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Abstract

In this paper, we present a general model for predicting the fatigue behavior for any stress level
and amplitude using the exponential model. Based on the Wöhler field for fixed stress level, a
compatibility functional equation enables us to derive the general model with eight parameters. The
problem of parameter estimation is then discussed and some methods are described. Some examples
are finally presented to illustrate the derived model and the proposed methods of estimation.

Key Words: Wöhler field, damage accumulation, interpolation of fatigue results, testing strategies,
exponential model, maximum likelihood method, constrained maximum likelihood method.

1 Introduction

In fatigue analysis that the stress ratio R = σmax/σmin is an important factor, next only to the stress
level (σmin, σmax, σmean), which needs to be taken into account while dealing with fatigue behavior.
This becomes particularly relevant while considering real stress histories instead of constant stress level
situations. However, most of the existing laboratory test strategies and fatigue models are applicable for
a given stress level but can not predict the fatigue behavior for different stress levels; see, for example,
Coleman (1958), Bastenaire (1972), ASTM (1981), Spindel and Haibach (1981), Fernández-Canteli (1982),
Castillo et al. (1985), Castillo and Galambos (1987), Castillo and Hadi (1995), Pascual and Meeker (1999),
and Castillo and Fernández-Canteli (2001).

Though there are some models that take mean stress effects into account [see Conway and Sjodahlo
(1991) and Dowling and Thangjitham (2000)], such simplified models are far from satisfactory. Castillo
and Fernández-Canteli (2006) and Castillo et al. (2006) presented a general model that enables the
prediction of the fatigue behavior based on two groups of tests run at two different stress levels. This
was a significant development as other models did not facilitate this prediction and also that the required
testing strategy for this model was very simple.

In this paper, we consider this general model for the case of the exponential distribution and describe
the prediction of the fatigue behavior for any stress level and amplitude, and discuss some methods
of estimation of the parameters underlying the model. In Section 2, we describe first the exponential
parameter fatigue model. In Section 3, we describe how this model can be extrapolated to different
test conditions, i.e., different pairs of σmax and σmin, and then discuss the consequences of forcing the
compatibility or independence of the results on the selected σmax and σmin test levels. In Section 4, we
present a reparameterization of the model that is convenient for the estimation of the model parameters.
In Section 5, we discuss some methods of estimation such as the maximum likelihood and constrained
maximum likelihood methods. In Section 6, we present some examples to illustrate the derived model
and the proposed methods of estimation. Finally, some concluding remarks are made in Section 7.
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2 Derivation of the Fatigue Model

Let us consider a series of tests with constant σmin and variable σmax, but in each fatigue test we fix
σmax and repeat cycles in which σ is varied from σmin to σmax until the failure of the specimen occurs. In
other words, σmin is constant for all tests, and different tests in the series can have identical or possibly
different σmax. The resulting lifetimes N (the number of cycles to failure) are observed. Since σmin is
held constant, we use as variables the stress ratio R = σmax/σmin and N .

It is generally accepted that there are five variables initially involved in the fatigue problem: P , N ,
N0, R and R0, where P is the probability of fatigue failure of a piece when subjected to N cycles, N0

is the threshold value for N corresponding to the minimum observable lifetime for any R, and R0 is the
endurance stress ratio limit below which fatigue failures can not occur. This means that there exists a
relationship among the five initially independent variables, of the form

r(N, N0, R, R0, P ) = 0, (1)

where r(·) is an initially unknown function. However, using the Π-Theorem [see, for example, Buckingham
(1914, 1915a,b) and Castillo and Fernández-Canteli (2001)], these initial five variables can be reduced to
three non-dimensional variables, viz., N/N0, R/R0 and P . Consequently, (1) can be written in terms of
these three non-dimensional variables as

r(N, N0, R, R0, P ) = 0 ⇐⇒ s

(

N

N0

,
R

R0

, P

)

= 0; (2)

since we are interested in P , we can express

P = q

(

N

N0

,
R

R0

)

, (3)

where s(·) and q(·) are functions to be determined. Thus, only the non-dimensional quotients N/N0 and
R/R0 exert influence on the probability of failure P , and so either N/N0 and R/R0, or some monotone
functions of them, say h(N/N0) and g(R/R0), need to be considered.

In this paper, we have chosen the h and g functions to be the logarithms of N/N0 and R/R0, respec-
tively. For simplicity in notation, we denote throughout this paper

N∗ = log(N/N0), R∗ = log(R/R0), N ≥ N0, R ≥ R0. (4)

The selection of the exponential model is then based on the following important considerations:

1. Weakest link principle: This principle states that the fatigue lifetime of a longitudinal element is
the minimum fatigue life of its constituent pieces. In other words, the selected family of distributions
must hold (be valid) for different specimen lengths.

2. Limit behavior: To include the extreme case of the size of the supposed pieces constituting the
element going to zero, or the number of pieces going to infinity, it is necessary for the distribution
function family to be an asymptotic family; see Galambos (1987), Castillo (1988), Castillo et al.
(2004), and Castillo et al. (2006).

3. Limited range: Experience shows that the selected non-dimensional variables, N ∗ and R∗, have
a finite lower end, which must coincide with the theoretical lower end of the selected cumulative
distribution function (cdf).

4. Compatibility: In the S-N field, the cdf G(N∗; R∗) of the lifetime given stress range should be
compatible with the cdf of the stress range given lifetime F (R∗; N∗), i.e.,

G(N∗; R∗) = F (R∗; N∗). (5)

2
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Though in standard tests R∗ is fixed and the associated random lifetime N ∗ is determined, R∗ is
interpreted here as the random stress that needs to be applied in order to produce failure at N ∗.

It is important to note here that the exponential family satisfies all the conditions stated above.

2.1 Compatibility

The compatibility condition in (5) for the exponential model requires

1 − exp[−δ(N∗)(R∗ − λ(N∗))] = 1 − exp[−ρ(R∗)(N∗ − η(R∗))], (6)

which leads to the functional equation

R∗δ(N∗) − δ(N∗)λ(N∗) − ρ(R∗)N∗ + ρ(R∗)η(R∗) = 0 (7)

whose solution is [see Castillo and Ruiz-Cobo (1992, p. 52) and Castillo et al. (2004, pp. 60–61)]

ρ(R∗) = aR∗ + b, (8)

η(R∗) =
cR∗ + d

aR∗ + b
, (9)

δ(N∗) = aN∗ − c, (10)

λ(N∗) =
−bN∗ + d

aN∗ − c
. (11)

This leads to the model

G(N∗; R∗) = F (R∗; N∗) = 1 − exp[(c − aN∗)R∗ − bN∗ + d], (12)

where a, b, c and d are arbitrary constants; now, upon reparameterizing and subsuming two parameters
into N0 and R0, we obtain

G(N∗; R∗) = F (R∗; N∗) = 1 − exp

[

−
R∗N∗ − λ

δ

]

, (13)

where λ and δ are some constants.
Once the model has been established in non-dimensional terms as in (13), as we need to recover the

initial variables, we can reexpress the model in (13) as

F (log N ; logR) = 1− exp

{

−

[

(log N−B)(logR−C)−E

D

]}

, (14)

where B = log N0, C = log R0, and E and D are non-dimensional model parameters. Their physical
meanings are as follows (see Figure 1):

B: Threshold value of log-lifetime (logarithm of N0),

C: Endurance limit (logarithm of R0),

E: Parameter defining the position of the corresponding zero-percentile hyperbola,

D: Scale factor.

3
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B

C

p= 0.95

p= 0.50

p= 0.05

p= 0
∆ σ*

N *

Figure 1: Percentiles curves representing the relationship between lifetime, N ∗, and stress range, ∆σ∗,
in the S-N field for the fatigue model in (14).

The percentile curves are shown in Figure 1. The zero-percentile curve represents the minimum
possible required number of cycles of fatigue failure for different values of R. All the remaining percentiles
happen to be the positive branches of a hyperbola, i.e.,

N∗R∗ = E + D [− log(1 − p)] ,

where p ∈ [0, 1] defines the percentile. For such curves, the minimum number of cycles to fatigue failure
decreases with increasing R∗, which is in agreement with experimental results. The parameters E and D
determine the p-percentile, and hence define a unique curve on the plot.

It can be seen from (13) that

N∗R∗ ∼ Exp(λ, δ) ⇔ N∗ ∼ Exp

(

E

R∗
,

D

R∗

)

, (15)

for given R∗, where Exp(λ, δ) denotes a two-parameter exponential distribution with λ as the threshold
parameter and δ as the scale parameter. It is of interest to note that (15) has a non-dimensional form
and reveals that the probability of failure of a piece subject to a stress ratio R∗ during N∗ cycles depends
only on the product N∗R∗. Thus, V = N∗R∗ is useful for comparing fatigue strength at different stress
levels that are maintained constant, and can be considered as a normalizing variable.

3 Physical and compatibility considerations

Since for each constant σmin, a model as in (14) is obtained, we can consider its parameters B, C, D and
E to be functions of σmin. Figure 2(a) shows the Wöhler curves for two groups of tests run at constant
σmin = 0.8 and at constant σmin = 0.4. Note that larger values of σmin lead to lower percentile curves.
If we consider the Wöhler curves for two groups of tests run at constant σmax, say σmax = 1.5, we obtain
the model in (14) once again and a set of percentiles, for example {0.01, 0.05, 0.5, 0.95, 0.99}, are shown

4
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in Figure 2(b). However, if the tests are run at constant σmax = 1, the resulting percentiles change as
displayed in the same figure. Note that larger values of σmax lead to lower percentile curves.
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(b)(a)

Figure 2: Wöhler curves for percentiles 0.01, 0.05, 0.5, 0.95, 0.99: (a) for constant σmin = 0.4 and σmin =
0.8, and (b) for constant σmax = 1 and σmax = 1.5.

An important property to be observed is that the same percentile curves never intersect if they are
associated with two different σmax or with two different σmin, but they intersect if one set of percentiles
is associated with constant σmax and another with constant σmin as shown in Figure 3, where the four
sets of percentiles have been plotted together, with dashed lines corresponding to Wöhler curves for
constant σmin and continuous lines corresponding to Wöhler curves for constant σmax. Note that the
line joining the intersections of associated percentiles for one constant σmax and one constant σmin must
be straight and horizontal since both fields, i.e., the associated cdf’s, must coincide. This is a very strong
condition indeed and it assists greatly in deriving a simple model which is able to deal with different
stress levels. Though in Figure 3 we have these four sets, we realize that there is an infinite set of them.
More precisely, two families of S-N curves exist, one for different constant values of σmax and another for
different constant values of σmin.

In this paper, we consider the case when the test experiments are conducted for constant σmax = σM

and constant σmin = σm. As mentioned above, the model in (14) is valid only if all tests are conducted
at the same stress level, and in particular, for given values of σmax ≡ σM or σmin ≡ σm. Thus, if two
sample data do not coincide at either their σM or σm, the model can not be applied. Since there are
two different cases, we must consider two fatigue models of the type in (14), i.e., we initially have two
sets of parameters Bm, Cm, Dm, Em and BM , CM , DM , EM , where the subindices m and M have been
used for the cases of constant σmin = σm and constant σmax = σM , respectively. However, for the same
stress amplitude and level, i.e., when both σM and σm coincide, for the compatibility condition to hold,
we must have the same model for both cases, i.e., for all N we must have

(log N −Bm(σm))(log R −Cm(σm))−Em(σm)

Dm(σm)
=

(log N −BM (σM ))(log R − CM (σM )−EM (σM )

DM (σM )
. (16)

5
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Figure 3: Wöhler curves for percentiles {0.01, 0.05, 0.5, 0.95, 0.99} for σmax = 1 and σmax = 1.5, and
σmin = 0.4 and σmin = 0.8. Dashed lines refer to Wöhler curves for constant σmin, and continuous lines
refer to Wöhler curves for constant σmax.

For the functional equation in (16) to be satisfied for any N , σm and σM , both models must have the
same parameters. Rewriting now the model in (16) as

log N −

[

Bm(σm) +
Em(σm)

log R − Cm(σm)

]

Dm(σm)

log R − Cm(σm)

=

log N −

[

BM (σM ) +
EM (σM )

log R − CM (σM )

]

DM (σM )

log R − CM (σM )

∀ N (17)

and forcing the exponential parameters to coincide, we obtain

Dm(σm)

DM (σM )
=

log σM − log σm − Cm(σm)

log σM − log σm − CM (σM )
∀ σm, σM , (18)

BM (σM ) = Bm(σm) −
EM (σM )

log σM − log σm − CM (σM )
+

Em(σm)

log σM − log σm − Cm(σm)
∀ σm, σM .

(19)

The functional equations in (18) and (19) deserve a careful attention to get a deeper understanding
of our problem; they are not simple equalities, but each a full collection of equalities as they hold for any
feasible pair σm, σM . Eqs. (18) and (19), considered as functions of σm, must be independent of σM .
This simple but powerful condition allows us to derive the structure of the functions Dm(σm), DM (σM )
and BM (σM ). The complete derivation, as given by Castillo et al. (2006), leads to the final model as

F (N ; σm, σM ) = 1 − exp {− [C0 + C1 log N + C2 log σm + C3 log σM + C4 log N log σm

+C5 log N log σM + C6 log σm log σM + C7 log N log σm log σM ]} (20)

6
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= 1 − exp {− [(C0 + C2 log σm + C3 log σM + C6 log σm log σM )

+ logN(C1 + C4 log σm + C5 log σM + C7 log σm log σM )]} . (21)

Observe that this model involves eight parameters Ci (i = 0, 1, . . . , 7).

3.1 Physical conditions

For the model to be physically feasible, the constants must satisfy some constraints. In particular:

• The cdf in (21) must be increasing in log N ;

• The cdf in (21) must be non-increasing in σm;

• The cdf in (21) must be non-decreasing in σM ;

• The curvature of the zero-percentile of (log N, log R) for constant σmin must be non-negative;

• The curvature of the zero-percentile of (log N, log R) for constant σmax must be non-negative.

3.2 Resulting models

In summary, we can obtain some final set of feasible submodels of (21) as follows:

Linear Model: The simplest model with no asymptotes is given by

F (N ; σm, σM ) = 1 − exp {− [C0 + C1 log N + C2 log σm + C3 log σM ]} ,
C1, C2 ≤ 0, C3 ≤ 0,

(22)

which in log-log scale leads to a Wöhler field made of straight lines.

Model with asymptotes independent on σm and σM : The model with log N asymptotes inde-
pendent on σm and σM is given by

F (N ; σm, σM ) = 1 − exp {− [C0 + C2 log σm + C3 log σM + C4 log N log σm + C5 log N log σM ]} ,
C2, C4 ≤ 0, C3, C5 ≥ 0, C4 + C5 ≥ 0,

(23)
which is obtained when C1 = C6 = C7 = 0.

The log N asymptotes are log N = −C3

C5

for the case of constant σmin, and log N = −C2

C4

for the
case of constant σmax, and the log R asymptotes are log R = −(C4 + C5) log σm/C5 for the case of
constant σmin, and log R = (C4 + C5) log σM/C4 for the case of constant σmax.

Model with fixed asymptotes: The model with log R asymptotes independent on σm and σM is
given by

F (N ; σm, σM ) = 1 − exp {− [C0 + C1 log N + C2 log σm + C3 log σM + C4 log N(log σm − log σM )
+C6 log σm log σM ]} ,

(24)
which is obtained when C7 = 0 and C4 + C5 = 0. The log R asymptotes are log R = −C1/C5 for
the case of constant σmin, and log R = C1/C4 for the case of constant σmax.

The log N asymptotes are log N = −C3+log σM C6

C5

for the case of constant σmin, and log N =

−C2+log σM C6

C4

for the case of constant σmax, so that they are constant if, in addition, C6 = 0.

7
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General Model: The general model with log R and log N asymptotes dependent on σm and σM is

given by

F (N ; σm, σM ) = 1 − exp {− [C0 + C1 log N + C2 log σm + C3 log σM + C4 log N log σm

+C5 log N log σM + C6 log σm log σM + C7 log N log σm log σM ]} ,
(25)

subject to adequate constraints on the parameters.

These constraints are very important in order to have a physically meaningful model.

3.3 Testing strategies

The aim of any testing strategy is to estimate the model parameters in (21). For this purpose, a testing
strategy involving one single group of tests with constant σmax or one single group with constant σmin

or two groups one with constant σmax and one with constant σmin are not sufficient, because of the
linear combination of the parameters that are involved in the model. In contrast, two groups of tests one
with constant σmax and one with constant σmin are sufficient for estimating the parameters. Many other
alternatives are also possible by combining different constant (more than one) levels of σmax or constant
σmin. A very efficient testing strategy, in particular, consists of selecting two different values of σmax and
two different values of σmin and combine them to obtain 4 groups of tests, for which several specimens
must be tested.

4 Convenient Reparameterized Model

In order to estimate the cumulative distribution function, the model in (21) is reparameterized in such
a way that it can be viewed as a two-parameter exponential distribution in which case the required
estimation becomes simple. So, the model in (21) is expressed as

F (log N ; σmi
, σMj

) = 1− exp {− [C0ij + C1ij log N ]} , (26)

for i, j = 1, 2, where

C0ij = C0 + C2 log σmi
+ C3 log σMj

+ C6 log σmi
log σMj

(27)

and
C1ij = C1 + C4 log σmi

+ C5 log σMj
+ C7 log σmi

log σMMj . (28)

We then recognize that log N , with log N ≥ −C0ij/C1ij and C1ij > 0, follows a two-parameter exponential
distribution with γij = −C0ij/C1ij and βij = 1/C1ij as the location and scale parameters, respectively.
We now use the expression in (26) for the purpose of estimation. Once the parameters C0ij and C1ij

are all estimated, the expressions in (27) and (28) evaluated at these estimates for the four conditions
produced by two different values for σm (σm1

, σm2
) and σM (σM1

, σM2
), provide a system of eight

equations, using which the estimates of the eight initial parameters Ci (i = 0, 1, . . . , 7) can be achieved.
Solving this system of eight equations, we get

C7 =
C111 − C112 − C121 + C122

(log σm1
− log σm2

)(log σM1
− log σM2

)
, (29)

C5 =
C111 − C112

log σM1
− log σM2

− C7 log σm1
, (30)

C4 =
C111 − C121

log σm1
− log σm2

− C7 log σM1
, (31)

C1 = C111 − C4 log σm1
− C5 log σM1

− C7 log σm1
log σM1

, (32)
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C6 =

C011 − C012 − C021 + C022

(log σm1
− log σm2

)(log σM1
− log σM2

)
, (33)

C3 =
C011 − C012

log σM1
− log σM2

− C6 log σm1
, (34)

C2 =
C011 − C021

log σm1
− log σm2

− C6 log σM1
, (35)

C0 = C011 − C2 log σm1
− C3 log σM1

− C6 log σm1
log σM1

. (36)

5 Parameter Estimation

In this section, we describe two methods of estimating the parameters of the model.

1. Method 1 (based on the maximum likelihood on 4 stress level tests and least-squares)
From the model in (26), the sample log-likelihood, taking the run-outs into account, turns out to
be

L = −

2
∑

i,j=1

nij
∑

k=1

(C0ij + C1ij log Nijk) +

2
∑

i,j=1

n∗

ij log C1ij , (37)

where Nijk , nij and n∗

ij are the lifetime (or the censored value) of the specimen k, the total number
of specimens, and the number of uncensored specimens, respectively, tested at stress levels σmi

and σMj
. Then, by standard results for the two-parameter exponential distribution, we have the

maximum likelihood estimates (MLEs) to be

Ĉ1ij =
n∗

ij

nij
∑

k=1

[

log Nijk − log Nminij

]

(38)

and
Ĉ0ij = − log Nminij

Ĉ1ij , i, j = 1, 2, (39)

where Nminij
= min(Nij1, Nij2, . . . , Nijkij

) denotes the smallest lifetime observed for stress levels
σmi

and σMj
. The MLEs of the initial parameters in (21) are then obtained by replacing in Eqs.

(29) – (36) C0ij and C1ij by their MLEs in (39) and (38), respectively. However, if one uses
any of the submodels presented in Section 3.2, then there will be more equations than unknown
parameters. In this case, we propose to get the estimates of the initial parameters by minimizing
the sum of squares based on the MLEs C0ij and C1ij given by

Q =
∑

i,j

[

{

C0ij − (C0 + C2 log σmi
+ C3 log σMj

+ C6 log σmi
log σMj

)
}2

+
{

C1ij − (C1 + C4 log σmi
+ C5 log σMj

+ C7 log σmi
log σMMj)

}2
]

, (40)

wherein the parameters constraints can also be included in the optimization process, if desired.

In this manner, we may avoid the constrained maximum likelihood estimation method used so
far for these types of problems; see, for example, Castillo et al. (2006). At this stage, we can
test whether the physical constraints of the model are satisfied by the estimates determined by
the above method. In case they are, the computed estimates are indeed the desired MLEs. If
not, the unconstrained MLEs do not belong to the restricted parameter space and in this case the
constrained MLEs need to be computed by a numerical method. To this end, existing software
such as GAMS enables not only to solve the problem but also to perform a sensitivity analysis; for
details, see Castillo et al. (2001, 2004) and Conejo et al. (2006)).
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2. Method 2 (based on constrained maximum likelihood) — In this case, we maximize the

log-likelihood function

L = −

2
∑

i,j=1

nij
∑

k=1

(

C0 + C2 log σmi
+ C3 log σMj

+ C6 log σmi
log σMj

+(C1 + C4 log σmi
+ C5 log σMj

+ C7 log σmi
log σMMj) log Nijk

)

+

2
∑

i,j=1

n∗

ij log C1 + C4 log σmi
+ C5 log σMj

+ C7 log σmi
log σMMj (41)

with respect to the parameters Ci (i = 0, 1, . . . , 7) subject to the constraints

C0 + C2 log σm + C3 log σM + C4 log Nijk log σm + C5 log Nijk log σM ≥ 0, ∀ i, j, k, (42)

and additional constraints to be satisfied by the parameters for the different models as presented
earlier in Section 3.2.

6 Illustrative Examples

The proposed estimation methods are illustrated in this section with some data sets. For the set of
parameter values C0 = −407.905, C1 = 0, C2 = −1.272, C3 = 53.132, C4 = −1.755, C5 = 2.107, C6 =
0, C7 = 0 and for each of the four combinations of the two values of σmin (σmin = 510, 714) and two
values of σmax (σmax = 1054, 1190), two samples were simulated, one of small size (n = 7) and another
of moderate size (n = 20). The log N values of these samples are presented in Table 1.

The model parameters were then estimated by using the two methods described in Section 5.

Method 1: The MLEs Ĉ0ij and Ĉ1ij (i, j = 1, 2) and the corresponding MLEs Ĉi (i = 0, 1, . . . , 7)
estimates are provided in Columns 3 and 4 of Table 2 as “ML unconstrained estimates”, for the
cases when n = 7 and 20 without runouts. The true values of the parameters of the model, viz.,
C0ij , C1ij (i, j = 1, 2) and Ci (i = 0, 1, . . .7), are also presented in Column 2 for the purpose of
comparison. The parameters C0ij and C1ij are the ones that are crucial for modelling and prediction
purposes. We observe that even though the estimation of the initial parameters is not accurate,
the estimates of the parameters C0ij and C1ij parameters (which are functions of them) are quite
good.

Further, in order to illustrate the influence of run-outs, we also considered additional threshold val-
ues. For each condition, we considered the corresponding 90-th percentile Q90(σm, σM ) as threshold
value, which are Q90(510, 1054) = 12.97520, Q90(510, 1190) = 10.5213, Q90(714, 1054) = 15.5570
and Q90(714, 1190) = 12.4807. Thus, for the samples presented in Table 1, we observe the number
of run-outs to be 1, 1, 1, 1 for the case when n = 7, and 3, 3, 3, 2 for the case when n = 20. The
estimates of the parameters of the original model as well as those of the reparameterized model are
presented in Columns 5 and 6 of Table 2. Moreover, the quartiles of the true parameter values and
the estimated values are presented in Table 3, while the cdf’s as well as their estimates are presented
in Figure 4. From the values of Ĉ0ij and Ĉ1ij , as well as from the plots, it is clear that increasing
sample size results in more precision while the presence of run-outs result in loss of precision in the
estimation.

Method 2: We fitted the model in (23) using the constrained maximum likelihood method de-
scribed in Section 5. The parameter estimates so obtained are presented in Table 2 as “Constrained
estimates”. It is clear that the fitted values of the original Ci parameters are better than those
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Table 1: Simulated log N ordered values for the four different conditions of (a) 7 and (b) 20 specimens
at each condition.

(a)
Condition Simulated log N values

σm = 510
σM = 1054 12.4235 12.4396 12.5503 12.6968 12.8483 12.854 13.0437

σm = 510
σM = 1190 9.95172 9.98658 10.0196 10.1651 10.2444 10.2453 10.7026

σm = 714
σM = 1054 14.8401 14.8985 14.9619 14.9907 15.3109 15.3237 15.7461

σm = 714
σM = 1190 11.8056 11.8549 11.9707 11.9759 12.041 12.3971 12.7405

(b)

Condition Simulated log N values

σm = 510 12.3879 12.3945 12.4266 12.4364 12.4759 12.494 12.4955 12.5004 12.5329 12.6312
σM = 1054 12.643 12.7081 12.7257 12.7924 12.7981 12.8534 12.8892 12.9967 13.0073 13.0074

σm = 510 9.96423 9.98116 9.99038 10.016 10.0338 10.0425 10.0432 10.0482 10.0941 10.0995
σM = 1190 10.1064 10.1385 10.1428 10.2108 10.211 10.2116 10.2846 10.8629 10.8929 11.0735

σm = 714 14.8585 14.8848 14.8892 14.8893 14.8984 14.8998 14.9122 14.9212 14.9253 15.0038
σM = 1054 15.0649 15.0831 15.1102 15.2873 15.384 15.3964 15.5167 15.6858 15.8732 15.9394

σm = 714 11.8027 11.8065 11.8129 11.8224 11.8371 11.8609 11.9272 11.9326 11.9428 11.9901
σM = 1190 12.0414 12.0539 12.0895 12.090 12.1639 12.2018 12.2985 12.2991 12.8947 13.1203

obtained by Method 1. The quantile estimates are also presented in Table 3 as “Constrained esti-
mates” which are also better than those obtained by Method 1.

We thus observe that the two methods of estimation proposed in Section 5 offer convenient meth-
ods of modeling the fatigue behavior, and that Method 1 presents a simpler alternative to the
computationally involved constrained maximum likelihood method.

7 Conclusions

In this paper, we have presented a general model for the prediction of the fatigue behavior for any
stress level and amplitude using an exponential model and discuss some important considerations such
as weakest link principle, limit behavior, limited range, and compatibility. Using the compatibility
condition, an exponential model is obtained with some non-dimensional model parameters whose physical
interpretations are given in terms of threshold value of log-lifetime, endurance limit, parameter defining
the position of the corresponding zero-percentile hyperbola, and scale factor. Next, based on physical
and compatibility considerations and on the Wöhler field for fixed stress level, a compatibility functional
equation yields a general exponential model with eight parameters. We have then reparametrized this
general model into a two-parameter exponential distribution and have explained how the estimation of its
parameters can be used to set-up a system of eight equations for the estimation of the eight parameters
of the original model. For the estimation method, we have described two methods, one based on the
maximum likelihood on four stress level tests and least-squares, and the other based on the constrained
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Table 2: True and estimated values of the parameters, based on the two samples in Table 1, with and
without run-outs.

Parameter True value Estimated value1 Estimated value2

(n = 7) (n = 20) (n = 7) (n = 20)

ML unconstrained estimates

C011 -46.018 -45.972 -45.554 -39.404 -38.721
C111 3.724 3.700 3.677 3.172 3.126
C012 -39.570 -42.140 -38.593 -36.120 -32.804
C112 3.980 4.234 3.873 3.630 3.292
C021 -46.446 -47.405 -47.512 -40.633 -40.386
C121 3.134 3.194 3.198 2.738 2.718
C022 -39.998 -38.499 -39.767 -32.999 -35.791
C122 3.389 3.261 3.369 2.795 3.032

C0 -407.905 -239.195 -408.472 -205.024 -347.201
C1 0.000 0.000 0.000 0.000 0.000
C2 -1.272 -4.258 -5.821 -3.650 -4.948
C3 53.132 31.575 57.355 27.064 48.752
C4 -1.755 -1.504 -1.425 -1.289 -1.212
C5 2.107 4.400 1.614 3.772 1.372
C6 0.000 0.000 0.000 0.000 0.000
C7 0.000 0.000 0.000 0.000 0.000

ML and least-squares

C0 -407.905 -412.142 -438.344 -353.264 -296.642
C1 0.000 0.000 0.000 0.000 0.000
C2 -1.272 0.000 -4.673 0.000 -6.927
C3 53.132 52.505 60.590 45.004 43.308
C4 -1.755 -2.193 -1.426 -1.879 -1.060
C5 2.107 2.512 1.803 2.153 1.400
C6 0.000 0.000 0.000 0.000 0.000
C7 0.000 0.000 0.000 0.000 0.000

Constrained estimates

C0 -407.905 -420.957 -410.061 -360.820 -353.680
C1 0.000 0.000 0.000 0.000 0.000
C2 -1.272 -2.779 -0.305 -2.382 -0.263
C3 53.132 56.300 52.586 48.257 45.355
C4 -1.755 -1.621 -1.812 -1.389 -1.563
C5 2.107 1.988 2.156 1.704 1.860
C6 0.000 0.000 0.000 0.000 0.000
C7 0.000 0.000 0.000 0.000 0.000

1 without run-outs 2 with run-outs
∗ In these cases, no run-outs occurred and the estimates are therefore the same.

maximum likelihood. Finally, we have presented two examples to illustrate the exponential model derived
as well as to demonstrate the two methods of estimation proposed here.

Moreover, it is also important to mention the following points:

1. The method will enable one to extrapolate laboratory results obtained from any combination of
values of σmin or σmax to any possible combination of values of σmin or σmax arising in a practical
case;
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Table 3: True and estimated quartiles, based on the two samples in Table 1, with and without run-outs.

Condition Quartile True value Estimated value1 Estimated value2

(n = 7) (n = 20) (n = 7) (n = 20)
ML unconstrained estimates

σm = 510 Q25 12.4342 12.5012 12.4661 12.5142 12.4799
σM = 1054 Q50 12.5431 12.6108 12.5764 12.6420 12.6096

Q75 12.7292 12.7981 12.7649 12.8606 12.8314
Q90 12.9752 13.0458 13.0140 13.1495 13.1245

σm = 510 Q25 10.0150 10.0197 10.0385 10.0310 10.0516
σM = 1190 Q50 10.1169 10.1154 10.1432 10.1427 10.1748

Q75 10.2911 10.2791 10.3222 10.3337 10.3853
Q90 10.5213 10.4955 10.5587 10.5861 10.6636

σm = 714 Q25 14.9139 14.9301 14.9484 14.9452 14.9643
σM = 1054 Q50 15.0433 15.0571 15.0752 15.0932 15.1135

Q75 15.2645 15.2741 15.2920 15.3464 15.3685
Q90 15.5570 15.5609 15.5785 15.6810 15.7056

σm = 714 Q25 11.8862 11.8938 11.8880 11.9085 11.8957
σM = 1190 Q50 12.0059 12.0181 12.0084 12.0536 12.0312

Q75 12.2104 12.2307 12.2141 12.3015 12.2598
Q90 12.4807 12.5117 12.4860 12.6294 12.5620

ML and least-squares
σm = 510 Q25 12.4342 12.3172 12.5789 12.3298 12.3338
σM = 1054 Q50 12.5431 12.4235 12.6896 12.4538 12.4631

Q75 12.7292 12.6052 12.8790 12.6658 12.6841
Q90 12.9752 12.8455 13.1294 12.9461 13.9763

σm = 510 Q25 10.0150 9.8585 9.9735 9.8701 10.1102
σM = 1190 Q50 10.1169 9.9569 10.0781 9.9850 10.2328

Q75 10.2911 10.1252 10.2568 10.1813 10.4425
Q90 10.5213 10.3477 10.4930 10.4408 10.7197

σm = 714 Q25 14.9139 15.2713 14.9710 15.2869 14.7548
σM = 1054 Q50 15.0433 15.4031 15.0985 15.4407 15.9007

Q75 15.2645 15.6285 15.3165 15.7036 15.1501
Q90 15.5570 15.9263 15.6046 16.0511 15.4797

σm = 714 Q25 11.8862 12.0097 11.8439 12.0239 12.1229
σM = 1190 Q50 12.0059 12.1297 12.9632 12.1638 12.2603

Q75 12.2104 12.3347 12.1671 12.4030 12.4954
Q90 12.4807 12.6057 12.4367 12.7192 12.8060

Constrained estimates
σm = 510 Q25 12.4342 12.5005 12.4654 12.5133 12.4778
σM = 1054 Q50 12.5431 12.6090 12.574 12.6399 12.6045

Q75 12.7292 12.7945 12.7616 12.8564 12.8212
Q90 12.9752 13.0398 13.0087 13.1425 13.1077

σm = 510 Q25 10.0150 10.0240 10.0367 10.0361 10.0482
σM = 1190 Q50 10.1169 10.1260 10.1388 10.1550 10.1666

Q75 10.2911 10.3003 10.3133 10.3583 10.3690
Q90 10.5213 10.5306 10.5441 10.6271 10.6365

σm = 714 Q25 14.9139 14.9302 14.9513 14.9453 14.9661
σM = 1054 Q50 15.0433 15.0573 15.0821 15.0935 15.1178

Q75 15.2645 15.2746 15.3058 15.3470 15.3771
Q90 15.5570 15.5618 15.6014 15.6820 15.7199

σm = 714 Q25 11.8862 11.8894 11.8883 11.9034 11.9019
σM = 1190 Q50 12.0059 12.0075 12.0089 12.0412 12.0418

Q75 12.2104 12.2095 12.2152 12.2768 12.2809
Q90 12.4807 12.4765 12.4878 12.5883 12.5970

1 without run-outs 2 with run-outs

2. Testing strategies (test designs) suggested for producing enough data will enable the above ex-
trapolation possible. This will result in a substantial reduction as compared to traditional testing
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Figure 4: Cdf of lifetimes log N under the four conditions (from top to bottom: (σm = 510; σM = 1054),
(σm = 510; σM = 1190), (σm = 714; σM = 1054) and (σm = 714; σM = 1190)). Estimated cdf based
on the sample of size n = 7 and n = 20 are plotted in green and red, respectively, for the case without
run-outs [figures in the left column (a)] and with run-outs [in the right column], for the unconstrained
method.
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procedures; in fact, four levels are normally used in standard tests of constant σmin or σmax;

3. Explicit simple formulas derived will facilitate the extrapolation (or interpolation) from lab results;

4. The normalization principle, together with the model proposed in this paper, would enable the
analysis of damage accumulation when one knows the history of σmin or σmax as a function of time
or cycle in a practical case;

5. The unconstrained and constrained methods of estimation proposed will facilitate the model fitting
in a simple and efficient manner.
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Castillo, E., López-Aenlle, M., Ramos, A., Fernández-Canteli, A., Kieselbach, R. and Esslinger, V.
(2006). Specimen Length Effect on Parameter Estimation in Modelling Fatigue Strength by Weibull
Distribution, International Journal of Fatigue, 1047–1058.

Castillo, E. and Ruiz-Cobo, R. (1992). Functional Equations in Science and Engineering, New York:
Marcel Dekker.

Coleman, B.D. (1958). Statistics and Time Dependence of Mechanical Breakdown in Fibers, Journal of
Applied Physics 29, 968–983.
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