ > 0, exists, then E (| Xx.m|") also exists when r,a, k and m satisfy r <
amin(k,m — k 4+ 1) (David (1981), p34). Thus, for example, with the standard Cauchy
distribution, as E (| X |*) exists fora = 1—¢, € > 0, E (| Xj.,|") exists for r < (1—¢) min(k, m—
k+1). In particular for the Cauchy example, E (Xj.,) exists for k = 2, ..., m — 1, but not for
k = 1or k = m, and so none of the L-moments, \,, exist as each one involves the expectations
of the most extreme of the order statistics in a sample of size r. Similarly, E (X7, ) only
exists for £k = 3,...,m — 2.

The r** t-trimmed L-moment, )\,(«t), is defined in terms of the expected values of the order
statistics from a random sample of conceptual size r 4+ 2f, and it does not involve either the
t largest or the ¢ smallest order statistics. For r = 1,2, and 3, )\7(}) are measures of central

location, spread and skewness, respectively, as for the untrimmed L-moments. The ¢-trimmed

[L-moments of order r < 3 and the corresponding unitless skewness coefficients are defined

by:
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A = E(Xet1:2e41); AW = TE(Xes22042 = Xitr2042)
Aff) = %E(Xt+3:2t+3 — 2X 422643 + Xeg1:2643); T:Et) = )\gt)/Agt)

as long as the expectations exist. In this case, Hosking (2007) shows that |T:§t)| < 202t +
3)/3(t + 2), and gives an example of a distribution for which |T:§t)| > 1 is attained, £ > 0.
Note that )\gt) is the expectation of the median in a conceptual sample of size 2¢t+1. The above
definitions also apply to the case t = 0, giving rise to the .-moments A, = )\7(n0), r=1,2,3,in
Equation (8) and 75 = T?EO).

Hosking (1990) gives values of the first four untrimmed L-moments and of 75 for a number of

standard distributions. Elamir and Seheult (2003) give values of the corresponding 1-trimmed

(1) () (*)

[-moments and of 73 7. For a symmetric distribution, Ay’ and 73

(t)

the necessary expectations exist. For the normal distribution A;

are, of course, 0 as long as
= 0, and using symmetry
about 0, A\ = F(X42:2042). The values of Al are 0.56419, 0.29701, 0.20155 and 0.15251 for
t = 0,1,2,3, respectively; these values can also be found in Teichroew’s (1956) tables. For

the uniform distribution, )\gt) =1/2and )\gt) = 1/(2(2t+3)). For the exponential distribution

141
1
M = B(Xeprann) = 32 5 A = 1200+ 1)) and AP = 1/(3(t+ 1)(142)). Hence
=1
Tét) = 2/(3(t+ 2)), so that Téo) = %, Tél) = %, T:§2) = % and TBEB) = % For the standard

Cauchy distribution, as long as ¢ > 1 all the required expectations exist.

(1) (2) (3)

Skewness measures based on the ¢{-trimmed moments, e.g. 73/, T3( or 75

(0)

to the untrimmed skewness measure, i.e. 73

, may be preferred
, as they exist for a wider class of distributions;
indeed, the greater the level of trimming, the wider the class of distributions for which the

corresponding trimmed skewness measure exists.

3.1 SAMPLE ESTIMATOR OF 7{"
()

A natural estimator of 73’ from a random sample of size n is tgt) = lgt)/lgt), where l,(nt),
r = 2,3, are the sample t-trimmed L-moments. Elamir and Seheult (2003) use the work by

Downton (1966) on estimators based on linear combinations of the order statistics to define

l,(ﬂt) as the following linear combination of the order statistics X¢y1m, ..., Xn—tn
7“2‘:1 e 1 i—1 n—i
1 n=t = k r+t—1—-kJ\t+k
— /Yi:n- (9)

lf«t) = _
rizzt:+1 n
r+ 2t
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They show that this is an unbiased estimator of )\7(}). Note that in Equation (9) the ¢ largest
and the t smallest order statistics have zero weight, i.e. they have been trimmed, and l,(nt)
depends on all the remaining central order statistics. In contrast S(a) with a corresponding
trimming level o &~ t/n does not depend on all these central order statistics.

In general where the required expectations exist tgt) will be a biased estimator of Tét), although
not for symmetric distributions, and its exact distribution will be difficult to determine. As

tgt) = lgt)/lgt) is a ratio of two random variables, Fieller’s Theorem (Equation (7)) may again

be used to obtain an approximation to Var(tgt)). The resulting approximation

(t)

var(/ cov l(t)’ l(t) 2 var l(t)
Var(tgt)) ~ % _ 2)\?)% + )\gf) ((t)24 ) (10)
A? AQ AQ

should be reasonable for large sample sizes, improving with increasing n. Further, Hosking
(2007) shows that as long as E(| X |2/ (*+1)+¢) exists for some € > 0, tgt) is asymptotically nor-
mally distributed with mean ngt) and variance given by the right hand side of Equation (10).
As for the quantile estimator S(a), simulation or the bootstrap may be used to investigate

(t)

the sampling disribution of 5.

ESTIMATING THE STANDARD ERROR OF "

Elamir and Seheult (2003) show how to obtain cov(l,(nt), lﬁ*)) = E(l,(-t) l@) - E(L(nt)) E(lgt)) =
F)(l,(«t) 1‘2"‘)) — )\,(«t) )\,(f) required in Equation (10). The expression they derive for F)(l,(«t) 1‘2"‘)) is
in terms of the expectations of the squares of order statistics in samples of conceptual size
up to r + s+ 4t — 1 and of the expectations of the products of successive order statistics in
samples of conceptual size up to r + s + 4t.

For the uniform and the exponential distributions expressions for the required expectations
and covariances are given in the Appendix. In the case of the standard normal distribution,
there are exact expressions for some, but possibly not all, the required expectations (see David
(1981)). Additional expected values may be obtained using a single or a double numerical
quadrature routine, as appropriate, as long as sufficient accuracy can be guaranteed. As
this may not always be possible, in particular for any required double quadratures, values
tabulated by Teichroew (1956) can be used. These tables give required expectations in
samples of conceptual size up to 20, sufficient to determine E(L(nt) lgt)) forr,sand t =10,1,2, 3.

For the Cauchy distribution, Var(l,(nt)), r = 2,3 exists for ¢ > 2.
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Table 3.1: Approximate (ES) and simulated standard errors for tgt),t = 0,1, 2,3 for sample

sizes n = 30, 300 from the normal, uniform and exponential distributions. Simulations using

10,000 samples.

normal uniform exponential Cauchy

t n=30 n=300 | n=30 n=300 | =30 n=300|n=30 n=300

0 ES | 0.0842  0.0251 | 0.0798  0.0240 | 0.0943 0.0283 - -
sim’d | 0.0849  0.0252 | 0.0809 0.0245 | 0.0927 0.0283 - -

1 ES | 0.0797  0.0226 | 0.0816 0.0234 | 0.0874 0.0248 - -
sim’d | 0.0798 0.0227 | 0.0827 0.0248 | 0.0883  0.0248 - -

2 ES | 0.0809 0.0217 | 0.0833 0.0226 | 0.0872  0.0235 n/a n/a
sim’d | 0.0809 0.0219 | 0.0840 0.0226 | 0.0857 0.0233 | 0.1560 0.0534

3 ES | 0.0834  0.0210 | 0.0857 0.0218 | 0.0889  0.0225 n/a n/a

sim’d | 0.0840 0.0212 | 0.0871 0.0218 | 0.0882 0.0227 | 0.1269 0.0394

The resulting approximate standard errors of tgt) fort =0, 1, 2, 3 from Elamir and Seheult’s
method (the ES method) are presented in Table 3.1 for the distributions used earlier, apart
from the Cauchy distribution, again with the two sample sizes n = 30,300. The table also
gives estimated standard errors found from 10,000 simulations for all these distributions. The
approximate values and the simulated values for the standard errors agree well for all levels
of trimming across all the distributions. For both the normal and the uniform distributions
normal Q-Q plots of the simulated distributions of tgt) were close to linear for both sample
sizes and all trimming levels. Figure 3.1 shows the normal Q-Q plots for the exponential case
with n = 30; the distributions are slightly negatively skewed with trimming levels ¢ = 0 and
t = 1, but closer to normal with trimming levels ¢ = 2 and £ = 3. Kor n = 300, the normal
Q-Q plots showed that the distributions are close to normal with all trimming levels.

For the Cauchy distribution, only simulated standard errors are given in Table 3.1, and only
for the trimming levels ¢ = 2 and ¢t = 3 for which the required variances and covariances of
the trimmed L-moment estimators exist. For the 2-trimmed estimator, the normal Q-Q plots
in Figure 3.2 indicate long-tailed distributions for both sample sizes, but the distributions

are closer to normal with the 3-trimmed estimator.
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Figure 3.1: Normal Q-Q plots for the t-trimmed L-moment skewness estimator, t = 0, 1, 2, 3;

sample of size n = 30 from the exponential distribution with mean 1 (10,000 simulations).
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3.2 ESTIMATING -MOMENT SYMMETRY MEASURES FROM DATA
(t)

For data from an unknown distribution, the ¢-trimmed L-moment estimator ¢;’ is used to

(t)

estimate the corresponding symmetry measure 75°,¢ = 0,1,2,3, as long as the measure

exists. Also, the analytical methods of Elamir and Seheult (2003) and Hosking (2007) are
(t).

used to determine a distribution free estimator of the standard error of ¢3’; the nonparametric

(t)

bootstrap is also used to estimate the standard error of ¢35’ and further to make inferences

(

about Tgt). Coverage rates of bootstrap Cls are also considered.
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1

2

3

4 Figure 3.2: Normal Q-Q plots for the ¢-trimmed [-moment skewness estimator, t = 2, 3 only,
5

6 for sample sizes n = 30, 300 from the standard Cauchy distribution (10,000 simulations).
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45 A DISTRIBUTION FREE ESTIMATOR OF THE STANDARD ERROR OF ¢,

46

47 Elamir and Seheult (2003) indicate how to obtain an unbiased distribution free estimator of
jg cov(lﬁt) l@) = E(l,(nt) l@) - E(L(nt)) E(lgt)) from a random sample of size n. Hosking (2007),
22 using results from Elamir and Seheult (2004), gives an equivalent expression which is simpler
gg in form. Elamir and Seheult (2004) point out that although covariance estimators obtained
54 in this way are unbiased, when a variance is being estimated there is no guarantee that a
55

56 positive value will be obtained. This is unlikely to be a problem when = is large, but it may
57

58 be when n is small. Given the estimated variances and covariance of lgt) and lgt), an estimated
59

60 variance of tgt) can be found approximately using these estimates in Equation (10). Results
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from the two data sets are considered later.

BOOTSTRAP STANDARD ERRORS FOR #{”, CONFIDENCE INTERVALS FOR 7"
AND HYPOTHESIS TESTING

An alternative approach to obtaining the standard error of tgt) for a data set for which the
distribution is unknown is to use the nonparametric bootstrap in exactly the same way as for
S(a) and W. Note that tgt) is a ratio of L-estimators so the results of Hutson and Ernst (2000)
may be applied as before to determine exact values of bootstrap means, variances and the
covariance of the numerator and denominator L-estimators, and Equation (10) used agian
to obtain an approximation to the bootstrap standard error of tgt). The method requires the
evaluation of covariances between all order statistics involved in Equation (9). When n is

large, the necessary computations may prove to be excessive. Bootstrap hypothesis testing

can again be used to test the null hypothesis that Tét) =0fort=0,1,2 and 3.

COVERAGE RATES FOR BOOTSTRAP CONFIDENCE INTERVALS

Table 3.2 shows the estimated coverage rates for 90% and 95% BCa bootstrap Cls for
(t)

T3 ',t = 0,1,2,3 for the distributions in Table 2.1 using a sample size n = 30. The same
simulation scheme was used as for the results given in Table 2.7. With the possible exception
(0)

of estimating 75 ’ for the exponential distribution, estimated coverage rates are in line with

the nominal rates. With a sample of size n = 300, all estimated coverage rates were in line.

Table 3.2: Estimated coverage rates for BCa bootstrap 90% and 95% Cls for
(t)

T3 ',t =0,1,2,3 for four distributions using a sample size n = 30. Results from 200
simulations using 2000 bootstrap samples.

(0) (1) (2) (3)

T3 T3 T3 T3

90% 95% | 90% 95% | 90% 95% | 90% 95%
normal 87.0 94.5 | 88.5 94.5|92.0 97.0 | 92.5 97.0

uniform 90.0 94.5 1 90.5 94.5 | 90.5 95.0 | 89.5 96.5

exponential | 83.0 92.0 | 91.5 95.5 | 90.5 95.0 | 88.0 93.5

Cauchy - - - - 87.0 93.0 | 89.0 96.5
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RESULTS FOR DATA SETS

The unbiased distribution free method (ES using Hosking’s (2007) formulation) and the
bootstrap methods (both HE and sampling) were applied to the two data sets, aircraft window
strength (n = 31) and ceramic strength (n = 240); the results are given in Tables 3.3 and
3.4, respectively. As before, only BCa bootstrap Cls are given.

For the aircraft window strength data, the ES method leads to some negative variance esti-
mates for all trimming levels considered, hence the ‘n/a’ entries in the table. The HE ‘exact’
bootstrap values are all somewhat smaller than the estimated bootstrap versions. The Cls
all contain 0, and the corresponding p-values for testing a null hypothesis of distributional

(t)

symmetry (i.e. 73’ = 0) are large, indicating that this hypothesis would be a reasonable
assumption in this case.

For the ceramic strength data, computations for the HE ‘exact’ bootstrap values proved
to be excessive, and were not completed. The values from the ES method did not lead to
negative variance estimates, and they agreed closely with the estimated bootstrap values for

all trimming levels. None of the CI’s contained 0 and all the p-values were small, indicating

that distributional symmetry would not be a reasonable assumption in this case.

Table 3.3: Approximate (ES) and bootstrap (HE and estimated) standard errors for tgt),
95% BCa bootstrap Cls for T3(t) and p-values for testing ngt) =0, t=0,1,2,3, for the

aircraft window strength (n = 31) data set.

t 0 1 2 3

£ 0.1021 0.0758 0.0513 0.0472

ES n/a n/a n/a n/a
HE 0.0814 0.0984 0.1091 0.1193
est’d 0.0907 0.1021 0.1158 0.1303

b/s 95% CI | —-0.063, 0.265 | —0.131, 0.267 | —0.188, 0.255 | —0.201, 0.288
p-value 0.249 0.470 0.670 0.741
22
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Table 3.4: Approximate (ES) and bootstrap (HE and estimated) standard errors for tgt),
95% BCa bootstrap Cls for T3(t) and p-values for testing ngt) =0, t=0,1,2,3, for the

ceramic strength (n = 240) data set.

t 0 1 2 3
1) ~0.1980 ~0.1209 ~0.0869 ~0.0676
ES 0.0326 0.0264 0.0247 0.0248
HE n/a n/a n/a n/a
est’d 0.0316 0.0271 0.0257 0.0255

b/s 95% CI | —0.264, -0.139 | ~0.175, ~0.069 | ~0.135, -0.036 | ~0.115, ~0.015
p-value 0.0001 0.0002 0.0005 0.0076

DISCUSSION

This paper has considered measures of skewness based on quantiles, which include the long-
established Bowley’s coefficient 5(0.25), and more recently introduced measures based on
[.-moments and on trimmed [.-moments with low levels of trimming.

The quantile measure, S(«) for fixed @, 0 < & < 1, can be defined for any distribution. Choice
of o is arbitrary; a close to 0.5 assesses symmetry towards the centre of the distribution,

whereas « close to 0 assesses it towards the tails. Neither the averaged form of the quantile

(t)

measure, ¥, nor the [-moment measures, 75 ', necessarily exist as they may depend on

expected values which themselves do not exist. The greater the trimming level ¢ used, the

wider the class of distributions for which a trimmed measure is defined. For example, use

(1)

of 1-trimmed L-moments allows the measure 73’ to be defined for distributions where the

expected values of the two most extreme of order statistics in samples of size 2 and 3 may

(

not exist. This measure exists for the Cauchy distribution, whereas T30) does not. Similarly,

(2) (3)

measures based on 2- or 3-trimmed L-moments, i.e. 737’ and 735", are defined for larger classes

(1)

of distributions than the I-trimmed measure 73 Further trimming may be considered,

but at the expense of assessing symmetry in an increasingly narrow central portion of the
distribution.
Statistical properties of straightforward estimators in samples of size n have also been consid-

(t)

ered. Standard errors always exist for the estimators of S(«) and of 737, > 2, but not always

(0) (1)

for the estimators of ¥, 73/ and T31 . Various analytical and computer-intensive methods
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have been used to determine standard errors of estimators where they exist for a number of
standard distributions, and for unknown distributions based on sample data. Where compar-
isons can be made, nonparametric bootstrap or simulated standard errors and standard errors
from analytical methods are in reasonable agreement with each other, in particular for large
sample sizes. However, neither of the two analytic methods for estimating standard errors
from sample data proved to be entirely satisfactory. The ES method may lead to negative
variance estimates which was evident in the smaller data set (n = 31). For larger sample
sizes, the HE method applied to L-moment estimators could be computationally excessive
compared with bootstrap estimation.

Where the estimators of the various symmetry measures are ratios of L-estimators they will
be asymptotically normally distributed as long as the necessary moments exist. Simulations
demonstrate this when sampling from symmetric distributions such as the normal and the uni-
form distributions; it is also in evidence when sampling from the exponential and the Cauchy
distributions. Normality appears reasonable for all estimators, in particular for L-moment
estimators, when using a sample of size n = 300 from any of the example distributions. It
is also not unreasonable for some [-moment estimators, e.g. the 3-trimmed estimator, with
a sample of size n = 30. However the distribution of quantile-based estimators for n = 30 is
not close to normal.

The non-parametric bootstrap can be used to make inferences about the value of a particular
symmetry measure using Cls or hypothesis testing. Bias corrected and adjusted (BCa) Cls
were found to give adequate coverage rates when estimating a range of symmetry measures
from the normal, the uniform and the Cauchy distributions using samples of sizes n = 30, 300.
Coverage rates when sampling from the exponential distribution were similarly adequate with
the exception of estimating the untrimmed L-moment measure, TBEO), from a sample of size
n = 30.

The normal approximation for the distribution of all estimators appears to be sufficiently
close when n = 300 so that standard normal Cls can be used in place of BCa bootstrap
Cls, with standard errors estimated from the bootstrap. When n = 30, standard normal
Cls may be used in the same way for many of the trimmed L-moment measures, but not
when estimating quantile-based symmetry measures; in this case BCa bootstrap Cls would

be more reliable.

24

URL: http://mc.manuscriptcentral.com/Ilssp E-mail: comstat@univmail.cis.mcmaster.ca



©CoO~NOUTA,WNPE

Communications in Statistics — Simulation and Computation

Similar comments apply if a test of distributional symmetry is required. For large samples,
e.g. n = 300, the standard z-test with bootstrapped standard error in the denominator
will give a similar p-value to the bootstrap test. This will also apply for small samples, e.g.
n = 30, for testing many of the trimmed [.-moment measures.

In conclusion, for ease of use across a wide range of situations, it is recommended that 2-
or 3-trimmed L-moment symmetry measures are used, i.e Té2) or TFES). Even for moderately
sized samples, e.g. as small as n = 30, reliable Cls and tests of symmetry can be constructed
based on the standard normal distribution and using a standard error most simply estimated
from the nonparametric bootstrap. The arguments and methods used throughout the paper

could be adapted to define and assess measures of kurtosis in data sets or distributions if

they are required.

APPENDIX

1. Expected values of squares of order statistics and of products of successive order statistics

in samples of size k from the uniform distribution on the interval (0, 1).

2\ r(r+1) B
E(Y,}) = GrnGry " 1, k.
r(r+2)
E(Y, 1Y, 1) = —F>—, r=1,...,k—1.
(Yot Yotr) k+2)(k+3) "

2. Variance of order statistics and covariance between successive order statistics in samples

of size k from the exponential distribution with mean 1.

- 1
Va;r(}/;n;k) = Z m, r= 1, ,k

s=1

cov(Yeik, Yrgr:k) = var(Yer), r=1,..,k—1.
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