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Abstract

Motivated by applications in call center management, we propose a framework based on empirical process techniques

for inference about waiting time and patience distributions in multiserver queues with abandonment. The framework

rigorises heuristics based on survival analysis of independent and identically distributed observations by allowing

correlated waiting times. Assuming a regenerative structure of offered waiting times, we establish asymptotic

properties of estimators of limiting distribution functions and derived functionals. We discuss construction of

bootstrap confidence intervals and statistical tests, including a simple bootstrap two-sample test for comparing

patience distributions.A small simulation study and a real data example are presented.

Key words: Queues with abandonment; regenerative sequence; empirical process; dependent survival data; tele-

queues.

1. Introduction. In a queuing system with abandonment, customers may abandon the waiting line

before being serviced. This leads to right-censored waiting times where offered waiting times in the queue

without abandonment are censored by random customer patiences. Models for queues with abandonment are

of practical interest when designing and analyzing call centers where abandonment may considerably affect

performance (Garnett et al., 2002). There has recently been a surge of interest in empirical applications

of queuing models with abandonment to running call centers for which detailed call-by-call data are

available. Statistical analyses of such data can provide both quantitative measures of performance and

quality of service, as well as offer valuable insight into the qualitative nature of customer abandonment.

This was demonstrated by Brown et al. (2005), who applied methods from classical survival analysis to

estimate cumulative distribution functions (CDFs) of waiting times and patiences, hazard rates, and related

functionals. However, positive correlation of successive waiting times generally invalidates the asymptotic

theory classically used to derive interval estimates and statistical tests. As pointed out by Gans et al. (2003),

there is a need to develop survival analytic methods which are capable of providing confidence intervals and

statistical tests for call-by-call data from queues with abandonment.

1
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2 A. Gorst-Rasmussen and M. B. Hansen: Asymptotic Inference in Queues with Abandonment

Nonparametric survival techniques for dependent observations have previously been studied in the

literature under mixing assumptions, and include Kaplan-Meier estimation (Cai, 2001), quantile estimation

(Cai and Kim, 2003), and hazard rate estimation (Cai, 1998). The techniques rely on mixing assumptions

for the observation sequence, and computation of confidence intervals and statistical testing is often difficult

and case-specific. In the present paper, we assume that the sequence of offered waiting times is regenerative.

Informally, this means that the waiting time sequence splits into IID random blocks of random lengths. The

assumption of regenerative offered waiting times is satisfied by the widely used GI/G/m queuing model under

weak assumptions (Asmussen, 2003, Theorem XII.2.2), with blocks defined by system-wide busy periods.

Regenerativity of the offered waiting times extends to independently right-censored waiting times:

W̃n := min{Wn, Pn}, n ∈ N, (1)

with {Wn} the individual customer offered waiting times and {Pn} the individual IID customer patiences,

which we assume independent of {Wn}. Regenerativity of the offered waiting times is not a special property

of the GI/G/m queuing model. It remains a valid model whenever the arrival and service time sequences are

stationary, and the waiting time sequence splits into independent blocks. The latter happens, for example,

if the queuing system restarts at fixed time points, as is often the case in call centers.

In the present paper, we show how the assumption of regenerativity, when combined with techniques from

the theory of empirical processes, can be used to rigorise methods for analyzing waiting times and patiences

in queues. From a practical perspective, regenerativity justifies the use of various resampling methods to

obtain confidence intervals and statistical tests for parameters. Emphasis will be placed on a simple blockwise

bootstrap resampling technique. As well as contributing tools for practical inference, the paper contributes

to the limited literature on nonparametric inference for queuing systems using empirical processes; see for

example Bingham and Pitts (1999a); Bingham and Pitts (1999b) – or Hansen and Pitts (2006) for statistical

inference involving empirical processes of regenerative observations. We remark that while this paper deals

specifically with inference about waiting times and patiences, the empirical process techniques discussed here

apply also to estimators for other types of regenerative sequences.

The paper is organized as follows. In Section 2, we review basic empirical process techniques for

regenerative observations and state a new result concerning the validity of a functional blockwise bootstrap.

Section 3 describes estimation of CDFs, nonparametric two-sample testing for the patience CDF, and

estimation of various functionals of the waiting time and patience CDF of interest in call center managing.

Section 4 presents a discussion of the practical use of the framework together with a simulation study. Finally,

Section 5 illustrates a selection of the procedures applied to real-world data.
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A. Gorst-Rasmussen and M. B. Hansen: Asymptotic Inference in Queues with Abandonment 3

2. Asymptotic inference for regenerative sequences. Consider a sequence {Cn : n ∈ N0} of

random cycles taking values in
⋃

m≥0 R
m, with C1, C2, . . . independent and identically distributed (IID)

and independent of C0. Thus each Ci is a block of random variables of random length. Defining Xn to be

the nth real-valued observation in {Cn : n ∈ N0}, the sequence of random variables X = {Xn : n ∈ N}

is called a regenerative sequence. The first cycle C0 is known as the delay of the regenerative sequence.

We denote by ℓn the length of Cn, define the renewal sequence Tn+1 := ℓn + Tn (letting T0 := 0), and let

τn := inf{m ≥ 1 : Tm > n} − 1 be the number of complete, observed cycles at time n. We assume ℓ1 to

be nonlattice with finite expectation. Then X admits a limiting distribution P (Asmussen, 2003, Corollary

VI.1.5), in the sense that Xn → P in total variation where

P( · ) = E

T2∑

i=T1+1

1Xi∈ · /Eℓ1. (2)

Nonparametric statistical methods for regenerative sequences use regenerative analogues of the Law of Large

Numbers (LLN) and the Central Limit Theorem (CLT) to establish consistency and asymptotic distributional

properties of estimators. Adequately general forms of these limit results come from the theory of empirical

processes which concerns the asymptotic behavior of functional estimators of the form

Pn(f) = n−1
n∑

i=1

(f(Xi) − Pf), f ∈ F , (3)

uniformly over a set of measurable real-valued functions F . The sequence {Pn(f) : f ∈ F} of stochastic

processes is called an empirical measure. A detailed review of limit results for empirical processes of IID

observations can be found in van der Vaart and Wellner (1996). Limit results for empirical processes of

regenerative observations have received limited attention in the literature; see Leventhal (1988) and Tsai

(1998). In this paper, we restrict ourselves to discussing the use of empirical process theory for estimating

the limiting CDF of a regenerative sequence, F ( · ) := P(−∞, · ]. This is not contrived: as we shall explain,

a ‘good’ estimator of F can be used to define ‘good’ estimators of a range of functionals of the form φ(F ).

From observations X1, . . . , Xn of a regenerative sequence, we may estimate F using the empirical CDF

defined for x ∈ R by Fn(x) := n−1
∑n

i=1 1Xi≤x. The sequence {Fn} is the empirical measure of F =

{1(−∞,t] : t ∈ R} and defines a sequence in the space D(R) of real cadlag functions equipped with the

supremum norm ‖ · ‖∞. A Vapnik-Cervonenkis argument (Pollard, 1984, p. 16) and the limit theorems

of Leventhal (1988) immediately lead to regenerative analogues of the classical Glivenko-Cantelli (uniform

LLN) and Donsker theorems (uniform CLT).

Theorem 2.1 (Regenerative Glivenko-Cantelli/Donsker) Let X be a regenerative process satisfy-
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4 A. Gorst-Rasmussen and M. B. Hansen: Asymptotic Inference in Queues with Abandonment

ing Eℓ1 < ∞, and denote by F the CDF of the limiting distribution of X. Then

‖Fn − F‖∞ → 0, in probability.

If moreover Eℓ2
1 < ∞ then there exists a centered tight Gaussian process HF on R such that

n1/2(Fn − F )
d→ HF ,

where
d→ denotes weak convergence in D(R).

The precise meaning of weak convergence in D(R) is that E∗ϕ(Fn) → Eϕ(HF ) for bounded, continuous, real-

valued functions ϕ where E∗ denotes outer expectation. This general form of weak convergence is required

since Fn is generally nonmeasurable when D(R) is equipped with the supremum norm and the Borel σ-field.

Theorem 2.1 in theory allows for approximating the sampling distribution of functionals of Fn − F

from the limiting Gaussian process HF . However, this result is of little practical use since the covariance

function of HF depends on X in a nontrivial manner, precluding construction of distribution-free statistics

in general. Instead, resampling methods can be used, i.e. methods which utilise (random) subsets of data to

approximate sampling distributions. The strong mixing property of regenerative sequences (Thorrison, 2000,

Theorem 3.3) in principle enables application of the method of functional subsampling (Wolf et al., 1999) and,

under additional mixing assumptions, the moving blocks bootstrap (Naik-Nimbalkar and Rajarshi, 1994).

However, the performance of either method relies on complex preliminary calibrations which again depend

on the statistic under investigation. We suggest a simpler alternative which utilises the intrinsic structure

of regenerative sequences. Here resampling is performed by sampling with replacement among regenerative

cycles rather than individual observations, extending the naive bootstrap idea of sampling with replacement

from IID observations (Efron, 1979) to regenerative sequences. This regenerative block bootstrap (RBB) has

previously been studied for the case of inference for the mean (Athreya and Fuh, 1992; Datta and McCormick,

1993; Bertail and Clémençon, 2006) and is described algorithmically below.

Algorithm 2.1 (Regenerative blockwise bootstrap)

Given observations {Xi : i ≤ n} of X, let θn := θn(X1, . . . , Xn) denote a statistic.

(i) Divide {Xi : i ≤ n} into regenerative cycles C1, . . . , Cτn
.

(ii) Conditionally on {Xi : i ≤ n} and τn, sample C∗
1 , . . . , C∗

τn
with replacement from {C1, . . . , Cτn

}.

(iii) Define the bootstrapped sample {X∗
i : i = 1, 2, . . . , n∗} where X∗

i is the ith real-valued observation

of {C∗
1 , . . . , C∗

τn
}, T ∗

i+1 := T ∗
i + l∗i (taking T ∗

1 := 0 and l∗i to be the length of C∗
i ), and n∗ := T ∗

τn+1.
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A. Gorst-Rasmussen and M. B. Hansen: Asymptotic Inference in Queues with Abandonment 5

(iv) Compute θ∗n := θn(X∗
1 , . . . , X∗

n∗

).

Approximate the law of θn by the conditional law of θ∗n given {Xi : i ≤ n}.

In the present paper, we need validity of an empirical process version of the RBB where θn := Fn is the

empirical CDF and θ∗n =: F ∗
n its bootstrapped counterpart. Validity of the RBB in this setting may be

defined in terms of a distance d metrising weak convergence on D(R) by requiring

d
(
n

1/2
∗ (F ∗

n − Fn), HF

)
→ 0, in probability; (4)

where the ‘in probability’ statement is relative to the law governing the observations. This in turn implies

that the RBB estimator F ∗
n n

1/2
∗ (F ∗

n − Fn) is a consistent estimator of n1/2(Fn − F ) in the sense that their

d-distance tends to zero in probability as n → ∞. Typically, d will be the dual bounded Lipschitz distance on

D(R) (van der Vaart and Wellner, 1996, p. 73). Validity of the empirical process RBB has been investigated

by Radulović (2004) for a class of empirical processes with observations from a discrete atomic Markov

chain. In the appendix, we give a short proof of validity in the sense of (4) of the RBB for general empirical

processes under the assumptions of the uniform CLT for regenerative observations of Tsai (1998). For the

case of the RBB for the empirical CDF, the validity result reads as follows.

Theorem 2.2 (Bootstrap validity) Let X be a regenerative sequence with Eℓ2
1 < ∞. Denote by F the

CDF of the limiting distribution of X and let F ∗
n be the CDF obtained from the RBB. Then (4) holds.

Estimation of the sampling distribution of Fn alone is of limited interest in applications, and it is desirable

to extend the asymptotic results above to general functionals of Fn (plugin estimators). The continuous

mapping theorem ensures that the RBB works for continuous real-valued functions of Fn. Another versatile

tool not restricted to real-valued statistics is a functional analogue of the finite-dimensional delta-method.

With the notation of Algorithm 2.1, let θn be a statistic of regenerative observations X1, . . . , Xn, taking

values in a normed space V , and denote by θ∗n the bootstrapped statistic obtained using the RBB. Suppose

that φ : V → W for some normed space W is a mapping for which there is a bounded linear operator

dφθ : V → W satisfying suph∈K ‖t−1(φ(θ + th) − φ(θ)) − dφθ(h)‖ → 0 when t → 0 for every compact set

K ⊆ V . Then φ is called Hadamard differentiable at θ. The next result follows from Theorem 3.9.4 and

Theorem 3.9.11 of van der Vaart and Wellner (1996).

Theorem 2.3 (Functional delta-method.) Assume that there exists θ ∈ V and rn ↑ ∞ such that

rn(θn − θ)
d→ T for a tight random element T , and that the RBB estimator rn(θ∗n − θ) is a consistent
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6 A. Gorst-Rasmussen and M. B. Hansen: Asymptotic Inference in Queues with Abandonment

estimator of T . If φ is Hadamard differentiable at θ with derivative dφθ then rn(φ(θn) − φ(θ))
d→ dφθ(T ),

and the RBB estimator rn(φ(θ∗n) − φ(θn)) is a consistent estimator of rn(φ(θn) − φ(θ)).

If T is tight Gaussian, linearity of dφθ implies that dφθ(T ) is also tight Gaussian. One reason why the

functional delta-method is so useful is the chain rule of Hadamard differentiation (van der Vaart and Wellner,

1996, Lemma 3.9.3). This allows one to establish the asymptotics of a complicated statistic by representing

it as a composition of simpler Hadamard differentiable maps applied to the empirical CDF.

RBB-based confidence intervals can be constructed using Efron’s percentile method (Efron, 1979). Namely

if θn is an estimator of a real-valued parameter θ, and θ∗n is obtained from the RBB using Algorithm 2.1,

an approximate (1 − α − β) × 100% confidence interval for θ is given by [θn − ξ∗n,β , θn − ξ∗n,1−α] where ξ∗n,γ

is the upper γth percentile of the bootstrap distribution of θ∗n − θn, that is, the largest value x satisfying

P∗(θ∗n − θn ≥ x) ≥ 1 − γ. The RBB confidence interval asymptotically has level 1 − α − β, whenever the

statistic θn is a continuous or Hadamard differentiable function of the empirical CDF.

3. Asymptotic inference for waiting times and patiences. Let W̃1, . . . , W̃n be right-censored

waiting times from a queuing system, defined as in (1) so that the underlying offered waiting times are

assumed to form a regenerative sequence and the patiences are assumed to be IID random variables.

Observations take the form

(W̃1, δ1), . . . , (W̃n, δn), (5)

where δi is the noncensoring indicator of W̃i. If we seek features of the waiting time distribution, censoring

occurs when the customer abandons the queue and vice versa for the patience distribution. Inferential

procedures for such observations can be investigated with the empirical process methods of the previous

section. This leads to a qualitative description of estimator asymptotics which, when combined with

resampling techniques, can be used quantitatively to construct confidence intervals and statistical tests.

We shall consider resampling using the RBB, but other resampling methods (see the discussion preceding

Algorithm 2.1) may also be used to infer sampling distributions of the estimators of this section.

Denote by F the limiting CDF of uncensored observations from (5). A basic problem is how to estimate

F from the censored observations. We suggest to use the product-limit (or Kaplan-Meier) estimator,

Fn(t) = 1 −
∏

i:W̃(i)≤t

(
1 − n − i

n − i + 1

)δ(i)

,

where W̃(i) is the ith order statistic of W̃1, . . . , W̃n and δ(i) the corresponding indicator of noncensoring. The

asymptotic properties of Fn can be established using Theorem 2.1 and 2.3. Denote by Huc(t) := P(W̃ ≤
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A. Gorst-Rasmussen and M. B. Hansen: Asymptotic Inference in Queues with Abandonment 7

t, δ = 1) the limiting subdistribution function of the uncensored observations and by H(t) := P(W̃ ≥ t)

the limiting tail function of observations. A classical result from survival analysis (Gill and Johansen, 1990)

states that F can be obtained from (H, Huc) via the mappings

(H, Huc)
α7−→

∫

[0, · ]

H(s)−1dHuc(s) =: Λ
β7−→

∏

s∈(0, · ]

(1 − dΛ(s)) = 1 − F.

Here Λ is the cumulative hazard rate, and
∏

s∈(0,t] denotes the product integral over (0, t]. Then Fn is in

fact the plugin estimator β(α(Hn, Huc
n )) where

Huc
n (t) = n−1

n∑

i=1

δi1W̃i≤t
, Hn(t) = n−1

n∑

i=1

1
W̃i≥t

.

It can be shown (Gill and Johansen, 1990) that each of α, β, then β ◦ α are Hadamard differentiable at

(Huc, H) when the latter is viewed as an element of D[0, τ ] × D[0, τ ] for some τ with H(τ) > 0. Combining

this with Theorem 2.1-2.3, we conclude that the product-limit estimator based on regenerative observations

is consistent, asymptotically Gaussian and can be bootstrapped. So we can use the RBB to construct both

pointwise confidence bands for F (by estimating the distribution of F (t) for each t) and uniform confidence

bands (by estimating the distribution of supt∈[0,τ ] |F (t)|). Examples will follow in the next section. By

similar arguments, one obtains consistency, asymptotic Gaussianity, and bootstrap validity for the Nelson-

Aalen-type estimator Λn := α(Hn, Huc
n ) of the cumulative hazard rate. Estimates of functions relating to the

(cumulative) hazard rate have previously been used to explore abandonment behavior of customers in a call

center (Brown et al., 2005). Note that empirical process theory, although a powerful framework, essentially

deals with inference using step functions (empirical measures) and does not lend itself towards methods for

smooth estimation of, for example, densities or hazard rates. Smooth estimation procedures for censored

sequences under mixing assumptions are discussed by Cai (1998).

One may ask whether estimators of expectations or quantiles of F based on plugging in the product-limit

estimator Fn in the formulas Eξ(X) =
∫ ∞

0 ξ(x)F (dx) and F−1(p) := inf{x : F (x) ≥ p} inherit the nice

asymptotic properties. Such statistics may arise as key performance indicators in call center managing,

where one seeks summary statistics such as expected waiting times and patiences; or median waiting times

and patiences (Nederlof and Anton, 2002). If the largest observation is censored, the product-limit estimator

is not a CDF and plugging it in the definition of the expectation will produce infinite values. Instead, one

can estimate the truncated expectation from
∫ τ

0
ξ(x)Fn(dx) where τ satisfies P(W̃ ≤ τ) < 1. Consistency,

asymptotic Gaussianity, and bootstrap validity of this estimator follows from Lemma 3.9.17 of van der Vaart

and Wellner (1996) and Theorem 2.3. Note that this truncated expectation is a negatively biased estimator of

Eξ(X) and should be interpreted with care. Similarly for quantiles of F , Lemma 3.9.20 of van der Vaart and
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8 A. Gorst-Rasmussen and M. B. Hansen: Asymptotic Inference in Queues with Abandonment

Wellner (1996) implies Hadamard differentiability of the mapping taking F to its pth percentile, whenever F

has a strictly positive derivative at F−1(p). Theorem 2.3 again implies consistency, asymptotic Gaussianity,

and bootstrap validity for the estimator of the pth percentile based on Fn.

We next consider the issue of how to formally test equality of two limiting patience CDFs from right-

censored regenerative patiences. This problem has to the best of our knowledge not been considered

previously, but is of relevance when comparing abandonment behavior of two customer classes in a call

center. Assume that we have available two independent samples of the form (5) (with censoring when the

customer is serviced) of sizes n and m, such that the limiting CDFs of uncensored observations are F and

G, respectively, and the limiting CDFs of the censored observations are H and I. Denote by Fn and Gn the

product-limit estimators of the CDFs, and let τ be such that H(τ) < 1 and I(τ) < 1. We seek to test the

null hypothesis

H0 : F (t) = G(t), ∀ t ∈ [0, τ ] (6)

against the two-sided alternative F 6= G. Denote by W the common tight Gaussian limit of n1/2(Fn − F )

and m1/2(Gm − G) under the null hypothesis. Define the test statistic

Dn,m :=
√

(nm)/(n + m)‖(Fn − F ) − (Gm − G)‖∞,

where ‖ · ‖∞ denotes supremum over the interval [0, τ ], and assume that nm/(n + m) → λ ∈ (0, 1). Then,

under the null hypothesis, the continuous mapping theorem implies Dn,m
d→ ‖W‖∞. The distribution of the

supremum ‖W‖∞ is intractable and must be approximated by resampling techniques. To this end, define

the bootstrapped counterpart of Dn,m by

D∗
n,m =

√
(n∗m∗)/(n∗ + m∗)‖(F ∗

n − Fn) − (G∗
m − Gm)‖∞.

Here n∗, F
∗
n and m∗, G

∗
m are obtained by applying the RBB to each censored sample separately. The

map (A, B) 7→ A − B is Hadamard differentiable on (D[0, τ ])2. Theorem 2.3, Slutsky’s lemma for the

bootstrap (Radulović, 2004, Lemma 3.1), and Theorem 2.1-2.2 together with the continuous mapping

theorem implies consistency of D∗
n,m as an estimator of Dn,m as n, m → ∞. So the conditional distribution of

the bootstrapped test statistic D∗
n,m may be used to define critical levels for the null hypothesis (6): if ξ∗n,m,α

is the upper α percentile of the RBB distribution P∗(D∗
n,m ≤ · ), then H0 is rejected at approximate level

α if
√

mn/(m + n)‖Fn − Gm‖∞ > ξ∗n,m,α. This essentially corresponds to constructing an (1 − α) × 100%

uniform confidence band for F − G and rejecting H0 at level α if the band does not contain the zero

function. Analogous procedures with potentially better power are easily defined for other smooth ‘discrepancy

functionals’ (F, G) 7→ φ(F, G) than the difference: for example the odds ratio or the cumulative hazard ratio

of two limiting CDFs – or weighted versions thereof.
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The above approach to hypothesis testing (constructing confidence intervals by resampling and checking

whether zero is contained in the interval) applies generally to simple hypotheses H0 : θ1 = θ2 whenever

consistent estimators θ̂1n and θ̂2n of θ1 and θ2 exist which are asymptotically Gaussian and can be

bootstrapped. This in turn yields a method for rigorous empirical comparison of for example medians,

probabilities, and expectations. Note that, in the case of inference for expectations with respect to the

limiting distribution, more efficient RBB-methods based on the percentile t-method (Hall, 1992) exist (Bertail

and Clémençon, 2007).

4. Practical Considerations and Simulation Examples. In the previous section, we discussed

methods for qualitatively and quantitatively investigating properties of estimators from right-censored

waiting times. The key was the asserted regenerative structure of the offered waiting times which enabled

regenerative empirical process techniques to be applied. The assumption of regenerativity is often a

reasonable and parsimonious model. It holds in the general GI/G/m-queuing model with regeneration

occurring when all servers are idle (Asmussen, 2003, Theorem XII.2.2), allowing regenerative cycles to be

constructed whenever all such regeneration points have been identified in an observation sequence. In

call centers, with many servers and high load, there may be few or no system-wide idle periods during

a typical day of operation. On the other hand, if a regenerative model is adopted, forced regeneration

occurs at the end of every day when the call center closes. This suggests that (a subset of) the waiting

time sequence for each separate day of operation can be used to define regenerative cycles. This idea is

not restricted to GI/G/m-type queuing systems, but applies to any queuing system for which independent

and identically distributed cycles of waiting times can be defined. Stationarity of the cycle sequence can

be checked empirically by investigating stationarity of a sequence of real-valued statistics calculated from

the cycles (averages, variances etc.), for example using time-series plots. A sufficient condition for cycle

stationarity is stationarity of the underlying observation and cycle length sequence.

We performed a small simulation study to illustrate coverages of RBB confidence intervals for selected

statistics of waiting times and patiences, as well as level and power of the two-sample RBB test for patience

CDFs. In all experiments, we considered an M/M/15 queuing system with an arrival rate of 13.5 customers

per minute and a service rate of 1 customer per minute, corresponding to a system load of 90%. Waiting

times were right-censored with IID patiences from various distributions. Each regenerative block used in the

RBB was simulated independently and comprised 15 minutes of observations following a 15 minute start-up

period, corresponding to blocks of approximately 200 successive observations in the stationary regime. A
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10 A. Gorst-Rasmussen and M. B. Hansen: Asymptotic Inference in Queues with Abandonment

start-up period was used solely for computational reasons: the inferential methods also apply in the transient

regime, but are not easily compared with theoretical results.

A typical sequence of right-censored waiting times from an M/M/15 queuing system with exponential

patiences is shown in Figure 1 (left). Observe the positive correlation between successive observations which

precludes the use of standard statistical methods for IID data. In Figure 1 (right), an example of the

estimated patience CDF (superimposed on the true patience CDF) is shown.
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Figure 1: Left: Example of a waiting time sequence in an M/M/15 queue with an arrival rate of 13.5 customers per

minute, a service rate of 1 customer per minute, and exponential patiences. Right: An estimate of the patience CDF

(thick line) in the same queuing system system, superimposed on the true patience CDF (thin line).

Table 1 shows estimated coverages of RBB-confidence intervals for a selection of statistics of the right-

censored waiting times. Observe that coverages are subject to sampling variation which can be quantified

using standard methods for binomial proportions. All confidence intervals have been calculated using the

percentile method. The estimated coverages in Table 1 are generally close to their nominal values, although

the confidence intervals appear slightly anticonservative. We found that decreasing the rate of abandonment

did not markedly affect coverage for estimates from the patience distribution, although quantile estimation

becomes difficult when the rate of abandonment is small. This is due to the product-limit estimator having

an atom at infinity if the largest observation is censored, frequently leading to infinite quantile estimates in

the case of heavy censoring. The uniform confidence intervals and the corresponding coverages are calculated

for the respective CDFs over the fixed interval [0, 1.5] for all simulations. The estimated coverages for the

uniform confidence intervals were sensitive to the choice of interval – too large intervals lead to poor coverages.

In applications, one would typically use the interval ranging from zero to the largest uncensored observation

of the sample.
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The estimated level and power of the RBB two-sample test for two different types of patience distributions

(exponential and lognormal with fixed logarithmic variance 1) are shown in Table 2. Test statistics were

calculated over the fixed interval [0, 1.5] for all simulations. The parameter of each patience distribution

was adjusted to provide rates of abandonment of 20%, 10%, and 5%, respectively. The level of the test

was estimated for each rate of abandonment. We also estimated the power to detect a supremum distance

deviation of 0.05, 0.1, and 0.2 from these reference patience distributions, letting each comparison distribution

be stochastically larger than its reference counterpart. The test exhibits reasonable power properties,

considering the small rate of abandonment: more detailed power assessments are difficult due to the lack of

reference methods. The estimated levels suggest that the test is slightly conservative. As was the case for

uniform RBB confidence intervals for CDFs, the test was sensitive to the choice of interval over which the

test statistic was calculated.

Coverage

Waiting times Patiences

Abandonment 1 − α F (1) F−1(0.5) ‖F‖∞ F (1) F−1(0.2) ‖F‖∞

20% 0.90 0.84 0.97 0.85 0.87 0.90 0.93

0.95 0.91 0.92 0.91 0.93 0.94 0.96

10% 0.90 0.87 0.88 0.85 0.88 0.86 0.90

0.95 0.91 0.94 0.92 0.94 0.90 0.96

5% 0.90 0.84 0.86 0.82 0.85 0.33 0.90

0.95 0.89 0.93 0.90 0.91 0.26 0.95

Table 1: Observed coverage of RBB confidence intervals for functionals of the patience CDF F in an M/M/15 queue

with an arrival rate of 13.5 customers per minute, a service rate of 1 customer per minute, and exponential patiences.

The parameter of each patience distribution was adjusted to provide the given rate of abandonment. Each figure is

based on 500 independent simulations of a sequence of 25 IID blocks of average length 200. For each simulation, 4000

bootstrap replications were used. The statistic ‖F‖∞ was calculated over the fixed interval [0, 1.5].

5. Application to real data As an application of the methods of this paper, we considered inference

from real data given by call logs from a call center of a small Israeli bank. See Brown et al. (2005) for a

detailed description and statistical analysis of the data. We extracted right-censored waiting times for all

customers of the call center arriving during the period 2 p.m.–3 p.m. on ordinary Israeli weekdays (Sunday-

Thursday) in November and December. This is representative of customer waiting experience during peak
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12 A. Gorst-Rasmussen and M. B. Hansen: Asymptotic Inference in Queues with Abandonment

Exponential patience Lognormal patience

Abandonment 1 − α Level Power to detect ∆ Level Power to detect ∆

∆ 0.05 0.10 0.20 0.05 0.10 0.20

20% 0.90 0.93 0.53 0.91 1.00 0.94 0.55 0.89 1.00

0.95 0.98 0.31 0.79 0.99 0.99 0.31 0.80 0.99

10% 0.90 0.92 0.37 0.81 0.98 0.95 0.47 0.89 1.00

0.95 0.96 0.22 0.65 0.95 0.98 0.38 0.79 0.98

5% 0.90 0.93 0.38 0.62 0.95 0.93 0.59 0.93 1.00

0.95 0.97 0.11 0.46 0.87 0.97 0.41 0.85 0.99

Table 2: Observed level and power of the RBB two-sample test for detecting a difference of ∆ between patience

CDFs in an M/M/15 queue with an arrival rate of 13.5 customers per minute, a service rate of 1 customer per

minute, and exponential/lognormal patience distributions. Parameters of the three reference patience distributions

were adjusted to provide the given rates of abandonment (logarithmic variance of lognormal distribution fixed to 1).

Comparison distributions were chosen stochastically larger than their reference distributions. Each figure is based

on 500 independent simulations of a sequence of 25 IID blocks of expected length 200. For each simulation, 4000

bootstrap replications were used. The two-sample test statistic was calculated over the fixed interval [0, 1.5].

hours and would be of particular interest to a call center manager. We obtained 36 observation sequences

of average length 139. Observation sequences of separate days were assumed independent. The assumption

of stationarity of blocks was assessed by checking the sufficient condition of stationarity of the waiting time

sequence, using time series plots and visual inspection of estimates of waiting time and patience distribution

CDFs for different weekdays. We did not find evidence against the stationarity assumption.

In the following, estimates are presented as estimate (95% confidence interval). All interval estimates

were constructed using the percentile method, using 4000 replications using the RBB on the 36 blocks. The

product-limit estimates with uniform 95% confidence bands for the waiting time and patience CDFs are

shown in Figure 2. The median waiting time was 37 seconds (21-53), while the probability of waiting more

than 3 minutes was 0.15 (0.11-0.20). The tail of the waiting time distribution is reasonably well estimated

(Figure 2, left), so in this case it is meaningful to estimate the expected waiting time using the tail formula

(truncating the product-limit estimate at the largest observation). The value was 81 seconds (63-98). The

20th upper percentile of the patience distribution was 52 (47-86), while the probability of having a patience

greater than 3 minutes was 0.64 (0.61-0.68).
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Figure 2: Left: Estimated waiting time CDF (solid line) with RBB-based 95% uniform confidence bands (dotted

lines). Right: Estimated patience CDF (solid line) with RBB-based 95% uniform confidence bands (dotted lines).

Observations used are for customers arriving between 2 p.m. and 3 p.m. on ordinary weekdays (Sunday-Thursday).

To illustrate the application of the RBB two-sample test, we considered comparison of patience CDFs

of two different priority groups of stock market customers. We used censored waiting times collected on

ordinary weekdays (Sunday-Thursday) in the period 8 a.m.–8 p.m. The large time interval was used to

obtain a reasonable number of observed patiences, although waiting times are unlikely to be stationary over

such an interval. For the framework of this paper, however, nonstationarity is not a theoretical issue: we

only require blocks to be stationary (and independent), corresponding to the heuristic assumption that the

different days of operation are ‘stochastically similar’. We obtained 36 blocks of average length 170. Product-

limit estimates of the CDFs are shown in Figure 3, left. Using 4000 replications in the RBB, we accepted

the hypothesis of equal patience distributions, with a p-value of 0.07. To further explore the nature of the

(nonsignificant) difference between the patience distribution, their absolute difference was plotted alongside

a uniform 95% confidence band (Figure 3, right). There appears to be a borderline significant discrepancy

around 500 seconds, indicating that patience distributions for the two customer classes may differ in the

tails.

Appendix A. Validity of the RBB for empirical processes. For definiteness, we assume the

regenerative sequence X to be defined canonically in terms of the cycles {Cn : n ∈ N0} which are given

by the coordinate sequence on an infinite product space (Ω,B, Q) := (Ω̃, G̃, Q′) ⊗ ∏
n≥1(Ω̃, G̃, Q∗) where

Ω̃ =
⋃

m≥0 R
m and G̃ is the natural σ-algebra generated by

⋃
n≥1 Bn for the Borel σ-algebra B on R.

The empirical process corresponding to the empirical measure (3) for a class of real-valued measurable

functions F on R is the F -indexed stochastic process {Gn(f) : f ∈ F} where Gn(f) := n1/2Pn(f). The
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Figure 3: Left: Estimated patience CDF for regular stock markets customers (thick line) and priority stock market

customers (thin line) arriving between 8 am and 8 pm on ordinary weekdays (Sunday-Thursday). Right: Estimated

absolute distance between the two priority groups’ CDFs (solid line) with uniform 95% confidence band (dotted lines).

corresponding bootstrapped empirical process {G∗
n(f) : f ∈ F} is given by

G∗
n(f) := n

1/2
∗

(
n−1
∗

n∗∑

i=1

f(X∗
i ) − n−1

n∑

i=1

f(Xi)
)
, n ∈ N, f ∈ F ;

with n∗ and {X∗
i : i = 1, . . . , n∗} obtained from Algorithm 2.1, and n := Tτn+1. Each of Gn and G∗

n are

viewed as functions with values in the metric space ℓ∞(F) of uniformly bounded real-valued functions on F

equipped with the uniform norm ‖K‖F = supf∈F |K(f)|.

The theorem below is the bootstrap variant of the uniform CLT by Leventhal (1988) and Tsai (1998). It

bears some similarities to the bootstrap uniform CLT by Radulović (2004) for a class of empirical processes

with observations from a discrete atomic Markov chain. However, our method of proof is distinct from his in

that we avoid assuming mixing properties for the regenerative sequence and imposing bracketing conditions

on the function class F . Additionally, our approach uses Poissonization, implying that we can use the

strategy of Giné and Zinn (1990) to give a concise proof based on multiplier inequalities.

For a measure γ on (R,B), the Lp(γ) ε-covering number Np(F , ε, γ) of F for some ε > 0 is the smallest

number of Lp(γ) ε-balls needed to cover F . The following combinatorial entropy is due to Pollard (1982)

Np(ε,F) := sup
γ

Np(F , ε, γ),

where the supremum runs over finitely supported measures γ on (R,B). Recall that an envelope function F

for F is any (measurable) real-valued function on Λ satisfying f(λ) ≤ F (λ) for all λ and f . To simplify our

derivation, we assume in the following that F is sufficiently regular to ensure measurability of suprema of

processes. Following Leventhal (1988) (see also Pollard (1984), Appendix C), we require that F is permissible,

i.e. that F can be indexed by an analytic subset T of a compact metric space equipped with the Borel σ-field
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such that the evaluation map (t, x) 7→ ft(x), t ∈ T , x ∈ R, is jointly measurable.

Theorem A.1 Suppose that Eℓ2
1 < ∞. Let F be a class of measurable real-valued functions on R with

envelope function F such that

∫ ∞

0

√
log N2(ε,F)dε < ∞, E

( T2∑

i=T1+1

F (Xi)
)2

< ∞.

Assume that F is permissible. Then there exists a tight, centered Gaussian process HP on ℓ∞(F) such that

Gn
d→ HP where

d→ denotes weak convergence in ℓ∞(F), and the RBB is valid for the empirical process of

Gn in the sense that

d(G∗
n, HP) → 0, in probability (Q) (7)

where d is dual bounded Lipschitz distance on ℓ∞(F) (van der Vaart and Wellner, 1996, p. 73).

Proof. By Theorem 4.3 of Tsai Tsai (1998), the hypotheses imply that Gn converges weakly in ℓ∞(F)

to a tight, centered Gaussian process HP. Following Giné and Zinn (1990), bootstrap validity holds if

we can show the analogue of (7) for the finite-dimensional distributions of G∗
n and stochastic asymptotic

equicontinuity in probability with respect to a totally bounded semimetric ρ on F . The latter means that

lim
δ↓0

lim
n

‖G∗
n‖Fδ

= 0, in probability (Q),

where ‖K‖Fδ
:= sup{|K(f) − K(g)| : ρ(f, g) < δ} for K ∈ ℓ∞(F). Additionally, it must hold that ρ makes

HP uniformly equicontinuous. As shown in Tsai (1998), our assumptions imply that F is totally bounded in

L2(P) and that Gn is asymptotically L2(P)-equicontinuous. By elementary properties of Lp-seminorms, both

properties also hold for L1(P)-seminorm. Theorem 1.5.7 of van der Vaart and Wellner (1996) then implies

that HP is uniformly L1(P)-equicontinuous. So we can use L1(P)-seminorm in the definition of ‖ · ‖Fδ
.

The result (7) for finite-dimensional distributions follows from the Cramér-Wold device (Billingsley, 1995,

Theorem 29.4) and Theorem 2.1 in Radulović (2004). The latter concerns convergence of finite-dimensional

distributions for observations from a discrete Markov chain; using basic asymptotics of renewal/regenerative

processes (Asmussen, 2003, Section V.6 and VI.3), the proof also works for regenerative sequences.

We proceed to show stochastic L1(P)-equicontinuity of G∗
n. Define for j = 1, . . . , τn stochastic processes

Zj(f) :=

Tj+1∑

i=Tj+1

f(Xi), Z∗
j (f) :=

T∗

j+1∑

i=T∗

j +1

f(X∗
i ), f ∈ F .

Denote by γ the distribution of the bootstrapped observations obtained from Algorithm 2.1 and by Eγ
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expectation with respect to γ and take µ := Eℓ1. Define an := [n/µ]. Then

‖(n∗/an)1/2G∗
n‖Fδ

≤
∥∥∥a−1/2

n

τn∑

i=1

(Z∗
i − Zi)

∥∥∥
Fδ

+ (τn/an)1/2
∥∥∥Yna−1

n

τn∑

i=1

(Zi − µP)
∥∥∥
Fδ

+(τn/an)3/2‖YnµP‖Fδ
+ (n∗/n)a−1/2

n

T1∑

i=T0+1

|F (Xi)|

=: A(n, δ) + (τn/an)1/2B(n, δ) + (τn/an)3/2C(n, δ) + (n∗/n)D(n),

where Yn := (an/n) × τ
−1/2
n (n − n∗). By Slutsky’s lemma for the bootstrap (Radulović, 2004, Lemma 3.1),

it is enough to show convergence in probability as n → ∞, δ ↓ 0 of A(n, δ), B(n, δ), C(n, δ), and D(n)

separately.

It is immediate that D(n) → 0 almost surely. Concerning C(n, δ), define ℓ̄τn
= τ−1

n

∑τn

i=1 ℓi. Then

n∗ − n =
∑τn

i=1(ℓ
∗
i − ℓ̄τn

) is of order OQ(
√

n) as n → ∞. This follows since the ℓ∗i s are conditionally IID, so

that by Markov’s inequality

γ
( τn∑

i=1

ℓ∗i >
√

nM
)
≤ τnγ(ℓ∗1 >

√
nM) ≤ M−2n−1

τn∑

i=1

ℓ2
i → 0, n, M → ∞

almost surely, by the Law of Large Numbers. Slutsky’s lemma for bootstrapped processes (Radulović, 2004,

Lemma 3.1) then implies Yn = OQ(1). Recalling our choice of semimetric in the definition of ‖ · ‖Fδ
, we

obtain C(n, δ) ≤ |Yn|µδ which converges to zero in probability as n → ∞, δ ↓ 0.

Convergence of B(n, δ) to zero in probability follows from Slutsky’s lemma and arguments as in the proof

of Lemma 4.6 of Tsai (1998). Since Yn = OQ(1), we have limδ↓0 limn ‖B(n, δ)‖Fδ
= 0 in probability.

Finally, regarding A(n, δ), fix ε > 0, δ > 0. By Markov’s inequality

γ
(∥∥∥a−1/2

n

τn∑

i=1

(Z∗
i − Zi)

∥∥∥
Fδ

> ε
)
≤ γ

({∥∥∥a−1/2
n

τn∑

i=1

(Z∗
i − Zi)

∥∥∥
Fδ

> ε
}
∩ {|τn − an| ≤ an}

)
+ 1{|τn−an|>an}

≤ ε−1Eγ

(∥∥∥a−1/2
n

τn∑

i=1

(Z∗
i − Zi)

∥∥∥
Fδ

1{|τn−an|≤an}

)
+ oQ(1).

To bound the last expectation, we use Poissonization. Let {Nn} be a sequence of IID symmetrised Poisson

random variables with parameter 1/2 independent of X, T , defined on the same probability space. To simplify

notation, we implicitly assume all of the calculations in the following to be conditionally on |τn − an| ≤ an.

By Lemma 3.6.6 of van der Vaart and Wellner (1996),

Eγ

∥∥∥a−1/2
n

τn∑

i=1

(Z∗
i − Zi)

∥∥∥
Fδ

≤ 4EN

∥∥∥a−1/2
n

τn∑

i=1

NiZi

∥∥∥
Fδ

.

Since E‖W1‖Fδ
≤ E‖W1 + W2‖Fδ

for centered, independent processes W1, W2 by Jensen’s inequality,

EN

∥∥∥a−1/2
n

τn∑

i=1

NiZi

∥∥∥
Fδ

≤ EN

∥∥∥a−1/2
n

an∑

i=1

NiZi

∥∥∥
Fδ

+ EN

∥∥∥a−1/2
n

τn∑

i=an+1

NiZi

∥∥∥
Fδ

≤ 2EN

∥∥∥a−1/2
n

an∑

i=1

NiZi

∥∥∥
Fδ

.
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Taking expectations EX with respect to X, T everywhere, conclude that for some universal constant C

EXγ
(∥∥∥a−1/2

n

τn∑

i=1

(Z∗
i − Zi)

∥∥∥
Fδ

> ε
)
≤ Cε−1E

∥∥∥a−1/2
n

an∑

i=1

NiZi

∥∥∥
Fδ

.

The multiplier inequality argument in the proof of Theorem 3.6.3 of van der Vaart and Wellner (1996)

implies convergence to zero of the right hand side of the display as n → ∞, δ ↓ 0. This proves stochastic

equicontinuity in probability of A(n, δ) and so G∗
n is stochastically equicontinuous in probability (Q).

Combining this with convergence of finite-dimensional distributions, we obtain the desired result. �
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