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Introduction

In fatigue analysis that the stress ratio R = σ max /σ min is an important factor, next only to the stress level (σ min , σ max , σ mean ), which needs to be taken into account while dealing with fatigue behavior. This becomes particularly relevant while considering real stress histories instead of constant stress level situations. However, most of the existing laboratory test strategies and fatigue models are applicable for a given stress level but can not predict the fatigue behavior for different stress levels; see, for example, [START_REF] Coleman | Statistics and Time Dependence of Mechanical Breakdown in Fibers[END_REF], [START_REF] Bastenaire | New Method for the Statistical Evaluation of Constant Stress Amplitude Fatigue-Test Results, In Probabilistic Aspects of Fatigue[END_REF], ASTM (1981), [START_REF] Spindel | Some Considerations in the Statistical Determination of the Shape of S-N Curves[END_REF], [START_REF] Fernández-Canteli | Statistical Interpretation of the Miner-Number Using an Index of Total Damage[END_REF], [START_REF] Castillo | Statistical Model for Fatigue Analysis of Wires, Strands and Cables[END_REF], [START_REF] Castillo | Lifetime Regression Models Based on a Functional Equation of Physical Nature[END_REF], [START_REF] Castillo | Modelling Lifetime Data with Application to Fatigue Models[END_REF], [START_REF] Pascual | Estimating Fatigue Curves with the Random Fatigue-Limit Model[END_REF], and [START_REF] Castillo | A General Regression Model For Lifetime Evaluation and Prediction[END_REF].

Though there are some models that take mean stress effects into account [see [START_REF] Conway | Analysis and representation of fatigue data[END_REF] and [START_REF] Dowling | An Overview and Discussion of Basic Methodology for Fatigue and Fracture Mechanics[END_REF]], such simplified models are far from satisfactory. Castillo and Fernández-Canteli (2006) and Castillo et al. (2006) presented a general model that enables the prediction of the fatigue behavior based on two groups of tests run at two different stress levels. This was a significant development as other models did not facilitate this prediction and also that the required testing strategy for this model was very simple.

In this paper, we consider this general model for the case of the exponential distribution and describe the prediction of the fatigue behavior for any stress level and amplitude, and discuss some methods of estimation of the parameters underlying the model. In Section 2, we describe first the exponential parameter fatigue model. In Section 3, we describe how this model can be extrapolated to different test conditions, i.e., different pairs of σ max and σ min , and then discuss the consequences of forcing the compatibility or independence of the results on the selected σ max and σ min test levels. In Section 4, we present a reparameterization of the model that is convenient for the estimation of the model parameters. In Section 5, we discuss some methods of estimation such as the maximum likelihood and constrained maximum likelihood methods. In Section 6, we present some examples to illustrate the derived model and the proposed methods of estimation. Finally, some concluding remarks are made in Section 7. Let us consider a series of tests with constant σ min and variable σ max , but in each fatigue test we fix σ max and repeat cycles in which σ is varied from σ min to σ max until the failure of the specimen occurs. In other words, σ min is constant for all tests, and different tests in the series can have identical or possibly different σ max . The resulting lifetimes N (the number of cycles to failure) are observed. Since σ min is held constant, we use as variables the stress ratio R = σ max /σ min and N .

It is generally accepted that there are five variables initially involved in the fatigue problem: P , N , N 0 , R and R 0 , where P is the probability of fatigue failure of a piece when subjected to N cycles, N 0 is the threshold value for N corresponding to the minimum observable lifetime for any R, and R 0 is the endurance stress ratio limit below which fatigue failures can not occur. This means that there exists a relationship among the five initially independent variables, of the form

r(N, N 0 , R, R 0 , P ) = 0, (1) 
where r(•) is an initially unknown function. However, using the Π-Theorem [see, for example, [START_REF] Buckingham | On Physically Similar Systems: Illustrations of the Use of Dimensional Equations[END_REF]Buckingham ( , 1915a,b) ,b) and [START_REF] Castillo | A General Regression Model For Lifetime Evaluation and Prediction[END_REF]], these initial five variables can be reduced to three non-dimensional variables, viz., N/N 0 , R/R 0 and P . Consequently, (1) can be written in terms of these three non-dimensional variables as

r(N, N 0 , R, R 0 , P ) = 0 ⇐⇒ s N N 0 , R R 0 , P = 0;
(2) since we are interested in P , we can express

P = q N N 0 , R R 0 , (3) 
where s(•) and q(•) are functions to be determined. Thus, only the non-dimensional quotients N/N 0 and R/R 0 exert influence on the probability of failure P , and so either N/N 0 and R/R 0 , or some monotone functions of them, say h(N/N 0 ) and g(R/R 0 ), need to be considered. In this paper, we have chosen the h and g functions to be the logarithms of N/N 0 and R/R 0 , respectively. For simplicity in notation, we denote throughout this paper

N * = log(N/N 0 ), R * = log(R/R 0 ), N ≥ N 0 , R ≥ R 0 . ( 4 
)
The selection of the exponential model is then based on the following important considerations:

1. Weakest link principle: This principle states that the fatigue lifetime of a longitudinal element is the minimum fatigue life of its constituent pieces. In other words, the selected family of distributions must hold (be valid) for different specimen lengths.

Limit behavior:

To include the extreme case of the size of the supposed pieces constituting the element going to zero, or the number of pieces going to infinity, it is necessary for the distribution function family to be an asymptotic family; see [START_REF] Galambos | The Asymptotic Theory of Extreme Order Statistics[END_REF], [START_REF] Castillo | Extreme Value Theory in Engineering[END_REF], Castillo et al. (2004), andCastillo et al. (2006).

3. Limited range: Experience shows that the selected non-dimensional variables, N * and R * , have a finite lower end, which must coincide with the theoretical lower end of the selected cumulative distribution function (cdf).

Compatibility:

In the S-N field, the cdf G(N * ; R * ) of the lifetime given stress range should be compatible with the cdf of the stress range given lifetime F (R * ; N * ), i.e., Though in standard tests R * is fixed and the associated random lifetime N * is determined, R * is interpreted here as the random stress that needs to be applied in order to produce failure at N * .

G(N

* ; R * ) = F (R * ; N * ). ( 5 
It is important to note here that the exponential family satisfies all the conditions stated above.

Compatibility

The compatibility condition in (5) for the exponential model requires

1 -exp[-δ(N * )(R * -λ(N * ))] = 1 -exp[-ρ(R * )(N * -η(R * ))], (6) 
which leads to the functional equation

R * δ(N * ) -δ(N * )λ(N * ) -ρ(R * )N * + ρ(R * )η(R * ) = 0 (7)
whose solution is [see Castillo and Ruiz-Cobo (1992, p. 52) and Castillo et al. (2004, pp. 60-61)]

ρ(R * ) = aR * + b, (8) 
η(R * ) = cR * + d aR * + b , (9) 
δ(N * ) = aN * -c, (10) 
λ(N * ) = -bN * + d aN * -c . (11) 
This leads to the model

G(N * ; R * ) = F (R * ; N * ) = 1 -exp[(c -aN * )R * -bN * + d], (12) 
where a, b, c and d are arbitrary constants; now, upon reparameterizing and subsuming two parameters into N 0 and R 0 , we obtain

G(N * ; R * ) = F (R * ; N * ) = 1 -exp - R * N * -λ δ , (13) 
where λ and δ are some constants.

Once the model has been established in non-dimensional terms as in ( 13), as we need to recover the initial variables, we can reexpress the model in (13) as

F (log N ; log R) = 1-exp - (log N -B)(log R-C)-E D , (14) 
where The percentile curves are shown in Figure 1. The zero-percentile curve represents the minimum possible required number of cycles of fatigue failure for different values of R. All the remaining percentiles happen to be the positive branches of a hyperbola, i.e.,

B = log N 0 , C = log R 0 ,
N * R * = E + D [-log(1 -p)] ,
where p ∈ [0, 1] defines the percentile. For such curves, the minimum number of cycles to fatigue failure decreases with increasing R * , which is in agreement with experimental results. The parameters E and D determine the p-percentile, and hence define a unique curve on the plot.

It can be seen from ( 13) that

N * R * ∼ Exp(λ, δ) ⇔ N * ∼ Exp E R * , D R * , (15) 
for given R * , where Exp(λ, δ) denotes a two-parameter exponential distribution with λ as the threshold parameter and δ as the scale parameter. It is of interest to note that (15) has a non-dimensional form and reveals that the probability of failure of a piece subject to a stress ratio R * during N * cycles depends only on the product N * R * . Thus, V = N * R * is useful for comparing fatigue strength at different stress levels that are maintained constant, and can be considered as a normalizing variable.

Physical and compatibility considerations

Since for each constant σ min , a model as in ( 14) is obtained, we can consider its parameters B, C, D and E to be functions of σ min . An important property to be observed is that the same percentile curves never intersect if they are associated with two different σ max or with two different σ min , but they intersect if one set of percentiles is associated with constant σ max and another with constant σ min as shown in Figure 3, where the four sets of percentiles have been plotted together, with dashed lines corresponding to Wöhler curves for constant σ min and continuous lines corresponding to Wöhler curves for constant σ max . Note that the line joining the intersections of associated percentiles for one constant σ max and one constant σ min must be straight and horizontal since both fields, i.e., the associated cdf's, must coincide. This is a very strong condition indeed and it assists greatly in deriving a simple model which is able to deal with different stress levels. Though in Figure 3 we have these four sets, we realize that there is an infinite set of them. More precisely, two families of S-N curves exist, one for different constant values of σ max and another for different constant values of σ min .

In this paper, we consider the case when the test experiments are conducted for constant σ max = σ M and constant σ min = σ m . As mentioned above, the model in ( 14) is valid only if all tests are conducted at the same stress level, and in particular, for given values of σ max ≡ σ M or σ min ≡ σ m . Thus, if two sample data do not coincide at either their σ M or σ m , the model can not be applied. Since there are two different cases, we must consider two fatigue models of the type in ( 14), i.e., we initially have two sets of parameters B m , C m , D m , E m and B M , C M , D M , E M , where the subindices m and M have been used for the cases of constant σ min = σ m and constant σ max = σ M , respectively. However, for the same stress amplitude and level, i.e., when both σ M and σ m coincide, for the compatibility condition to hold, we must have the same model for both cases, i.e., for all N we must have For the functional equation in ( 16) to be satisfied for any N , σ m and σ M , both models must have the same parameters. Rewriting now the model in ( 16) as

(log N -Bm(σm))(log R -Cm(σm)) -Em(σm) Dm(σm) = (log N -BM (σM ))(log R -CM (σM ) -EM (σM ) DM (σM ) . ( 16 
log N -B m (σ m ) + E m (σ m ) log R -C m (σ m ) D m (σ m ) log R -C m (σ m ) = log N -B M (σ M ) + E M (σ M ) log R -C M (σ M ) D M (σ M ) log R -C M (σ M ) ∀ N (17)
and forcing the exponential parameters to coincide, we obtain

D m (σ m ) D M (σ M ) = log σ M -log σ m -C m (σ m ) log σ M -log σ m -C M (σ M ) ∀ σ m , σ M , (18) 
B M (σ M ) = B m (σ m ) - E M (σ M ) log σ M -log σ m -C M (σ M ) + E m (σ m ) log σ M -log σ m -C m (σ m ) ∀ σ m , σ M . ( 19 
)
The functional equations in ( 18) and ( 19) deserve a careful attention to get a deeper understanding of our problem; they are not simple equalities, but each a full collection of equalities as they hold for any feasible pair σ m , σ M . Eqs. ( 18) and ( 19), considered as functions of σ m , must be independent of σ M . This simple but powerful condition allows us to derive the structure of the functions D m (σ m ), D M (σ M ) and B M (σ M ). The complete derivation, as given by Castillo et al. (2006), leads to the final model as 

F (N ; σ m , σ M ) = 1 -exp {-[C 0 + C 1 log N + C 2 log σ m + C 3 log σ M + C 4 log N log σ m +C 5 log N log σ M + C 6 log σ m log σ M + C 7 log N log σ m log σ M ]} ( 
= 1 -exp {-[(C 0 + C 2 log σ m + C 3 log σ M + C 6 log σ m log σ M ) + log N (C 1 + C 4 log σ m + C 5 log σ M + C 7 log σ m log σ M )]} . (21) 
Observe that this model involves eight parameters C i (i = 0, 1, . . . , 7).

Physical conditions

For the model to be physically feasible, the constants must satisfy some constraints. In particular:

• The cdf in ( 21) must be increasing in log N ;

• The cdf in ( 21) must be non-increasing in σ m ;

• The cdf in ( 21) must be non-decreasing in σ M ;

• The curvature of the zero-percentile of (log N, log R) for constant σ min must be non-negative;

• The curvature of the zero-percentile of (log N, log R) for constant σ max must be non-negative.

Resulting models

In summary, we can obtain some final set of feasible submodels of (21) as follows:

Linear Model: The simplest model with no asymptotes is given by

F (N ; σ m , σ M ) = 1 -exp {-[C 0 + C 1 log N + C 2 log σ m + C 3 log σ M ]} , C 1 , C 2 ≤ 0, C 3 ≤ 0, (22) 
which in log-log scale leads to a Wöhler field made of straight lines.

Model with asymptotes independent on σ m and σ M : The model with log N asymptotes independent on σ m and σ M is given by

F (N ; σ m , σ M ) = 1 -exp {-[C 0 + C 2 log σ m + C 3 log σ M + C 4 log N log σ m + C 5 log N log σ M ]} , C 2 , C 4 ≤ 0, C 3 , C 5 ≥ 0, C 4 + C 5 ≥ 0, (23) which is obtained when C 1 = C 6 = C 7 = 0.
The log N asymptotes are log N = -C3 C5 for the case of constant σ min , and log N = -C2 C4 for the case of constant σ max , and the log R asymptotes are log R = -(C 4 + C 5 ) log σ m /C 5 for the case of constant σ min , and log R = (C 4 + C 5 ) log σ M /C 4 for the case of constant σ max .

Model with fixed asymptotes: The model with log R asymptotes independent on σ m and σ M is given by 

F (N ; σ m , σ M ) = 1 -exp {-[C 0 + C 1 log N + C 2 log σ m + C 3 log σ M + C 4 log N (log σ m -log σ M ) +C 6 log σ m log σ M ]} , (24 
F (N ; σ m , σ M ) = 1 -exp {-[C 0 + C 1 log N + C 2 log σ m + C 3 log σ M + C 4 log N log σ m +C 5 log N log σ M + C 6 log σ m log σ M + C 7 log N log σ m log σ M ]} , (25) 
subject to adequate constraints on the parameters.

These constraints are very important in order to have a physically meaningful model.

Testing strategies

The aim of any testing strategy is to estimate the model parameters in (21). For this purpose, a testing strategy involving one single group of tests with constant σ max or one single group with constant σ min or two groups one with constant σ max and one with constant σ min are not sufficient, because of the linear combination of the parameters that are involved in the model. In contrast, two groups of tests one with constant σ max and one with constant σ min are sufficient for estimating the parameters. Many other alternatives are also possible by combining different constant (more than one) levels of σ max or constant σ min . A very efficient testing strategy, in particular, consists of selecting two different values of σ max and two different values of σ min and combine them to obtain 4 groups of tests, for which several specimens must be tested.

Convenient Reparameterized Model

In order to estimate the cumulative distribution function, the model in ( 21) is reparameterized in such a way that it can be viewed as a two-parameter exponential distribution in which case the required estimation becomes simple. So, the model in ( 21) is expressed as

F (log N ; σ mi , σ Mj ) = 1 -exp {-[C 0ij + C 1ij log N ]} , (26) 
for i, j = 1, 2, where

C 0ij = C 0 + C 2 log σ mi + C 3 log σ Mj + C 6 log σ mi log σ Mj (27) 
and

C 1ij = C 1 + C 4 log σ mi + C 5 log σ Mj + C 7 log σ mi log σ M M j . (28) 
We then recognize that log N , with log N ≥ -C 0ij /C 1ij and C 1ij > 0, follows a two-parameter exponential distribution with γ ij = -C 0ij /C 1ij and β ij = 1/C 1ij as the location and scale parameters, respectively. We now use the expression in (26) for the purpose of estimation. Once the parameters C 0ij and C 1ij are all estimated, the expressions in ( 27) and (28) evaluated at these estimates for the four conditions produced by two different values for σ m (σ m1 , σ m2 ) and σ M (σ M1 , σ M2 ), provide a system of eight equations, using which the estimates of the eight initial parameters C i (i = 0, 1, . . . , 7) can be achieved. Solving this system of eight equations, we get 

C 7 = C 111 -C 112 -C 121 + C 122 (log σ m1 -log σ m2 )(log σ M1 -log σ M2 ) , (29) 
C 5 = C 111 -C 112 log σ M1 -log σ M2 -C 7 log σ m1 , (30) 
C 4 = C 111 -C 121 log σ m1 -log σ m2 -C 7 log σ M1 , (31) 
C 1 = C 111 -C 4 log σ m1 -C 5 log σ M1 -C 7 log σ m1 log σ M1 , (32) 
C 6 = C 011 -C 012 -C 021 + C 022 (log σ m1 -log σ m2 )(log σ M1 -log σ M2 ) , (33) 
C 3 = C 011 -C 012 log σ M1 -log σ M2 -C 6 log σ m1 , (34) 
C 2 = C 011 -C 021 log σ m1 -log σ m2 -C 6 log σ M1 , (35) 
C 0 = C 011 -C 2 log σ m1 -C 3 log σ M1 -C 6 log σ m1 log σ M1 . ( 36 
)
5 Parameter Estimation

In this section, we describe two methods of estimating the parameters of the model.

1. Method 1 (based on the maximum likelihood on 4 stress level tests and least-squares) From the model in ( 26), the sample log-likelihood, taking the run-outs into account, turns out to be

L = - 2 i,j=1 nij k=1 (C 0ij + C 1ij log N ijk ) + 2 i,j=1 n * ij log C 1ij , (37) 
where N ijk , n ij and n * ij are the lifetime (or the censored value) of the specimen k, the total number of specimens, and the number of uncensored specimens, respectively, tested at stress levels σ mi and σ Mj . Then, by standard results for the two-parameter exponential distribution, we have the maximum likelihood estimates (MLEs) to be

Ĉ1ij = n * ij nij k=1 log N ijk -log N minij (38) and Ĉ0ij = -log N minij Ĉ1ij , i, j = 1, 2, ( 39 
)
where N minij = min(N ij1 , N ij2 , . . . , N ijkij ) denotes the smallest lifetime observed for stress levels σ mi and σ Mj . The MLEs of the initial parameters in ( 21) are then obtained by replacing in Eqs. ( 29) -( 36) C 0ij and C 1ij by their MLEs in ( 39) and ( 38), respectively. However, if one uses any of the submodels presented in Section 3.2, then there will be more equations than unknown parameters. In this case, we propose to get the estimates of the initial parameters by minimizing the sum of squares based on the MLEs C 0ij and C 1ij given by

Q = i,j C 0ij -(C 0 + C 2 log σ mi + C 3 log σ Mj + C 6 log σ mi log σ Mj ) 2 + C 1ij -(C 1 + C 4 log σ mi + C 5 log σ Mj + C 7 log σ mi log σ M M j ) 2 , ( 40 
)
wherein the parameters constraints can also be included in the optimization process, if desired.

In this manner, we may avoid the constrained maximum likelihood estimation method used so far for these types of problems; see, for example, Castillo et al. (2006). At this stage, we can test whether the physical constraints of the model are satisfied by the estimates determined by the above method. In case they are, the computed estimates are indeed the desired MLEs. If not, the unconstrained MLEs do not belong to the restricted parameter space and in this case the constrained MLEs need to be computed by a numerical method. To this end, existing software such as GAMS enables not only to solve the problem but also to perform a sensitivity analysis; for details, see Castillo et al. (2001Castillo et al. ( , 2004) ) and [START_REF] Conejo | Decomposition Techniques in Mathematical Programming: Engineering and Science Applications[END_REF]).

9 

F
L = - 2 i,j=1 nij k=1 C 0 + C 2 log σ mi + C 3 log σ Mj + C 6 log σ mi log σ Mj +(C 1 + C 4 log σ mi + C 5 log σ Mj + C 7 log σ mi log σ M M j ) log N ijk + 2 i,j=1 n * ij log C 1 + C 4 log σ mi + C 5 log σ Mj + C 7 log σ mi log σ M M j (41)
with respect to the parameters C i (i = 0, 1, . . . , 7) subject to the constraints

C 0 + C 2 log σ m + C 3 log σ M + C 4 log N ijk log σ m + C 5 log N ijk log σ M ≥ 0, ∀ i, j, k, (42) 
and additional constraints to be satisfied by the parameters for the different models as presented earlier in Section 3.2.

Illustrative Examples

The proposed estimation methods are illustrated in this section with some data sets. For the set of parameter values

C 0 = -407.905, C 1 = 0, C 2 = -1.272, C 3 = 53.132, C 4 = -1.755, C 5 = 2.
107, C 6 = 0, C 7 = 0 and for each of the four combinations of the two values of σ min (σ min = 510, 714) and two values of σ max (σ max = 1054, 1190), two samples were simulated, one of small size (n = 7) and another of moderate size (n = 20). The log N values of these samples are presented in Table 1. The model parameters were then estimated by using the two methods described in Section 5.

Method 1: The MLEs Ĉ0ij and Ĉ1ij (i, j = 1, 2) and the corresponding MLEs Ĉi (i = 0, 1, . . . , 7) estimates are provided in Columns 3 and 4 of Table 2 as "ML unconstrained estimates", for the cases when n = 7 and 20 without runouts. The true values of the parameters of the model, viz., C 0ij , C 1ij (i, j = 1, 2) and C i (i = 0, 1, . . . 7), are also presented in Column 2 for the purpose of comparison. The parameters C 0ij and C 1ij are the ones that are crucial for modelling and prediction purposes. We observe that even though the estimation of the initial parameters is not accurate, the estimates of the parameters C 0ij and C 1ij parameters (which are functions of them) are quite good.

Further, in order to illustrate the influence of run-outs, we also considered additional threshold values. For each condition, we considered the corresponding 90-th percentile Q 90 (σ m , σ M ) as threshold value, which are Q 90 (510, 1054) = 12.97520, Q 90 (510, 1190) = 10.5213, Q 90 (714, 1054) = 15.5570 and Q 90 (714, 1190) = 12.4807. Thus, for the samples presented in Table 1, we observe the number of run-outs to be 1, 1, 1, 1 for the case when n = 7, and 3, 3, 3, 2 for the case when n = 20. The estimates of the parameters of the original model as well as those of the reparameterized model are presented in Columns 5 and 6 of Table 2. Moreover, the quartiles of the true parameter values and the estimated values are presented in Table 3, while the cdf's as well as their estimates are presented in Figure 4. From the values of Ĉ0ij and Ĉ1ij , as well as from the plots, it is clear that increasing sample size results in more precision while the presence of run-outs result in loss of precision in the estimation.

Method 2: We fitted the model in (23) using the constrained maximum likelihood method described in Section 5. The parameter estimates so obtained are presented in .1102 15.2873 15.384 15.3964 15.5167 15.6858 15.8732 15.9394 σm = 714 11.8027 11.8065 11.8129 11.8224 11.8371 11.8609 11.9272 11.9326 11.9428 11.9901 σM = 1190 12.0414 12.0539 12.0895 12.090 12.1639 12.2018 12.2985 12.2991 12.8947 13.1203 obtained by Method 1. The quantile estimates are also presented in Table 3 as "Constrained estimates" which are also better than those obtained by Method 1.

We thus observe that the two methods of estimation proposed in Section 5 offer convenient methods of modeling the fatigue behavior, and that Method 1 presents a simpler alternative to the computationally involved constrained maximum likelihood method.

Conclusions

In this paper, we have presented a general model for the prediction of the fatigue behavior for any stress level and amplitude using an exponential model and discuss some important considerations such as weakest link principle, limit behavior, limited range, and compatibility. Using the compatibility condition, an exponential model is obtained with some non-dimensional model parameters whose physical interpretations are given in terms of threshold value of log-lifetime, endurance limit, parameter defining the position of the corresponding zero-percentile hyperbola, and scale factor. Next, based on physical and compatibility considerations and on the Wöhler field for fixed stress level, a compatibility functional equation yields a general exponential model with eight parameters. We have then reparametrized this general model into a two-parameter exponential distribution and have explained how the estimation of its parameters can be used to set-up a system of eight equations for the estimation of the eight parameters of the original model. For the estimation method, we have described two methods, one based on the maximum likelihood on four stress level tests and least-squares 

Figure 1 :

 1 Figure 1: Percentiles curves representing the relationship between lifetime, N * , and stress range, ∆σ * , in the S-N field for the fatigue model in (14).

Figure 2 :

 2 Figure 2: Wöhler curves for percentiles 0.01, 0.05, 0.5, 0.95, 0.99: (a) for constant σ min = 0.4 and σ min = 0.8, and (b) for constant σ max = 1 and σ max = 1.5.

Figure 3 :

 3 Figure 3: Wöhler curves for percentiles {0.01, 0.05, 0.5, 0.95, 0.99} for σ max = 1 and σ max = 1.5, and σ min = 0.4 and σ min = 0.8. Dashed lines refer to Wöhler curves for constant σ min , and continuous lines refer to Wöhler curves for constant σ max .

  ) which is obtained when C 7 = 0 and C 4 + C 5 = 0. The log R asymptotes are log R = -C 1 /C 5 for the case of constant σ min , and log R = C 1 /C 4 for the case of constant σ max .The log N asymptotes are log N = -C3+log σM C6 C5 for the case of constant σ min , and log N = -C2+log σM C6 C4 for the case of constant σ max , so that they are constant if, in addition, C 6 The general model with log R and log N asymptotes dependent on σ m and σ M is given by

Figure 4 :

 4 Figure 4: Cdf of lifetimes log N under the four conditions (from top to bottom: (σ m = 510; σ M = 1054), (σ m = 510; σ M = 1190), (σ m = 714; σ M = 1054) and (σ m = 714; σ M = 1190)). Estimated cdf based on the sample of size n = 7 and n = 20 are plotted in green and red, respectively, for the case without run-outs [figures in the left column (a)] and with run-outs [in the right column], for the unconstrained method.

Table 1 :

 1 Table 2 as "Constrained estimates". It is clear that the fitted values of the original C i parameters are better than those Simulated log N ordered values for the four different conditions of (a) 7 and (b) 20 specimens at each condition.
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Table 2 :

 2 True and estimated values of the parameters, based on the two samples in Table1, with and without run-outs. maximum likelihood. Finally, we have presented two examples to illustrate the exponential model derived as well as to demonstrate the two methods of estimation proposed here.Moreover, it is also important to mention the following points:1. The method will enable one to extrapolate laboratory results obtained from any combination of values of σ min or σ max to any possible combination of values of σ min or σ max arising in a practical case;
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Table 3 :

 3 True and estimated quartiles, based on the two samples in Table1, with and without run-outs.

	Condition Quartile True value	Estimated value 1 Estimated value 2
				(n = 7) (n = 20) (n = 7) (n = 20)
				ML unconstrained estimates
	σm = 510 σM = 1054	Q25 Q50 Q75 Q90	12.4342 12.5431 12.7292 12.9752	12.5012 12.4661 12.6108 12.5764 12.7981 12.7649 13.0458 13.0140	12.5142 12.4799 12.6420 12.6096 12.8606 12.8314 13.1495 13.1245
	σm = 510 σM = 1190	Q25 Q50 Q75 Q90	10.0150 10.1169 10.2911 10.5213	10.0197 10.0385 10.1154 10.1432 10.2791 10.3222 10.4955 10.5587	10.0310 10.0516 10.1427 10.1748 10.3337 10.3853 10.5861 10.6636
	σm = 714 σM = 1054	Q25 Q50 Q75 Q90	14.9139 15.0433 15.2645 15.5570	14.9301 14.9484 15.0571 15.0752 15.2741 15.2920 15.5609 15.5785	14.9452 14.9643 15.0932 15.1135 15.3464 15.3685 15.6810 15.7056
	σm = 714 σM = 1190	Q25 Q50 Q75 Q90	11.8862 12.0059 12.2104 12.4807	11.8938 11.8880 12.0181 12.0084 12.2307 12.2141 12.5117 12.4860	11.9085 11.8957 12.0536 12.0312 12.3015 12.2598 12.6294 12.5620
				ML and least-squares
	σm = 510 σM = 1054	Q25 Q50 Q75 Q90	12.4342 12.5431 12.7292 12.9752	12.3172 12.5789 12.4235 12.6896 12.6052 12.8790 12.8455 13.1294	12.3298 12.3338 12.4538 12.4631 12.6658 12.6841 12.9461 13.9763
	σm = 510 σM = 1190	Q25 Q50 Q75 Q90	10.0150 10.1169 10.2911 10.5213	9.8585 9.9735 9.9569 10.0781 10.1252 10.2568 10.3477 10.4930	9.8701 10.1102 9.9850 10.2328 10.1813 10.4425 10.4408 10.7197
	σm = 714 σM = 1054	Q25 Q50 Q75 Q90	14.9139 15.0433 15.2645 15.5570	15.2713 14.9710 15.4031 15.0985 15.6285 15.3165 15.9263 15.6046	15.2869 14.7548 15.4407 15.9007 15.7036 15.1501 16.0511 15.4797
	σm = 714 σM = 1190	Q25 Q50 Q75 Q90	11.8862 12.0059 12.2104 12.4807	12.0097 11.8439 12.1297 12.9632 12.3347 12.1671 12.6057 12.4367	12.0239 12.1229 12.1638 12.2603 12.4030 12.4954 12.7192 12.8060
				Constrained estimates
	σm = 510 σM = 1054	Q25 Q50 Q75 Q90	12.4342 12.5431 12.7292 12.9752	12.5005 12.4654 12.6090 12.574 12.7945 12.7616 13.0398 13.0087	12.5133 12.4778 12.6399 12.6045 12.8564 12.8212 13.1425 13.1077
	σm = 510 σM = 1190	Q25 Q50 Q75 Q90	10.0150 10.1169 10.2911 10.5213	10.0240 10.0367 10.1260 10.1388 10.3003 10.3133 10.5306 10.5441	10.0361 10.0482 10.1550 10.1666 10.3583 10.3690 10.6271 10.6365
	σm = 714 σM = 1054	Q25 Q50 Q75 Q90	14.9139 15.0433 15.2645 15.5570	14.9302 14.9513 15.0573 15.0821 15.2746 15.3058 15.5618 15.6014	14.9453 14.9661 15.0935 15.1178 15.3470 15.3771 15.6820 15.7199
	σm = 714 σM = 1190	Q25 Q50 Q75 Q90	11.8862 12.0059 12.2104 12.4807	11.8894 11.8883 12.0075 12.0089 12.2095 12.2152 12.4765 12.4878	11.9034 11.9019 12.0412 12.0418 12.2768 12.2809 12.5883 12.5970
				1 without run-outs	2 with run-outs
	2. Testing strategies (test designs) suggested for producing enough data will enable the above ex-
	trapolation possible. This will result in a substantial reduction as compared to traditional testing
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