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Simulation and Estimation of the Meixner

Distribution

Matteo Grigoletto and Corrado Provasi

Department of Statistical Sciences, University of Padua, Italy

The Meixner distribution is a special case of the generalized z-distributions.

Its properties make it potentially very useful in modeling short-term fi-

nancial returns. This article proposes an algorithm to simulate the Meixner

distribution, and shows how to obtain maximum likelihood estimators of

its parameters. A GARCH-type model is then assessed, assuming that the

innovation distribution is a standardized Meixner. Goodness of fit prop-

erties are investigated for some real financial time series, using bootstrap

tests based on the empirical process of the residuals.

Keywords Johnson translation system; Rejection method; Maximum

likelihood estimation; Bootstrap goodness of fit; APARCH model.

1. Introduction

It is well known that financial returns measured on short time intervals, i.e.

daily or weekly, are non-Gaussian. In fact, numerous empirical evidences show

that their distribution has heavier than Gaussian tails, and is often skewed (see,

e.g., Cont, 2001).

One of the most interesting distributions introduced in the literature to

interpret financial returns is the normal inverse Gaussian distribution (NIG)
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(Barndorff-Nielsen, 1997), which is a subclass of the generalized hyperbolic

distribution (Barndorff-Nielsen, 1977), and is characterized by important theo-

retical properties, as semi-heavy tails and infinite divisibility. For these reasons

the NIG distribution has been often adopted in financial applications, both as

conditional distribution in GARCH-type models (see, among others, Jensen and

Lunde, 2001, and Forsberg and Bollerslev, 2002) and as marginal return distri-

bution (e.g. Eberlein and Keller, 1995, and Lillestøl, 2000). It should be noted,

however, that since the derivatives of the NIG log-likelihood involve the Bessel

function, direct likelihood maximization is difficult. As a further complication,

the kurtosis parameter is constrained to be larger than the absolute value of the

skewness parameter. As a consequence, maximization algorithms suffer from

problems like non-convergence and the need for good initial values. This is

especially true when the NIG is used within GARCH-type models, and many

parameters need to be estimated simultaneously. Karlis (2002) proposed, as a

solution to these problems, an EM type algorithm for finding maximum like-

lihood estimators of the NIG parameters. The algorithm assures convergence,

which however might be reached very slowly.

In the present work we will consider, as an alternative approach, the adop-

tion of the Meixner distribution, which has properties similar to those of the

NIG. In fact, it has semi-heavy tails and is infinitely divisible. The Meixner

distribution was introduced by Schoutens (2002) in the context of stochastic

volatility models, and is a subclass of the generalized z-distributions (Grigelio-

nis, 2001). The derivatives of the Meixner log-likelihood are more analytically

tractable than those of the NIG, and the Meixner joint parameter space is the

Cartesian product of each parameter space; likelihood maximization is there-

fore much easier to perform. These properties make the Meixner distribution

very useful both as conditional distribution in GARCH-type models, and as

marginal return distribution.

The paper is organized as follows. In Section 2 the Meixner distribution is

defined, while in Section 3 we propose a method to generate pseudo-random

2

Page 3 of 32

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
samples from it. Section 4 exposes the details of moment and maximum likeli-

hood estimation and investigates, by means of suitable bootstrap tests, good-

ness of fit to weekly returns of some financial indices. In Section 5 the MXN-

APARCH model is introduced, assuming that the conditional distribution for

an APARCH model is Meixner, and its goodness of fit to several series of daily

returns is analyzed. Concluding remarks are discussed in Section 6.

2. The Meixner distribution

A random variable X is said to follow a Meixner distribution having parameters

m, a, b, d, with a > 0, −π < b < π, d > 0, and m ∈ IR, in symbols X ∼
MXN(m, a, b, d), if its density function, for x ∈ IR, is

fMXN(x;m, a, b, d) = a−1fMXN

(

x−m

a
; 0, 1, b, d

)

,

where

fMXN(z; 0, 1, b, d) =
(2 cos(b/2))2 d

2 π Γ(2 d)
eb z |Γ(d+ ı z)|2 ,

with ı =
√
−1 and Γ(·) being the gamma function. It should be noted that m

and a are location and scale parameters, while b and d decide the shape of the

distribution. In other terms, if X ∼ MXN(m, a, b, d), then Z = (X −m)/a is

its standardized form, with distribution MXN(0, 1, b, d).

The characteristic function of X is (Grigelionis, 2001)

φMXN(u) = eı m u

(

2 cos(b/2)

cosh
(

a u−i b
2

)

)2 d

,

so that the Meixner distribution is clearly infinitely divisible. From this defini-

tion the mean, variance, skewness and kurtosis of a MXN(m, a, b, d) distribution

3
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can also be immediately derived:

E[X] = MXNµ = m+ a d tan(b/2) ,

Var[X] = MXNσ
2 =

a2 d

cos b+ 1
,

Skew[X] = MXNκ1 = sin b

√

1

d (cos b+ 1)
,

Kurt[X] = MXNκ2 = 3 − cos b− 2

d
.

(1)

Here, Skew[X] = E[(X − E[X])3]/[Var(X)]3/2 and Kurt[X] = E[(X − E[X])4]/

[Var(X)]2. It follows that when b = 0 the distribution is symmetric; besides,

its kurtosis is always larger than 3, the Gaussian kurtosis.

An important property of the Meixner distribution, that makes it poten-

tially useful in financial applications, is that it has semi-heavy tails (Grigelionis,

2001). Formally, this implies that, for a MXN(m, a, b, d) distribution, we have

fMXN(m, a, b, d) ∼ C |x|ρ e−σ |x| as x→ −∞,

fMXN(m, a, b, d) ∼ C+|x|ρ e−σ+|x| as x→ +∞,

for some ρ ∈ IR and C ,C+, σ , σ+ ≥ 0, with

ρ = 2d− 1, σ =
π − b

a
and σ+ =

π + b

a
.

3. Simulation

Generating random values from a Meixner distribution requires some effort,

since the quantile function is not available in closed form and the inversion

method is therefore difficult to implement.

As an alternative, since fMXN is unimodal, in the present context we consid-

ered the rejection method which, in its most basic form, assumes the existence

of a density g and the knowledge of a constant c ≥ 1 such that (Devroye, 1986)

f(x) ≤ c g(x) , ∀x . (2)

4
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Therefore, in order to apply the rejection algorithm, one needs to be able to

determine a suitable constant c. Besides, it is necessary to specify and ap-

propriate random variable Y , with density g and cdf G easily invertible. The

density g has to dominate fMXN for any value of its parameters (m, a, b, d). In

this regard, we propose to approximate the density fMXN with one of the dis-

tributions in the Johnson translation system (Johnson, 1949). The Johnson

system is highly flexible and, through one of its four functional forms, is able to

closely approximate many standard continuous distribution. Also, simulating

from this distribution is relatively simple and fast (a random sample from a

standardized normal distribution is all that is required). The latter point is

especially important since, in order for the Meixner density to be dominated,

the factor c needs to grow with the kurtosis. As a consequence, the number

of rejections also increases and, if the algorithm to generate from the domi-

nating density is not sufficiently fast, computation becomes slow. An inversion

based method was also considered, but was found to be too computationally

expensive.

For a generic random variable Y , the transformations that originate the

Johnson system have the general form

Z = γ + δ h

(

Y − ξ

λ

)

, (3)

where Z is a standard normal random variable, γ ∈ IR and δ > 0 are shape

parameters, λ > 0 is a scale parameter and ξ is a location parameter. The

nature of function h defines the four families of distributions in the Johnson

translation system:







































ln y, for the SL (lognormal) family,

sinh−1(y), for the SU (unbounded) family,

ln(y/(1− y)), for the SB (bounded) family,

y, for the SN (normal) family.

When a parameter vector (ξ, λ, γ, δ) is available, computing quantiles or proba-

5
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bilities is relatively easy, since these distributions are generated by an increasing

transform of the Gaussian distribution and their cdf can be expressed in terms

of Φ, the standard Gaussian cdf:

F (y; ξ, λ, γ, δ) = Φ

(

γ + δ h

(

y − ξ

λ

))

.

As we have seen, the Meixner distribution is always characterized by a kurtosis

greater than 3. As a consequence, an examination of the diagram by Johnson

(1949) (but see also Johnson et al., 1994) shows that the distribution most

apt to approximate the Meixner distribution is the SU, with density function

defined by

fSU
(y; ξ, λ, γ, δ) = λ−1fSU

(

y − ξ

λ
; 0, 1, γ, δ

)

,

where

fSU
(u; 0, 1, γ, δ) =

δ√
2π

√
u2 + 1

exp

(

−1

2
(γ + δ sinh−1(u))2

)

, u ∈ IR .

The moments of SU can be obtained by the inverse transformation of (3), and

are given by

E(Y r) =

∫ ∞

−∞

[

ξ + λ sinh

(

z − γ

δ

)]r

φ(z) dz, r = 1, 2, . . . ,

where φ denotes the standard Gaussian density. It can be shown that these

moments are available analytically; therefore, by the usual relations among the

central moments and the moments about the origin, we have that the mean,

the variance and the skewness and kurtosis indices for the SU distribution are,

respectively

E[Y ] = SU
µ = ξ − λω1/2 sinh θ ,

Var[Y ] = SU
σ2 =

λ2

2
(ω − 1) (ω cosh(2 θ) + 1) ,

Skew[Y ] = SU
κ1 = −ω

1/2 (ω − 1)2 [ω (ω + 2) sinh(3 θ) + 3 sinh θ]√
2 [(ω − 1) (ω cosh(2 θ) + 1)]3/2

,

Kurt[Y ] = SU
κ2 = {ω2 [(ω4 + 2ω3 + 3ω2 − 3) cosh(4 θ)

+ 4 (ω + 2) cosh(2 θ)] + 3 (2ω + 1)}/[2 (ω cosh(2 θ) + 1)2] ,

(4)

6
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where ω = exp(δ−2) and θ = γ/δ. It should be noted that when γ = 0, γ < 0

or γ > 0, the SU density function is symmetric, right-skewed and left-skewed,

respectively.

In order to parametrize the distributions in the Johnson system, numerous

moment or quantile-based procedures have been proposed (see, among others,

Palmitesta and Provasi, 2000). Here we followed the procedure introduced

by Hill et al. (1976), which implies equating the first four moments of the

target distribution to those of one of the four distributions in the Johnson

system, using the Johnson diagram. In the present case, for approximating the

Meixner distribution with the SU, this procedure amounts to equating MXNµ,

MXNσ
2, MXNκ1 and MXNκ2, obtained with a parameter vector (m, a, b, d), to SU

µ,

SU
σ2, SU

κ1 and SU
κ2. Then, equations (4) can be solved in (ξ, λ, γ, δ).

The procedure can be applied in two steps: first, the values of γ and δ sat-

isfying the last two equations in (4) are found numerically; then, conditionally

on these values, the first two equations in (4) are explicitly solved for ξ and

λ. Figure 1 shows the densities of some zero mean and unit variance Meixner

and SU distributions, for several values of the skewness and kurtosis coefficients.

The last two equations in (4) have been solved employing the Newton algorithm.

Figure 1 clearly indicates that, especially when the kurtosis increases, the

density of SU does not dominate that of the Meixner distribution, especially

around the mode. Then, in order to satisfy inequality (2), the constant c can

be chosen as

c = sup

(

fMXN(x;m, a, b, d)

fSU
(x; ξ̃, λ̃, γ̃, δ̃)

)

, (5)

where the parameter vector (ξ̃, λ̃, γ̃, δ̃) satisfies the equations in (4), with mean,

variance, skewness and kurtosis equal to those of a MXN(m, a, b, d).

The value of c can be approximated graphically or, if an higher precision is

desired, by using numerical algorithms.

To sum up, the procedure to obtain rejection based Monte Carlo samples

from a Meixner distribution is composed of the following steps:

7
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Skewness=0.5, Kurtosis=4 Skewness=0, Kurtosis=6

Skewness=-0.2, Kurtosis=8 Skewness=0.5, Kurtosis=10

Figure 1: Densities of some zero mean and unit variance Meixner (solid lines)

and SU (dashed lines) distributions.

1. Determine the values ξ̃, λ̃, γ̃, δ̃ such that the first four moments of the

SU and Meixner distributions coincide.

2. Use (5) to compute c, graphically or with a numerical algorithm.

3. Generate u from a U(0, 1) distribution.

4. Generate xg from SU using the transformation

xg = ξ̃ + λ̃ sinh((z − γ̃)/δ̃) ,

where z was generated from a N (0, 1) distribution.

5. If

u ≤ 1

c

fMXN(xg;m, a, b, d)

fSU
(xg; ξ̃, λ̃, γ̃, δ̃)

,

accept xg as a random value from MXN(m, a, b, d); otherwise, return to

step 3.

8
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As an illustration, Table 1 displays the value of c, the number of rejections

and the sample statistics for Monte Carlo samples of size n = 10000 from

zero mean and unit variance Meixner distributions with several values of the

skewness and kurtosis indices. Figure 2 shows the frequency plots comparing

the pseudo-random samples and the true Meixner densities.

κ1 κ2 c Rejects Mean Var Skew Kurt

-0.2 4.0 1.0932 894 -0.0031 1.0195 -0.2600 4.4613

0.0 4.0 1.0772 764 -0.0199 1.0021 0.0009 4.0287

0.5 4.0 1.5021 5021 0.0042 0.9952 0.5250 3.9047

-0.2 6.0 1.2270 2330 0.0050 0.9803 -0.2365 5.8214

0.0 6.0 1.2413 2372 -0.0023 0.9972 0.0368 6.3294

0.5 6.0 1.2048 2068 0.0034 1.0068 0.4831 6.4086

-0.2 8.0 1.3909 3938 -0.0017 1.0059 -0.2540 8.3552

0.0 8.0 1.3677 3739 -0.0043 0.9913 0.0187 7.5852

0.5 8.0 1.4480 4386 -0.0006 1.0015 0.5911 8.0002

-0.2 10.0 1.4959 5008 0.0014 1.0108 -0.3311 9.5562

0.0 10.0 1.4699 4623 -0.0145 0.9815 -0.2505 9.9530

0.5 10.0 1.5527 5573 -0.0001 1.0002 0.5078 10.2164

Table 1: c, number of rejections and sample statistics for Monte Carlo samples

of size n = 10000 from zero mean and unit variance Meixner distributions with

several values of the skewness and kurtosis indices κ1 and κ2.

4. Estimation methods

4.1 Moment estimation

The moments of the Meixner distribution, defined in (1), have a form that

makes moment based estimation relatively simple. By equating the theoreti-

cal moments to their sample counterparts, and solving for the parameters, we

9
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Skewness=0.5, Kurtosis=4 Skewness=0, Kurtosis=6

Skewness=-0.2, Kurtosis=8 Skewness=0.5, Kurtosis=10

Figure 2: Frequency plots for random samples of size 10000 from a Meixner

distribution with zero mean, unit variance and several values of the skewness

and kurtosis indices. The dashed lines represent the true Meixner densities.

obtain

d̄ =
1

κ̄2 − κ̄2
1 − 3

,

b̄ = sign(κ̄1) cos−1(2 − d̄ (κ̄2 − 3))

ā = s

√

cos b̄+ 1

ā
,

m̄ = x̄− ā d̄ tan
(

b̄/2
)

,

where x̄ and s2 represent, as usual, the sample mean and variance, respectively,

while κ̄1 = µ̄3/µ̄
3/2
2 and κ̄2 = µ̄4/µ̄

2
2, with µ̄k = n−1

∑n
i=1(xi − x̄)k, are the

sample skewness and kurtosis indices. It should be noted that the method of

moment estimates do not exist when κ̄2 < 2κ̄2
1 + 3.

10
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4.2 Maximum likelihood estimation

Suppose that the n observations x1, . . . , xn are a random sample from a Meixner

distribution with unknown parameters θ = (m, a, b, d). The average log-likeli-

hood function is defined as

ℓn(θ) = 2 d log(2 cos(b/2)) − log(2 a π) − log(Γ(2 d)) + b z̄

+
1

n

n
∑

j=1

log |Γ(d+ ı zj)|2,
(6)

where zj = (xj −m)/a and z̄ =
∑n

j=1 zi/n. Then, the MLE of θ, indicated by

θ̂ML, is the solution of the following optimization problem:

θ̂ML = arg maxθ∈Θ ℓn(θ),

where Θ is the parameter space for θ.

In general it is known that, if θ0 is the true and unknown parameter vector

and under certain regularity conditions (Lehmann and Casella, 1998), the ML

estimator θ̂ML satisfies

√
n (θ̂ML − θ0) → N(0, In(θ0)

−1) (7)

in distribution as n→ ∞, where In(θ) is the information matrix defined as

In(θ) = −E
[

∂2ℓn(θ)

∂θ∂θ′

]

= E

[(

∂ℓn(θ)

∂θ

)(

∂ℓn(θ)

∂θ

)′]

.

In practical situations, we can use

În(θ̂ML) = −∂
2ℓn(θ)

∂θ∂θ′

∣

∣

∣

∣

θ=θ̂ML

or

În(θ̂ML) =

(

∂ℓn(θ)

∂θ

)(

∂ℓn(θ)

∂θ

)′ ∣
∣

∣

∣

θ=θ̂ML

to obtain an estimate of In(θ0).

For the Meixner distribution it is possible to compute the matrix În(θ̂ML)

with high accuracy, since the expressions defining the first and second deriva-

tives of the log-likelihood functions are explicitly available: see Appendix A.
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These expressions allow to maximize very efficiently the log-likelihood function,

using Newton-type algorithms relying on both the first and second derivatives.

The method of moments parameter estimates can be used as starting points.

The regularity conditions underlying (7) appear very difficult to prove ana-

lytically in the present framework. For this reason we performed a Monte Carlo

experiment in order to check the convergence of maximum likelihood estimators

to the multivariate normal distribution. In particular, we assessed normality

using the multivariate skewness and kurtosis measures by Mardia (1970). Ta-

ble 2 shows the results obtained with 2000 replications and sample sizes equal to

250, 500, 1000 and 2000. The samples are extracted from a zero mean and unit

variance Meixner distribution, characterized by several values of the skewness

and kurtosis indexes (κ1 and κ2, respectively). The multivariate normality was

assessed for the maximum likelihood estimates, standardized according to (7),

with the information matrix estimated by În(θ̂ML).

It should be noted that, apart from some inconsistency due to sampling er-

rors, convergence of the multivariate skewness and kurtosis indexes to the val-

ues characterizing the multivariate normal (i.e. 0 and 24, respectively) is very

slow. The speed of convergence is, in particular, inversely related to the kurto-

sis parameter d. These results suggest that inferential procedures based on the

asymptotic properties of the maximum likelihood estimators, when the Meixner

distribution is involved, must be carefully evaluated, even when medium-sized

samples are considered. The parametric bootstrap can be used for this assess-

ment (see e.g. Shao and Tu, 1996).

It is interesting to remark that the log-likelihood optimization can be sim-

plified on the grounds of the following lemma.

Lemma. The ML estimate of the b parameter characterizing the Meixner

distribution can be expressed as a function of the sample mean and of the ML

estimates for the remaining parameters:

b̂ = 2 tan−1
(

z̄/d̂
)

.

12
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MultiSkewness MultiKurtosis

κ1 κ2 250 500 1000 2000 250 500 1000 2000

-0.2 4.0 13.20 9.67 7.67 7.68 44.54 36.53 33.57 35.48

0.0 4.0 11.28 10.47 7.93 6.96 40.66 39.90 35.12 33.77

0.5 4.0 13.21 15.98 12.79 9.33 53.21 49.98 43.54 36.81

-0.2 6.0 8.83 5.90 4.63 2.31 37.49 31.39 32.63 27.22

0.0 6.0 6.56 5.81 3.85 2.03 31.68 32.23 30.07 26.41

0.5 6.0 7.56 6.68 3.32 2.16 33.99 36.05 28.06 27.14

-0.2 8.0 8.11 4.74 2.91 1.48 35.58 31.20 29.17 26.24

0.0 8.0 6.48 5.55 2.91 1.92 32.14 33.55 29.30 27.26

0.5 8.0 6.92 4.27 2.69 1.79 33.42 30.38 27.74 26.21

-0.2 10.0 7.54 4.34 2.92 1.51 35.67 30.40 29.17 25.93

0.0 10.0 7.75 4.26 2.99 1.66 36.26 30.33 28.27 25.89

0.5 10.0 5.82 3.88 3.27 1.53 32.43 28.24 31.17 25.88

Table 2: Multivariate skewness and kurtosis measures for the maximum likeli-

hood estimators. The results concern 2000 Monte Carlo replications and sam-

ples (with sizes equal to 250, 500, 1000 and 2000) from zero mean and unit

variance Meixner distributions, characterized by several values of the skewness

and kurtosis indexes (κ1 and κ2, respectively).

Proof. As shown in Appendix A, the derivative of the average log-likelihood

function with respect to b is

∂ ln(θ)

∂b
= z̄ − d tan(b/2) .

Equating this expression to zero, and solving for b, the lemma is proved.

4.3 Goodness of fit

We are going to assess the ability of the MXN distribution to represent financial

data. In particular, misspecification tests based on empirical processes will

13
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be considered. For iid observations x1, . . . , xn with cumulative distribution

function Fθ, characterized by parameters θ, the empirical process is defined as

1√
n

n
∑

i=1

{I[xi ≤ x] − Fθ(x)} . (8)

For a survey of the contributions of empirical and quantile processes, for iid

observations, to the asymptotic theory of goodness-of-fit tests, see del Barrio

(2004) and del Barrio et al. (2000).

We will consider a bootstrap implementation of the goodness of fit assess-

ment, which will be based on the estimated empirical process

ν̂n(x) =
1√
n

n
∑

i=1

{I[xi ≤ x] − Fθ̂(x)} ,

where θ̂ is assumed to be a consistent estimate of θ. Therefore, rather than

that of a single MXN distribution, we mean to test the appropriateness of the

MXN family as a whole.

The process ν̂n(x) can be used for the empirical analysis of several function-

als as, for instance, the

• Kolmogorov-Smirnov statistic (KS):

TKS(ν̂n) = max
1≤i≤n

|ν̂n(xi)| ,

or the

• Cramér-von Mises statistic (CV):

TCV(ν̂n) =

∫

[ν̂n(x)]2 dx .

Le us suppose that x∗1, . . . , x
∗
n are generated independently from an estimate F̂θ

of Fθ as, for instance, the empirical distribution function of the observations,

or the estimate Fθ̂ found by substituting an estimate θ̂ in the definition of Fθ

(parametric bootstrap).

14

Page 15 of 32

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
Then, a new estimate θ̂∗ for θ can be computed, with the same method

used to obtain θ̂. The corresponding estimated bootstrap empirical process is

defined as

ν̂∗n(x) =
1√
n

n
∑

i=1

{I[x∗i ≤ x] − Fθ̂∗(x)} .

This process can be used for computing the bootstrap functionals TKS(ν̂
∗
n) and

TCV(ν̂∗n). By repeating the procedure B times, the quantiles of the empirical

distribution of the B bootstrap functionals can be used to define suitable critical

regions and p-values.

Bootstrap based goodness of fit tests in the presence of estimated parameters

have been studied e.g. in Stute et al. (1993), Babu and Rao (2004), Genz

and Haeusler (2006) and Szũcs (2008). These results suggest that the present

bootstrap resampling scheme is consistent, although we do not attempt a formal

proof here.

The bootstrap procedure has been applied to the weekly returns for five

international stock indices, in a five year period from January 2002 to December

2006. The percentage returns are defined as yt = 100 (log pt − log pt−1), where

pt is the weekly price. The indices are the AEX, Dow Jones, CAC 40, DAX

and S&P 500. The goodness of fit results are summarized in Table 3 and show

that the Meixner family is well suited for representing the considered data sets.

5. MXN-APARCH Model

The most elaborate GARCH-type model suggested so far seems to be the model

presented in Hentschel (1995) or Duan (1997). The conditional heteroskedastic-

ity of a time series yt, t = 1, . . . , T , is assumed to be generated by the following

equations:

yt = µt(ϑ) + εt ,

εt =
√

ht(ϑ) zt ,

(9)

Source: http://finance.yahoo.com
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where the {zt} are iid random variables, having zero mean, unit variance and

density gη, with derivative g′η and cdf Gη, that might depend on unknown

shape parameters, henceforth denoted by η. Expressions µt ≡ µt(ϑ) and ht ≡
ht(ϑ) indicate the mean and variance of yt, respectively, conditional on the

information Φt−1 available at time t− 1. By ϑ ∈ IRq we represented the vector

containing all the parameters in equations (9). It should be noted that this

framework includes many GARCH-type models introduced in the literature.

Besides, the conditional mean µt can depend on exogenous variables, or be a

nonlinear function of past observations.

The average log-likelihood function generated by equations (9) can be writ-

ten as

ℓT (θ) = − 1

2 T

T
∑

t=1

log ht +
1

T

T
∑

t=1

log g(zt; η) , (10)

where θ = (ϑ, η), while zt = (yt − µt)/
√
ht denotes the residuals.

ML estimates can be computed maximizing (10) with respect to the vector of

parameters θ. In particular, the gradient of the average log-likelihood function

is

∂ ℓT (θ)

∂θ
=































∂ ℓT (θ)

∂ϑ
= − 1

T

T
∑

t=1

{

1√
ht

∂µt

∂ϑ

g′(zt; η)

g(zt; η)
+

1

2ht

∂ht

∂ϑ

(

1 + zt
g′(zt; η)

g(zt; η)

)}

,

∂ ℓT (θ)

∂η
=

1

T

T
∑

t=1

1

g(zt; η)

∂ g(zt; η)

∂η
.

In the present context we are going to consider a GARCH-type model very

widespread in applications: the AR(r)-APARCH(p,q) model (Ding et al., 1993;

see also He and Teräsvirta, 1999), further assuming that the data generating

process is ruled by the MXN distribution, transformed in order to have zero

mean and unit variance. In other terms, the density of zt is

gMXN(zt; η) =
MXNσ

(

2 cos
(

b
2

))2 d

2 π Γ(2d)
exp(b (MXNµ+MXN σ zt))

· |Γ(d+ ı (MXNµ+ MXNσ zt))|2 ,

with η = (b, d), while the other parameters are as defined previously.
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The AR(r)-APARCH(p,q) specifies the conditional means in (9), for t =

1, . . . , T , as

µt = ν +
r
∑

i=1

φi yt−i ,

while conditional variances are determined by

h
δ/2
t = ω +

p
∑

i=1

αi (|εt−i| − γi εt−i)
δ +

q
∑

j=1

βj h
δ/2
t−j , (11)

where µ ∈ IR, −1 < φi < 1 (i = 1, . . . , r), ω > 0, αi ≥ 0 (i = 1, . . . , p), βj ≥ 0

(j = 1, . . . , q), δ ≥ 0 and −1 < γi < 1. The most relevant characteristics

of the model are the presence of a Box-Cox power transformation of the con-

ditional variances and the asymmetric absolute errors. The APARCH model

includes as special cases seven other ARCH type models, including the ARCH

by Engle (1982), the GARCH by Bollerslev (1986), the NARCH by Higgins and

Bera (1992), the log-ARCH by Geweke (1986) and Pentula (1986), and simple

asymmetric and threshold GARCH models.

In financial applications the conditional variance ht of a time series is often

assumed to follow an APARCH(1,1) model. In Appendix B we compute the

derivatives necessary for maximizing the average log-likelihood when this model

is adopted.

5.1 Goodness of fit

Our objective here is to validate the AR-APARCH model, with MXN distribu-

tion for the innovations. We will use an approach analogous to that followed

in Section 4.3, but applied to the squared residuals.

Horváth et al. (2001) studied the weak convergence of the empirical process

of squared residuals of ARCH sequences, defined as

ζT (x) =
1√
T

T
∑

t=1

{

I[ẑ2
t ≤ x] −Qη(x)

}

, (12)

where Qη is the cumulative distribution function of the squared disturbances.

Here we are assuming that a consistent estimate ϑ̂ of ϑ is available, so that the
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squared residuals for model (9) can be computed by

ẑ2
t =

(yt − µt(ϑ̂))2

ht(ϑ̂)
, t = 1, . . . , T .

Horváth et al. (2001) assumed ht to have an ARCH structure. Extensions

to GARCH(p, q) processes and more general ARCH processes are available,

respectively, in Berkes and Horváth (2003) and Koul (2002). In any case, the

asymptotic distribution of the residual empirical process for GARCH models

depends in a complicated way on the model parameters and on the distribution

of the innovations. This implies that classical goodness-of-fit tests, like the

Cramér-von Mises and Kolmogorov-Smirnov tests, are not readily applicable.

However, the existence of a limiting distribution suggests that bootstrap tests

based on the empirical process can be expected to detect departures from the

postulated distribution of the unobservable innovations (Horváth et al., 2004).

We will consider the estimated empirical process

ζ̂T (x) =
1√
T

T
∑

t=1

{

I[ẑ2
t ≤ x] −Qη̂(x)

}

,

where the parameter vector η has also been consistently estimated.

This approach is limited in that the quadratic residuals {ẑ2
t } are not inde-

pendent nor identically distributed, and therefore the usual inferential proce-

dures cannot be applied. For this reason, here bootstrap goodness-of-fit proce-

dures for dependent data are considered, as documented, e.g., in Lahiri (2003).

More specifically, assume that a sequence of observations {yt}T
t=1 is available

from a process of the kind described in (9). Then, an estimate θ̂ = (ϑ̂, η̂)′ can

be obtained. The replicates of the observed series are generated from

y∗t = µt(ϑ̂) +

√

ht(ϑ̂) z∗t , (13)

where the {z∗t } are iid from an estimate Ĝη of Gη.

Having generated a bootstrap replicate {y∗t }T
t=1 from process (9), a new

estimate θ̂∗ = (ϑ̂∗, η̂∗)′ can be computed, with the same method used to obtain
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θ̂. As a consequence, the bootstrap residuals

ẑ∗2t =
(y∗t − µt(ϑ̂∗))

2

ht(ϑ̂∗)
, t = 1, . . . , T ,

become available. The corresponding estimated bootstrap empirical process is

defined as

ζ̂∗T (x) =
1√
T

T
∑

t=1

{

I[ẑ∗2t ≤ x] −Qη̂∗(x)
}

.

By obtaining B bootstrap replicates TKS(ζ̂
∗
T ) and TCV(ζ̂∗T ), critical regions and

p-values for the goodness of fit tests can be computed.

The available contributions on the consistency of bootstrap based goodness

of fit tests in the presence of estimated parameters assume the observations to

be iid (see e.g. Szũcs, 2008). As a consequence, these results do not apply to

the present case, where tests concern residuals. The theoretical asymptotic be-

haviour of bootstrap tests, in this framework, has yet to be studied. However,

Horváth et al. (2004) and Grigoletto and Provasi (2008), on the grounds of the-

oretical results concerning the asymptotic distribution of the relevant empirical

processes, applied such tests, finding them to have an overall correct size.

The procedure described above has been applied to the same series of stock

indices used in Section 4.3, but considering daily (instead of weekly) returns.

The results of the goodness of fit assessment are shown in Table 4. The p-

values of the Kolmogorov-Smirnov and Cramér von-Mises tests indicate good

agreement of the Meixner APARCH(1,1) model with the data sets analyzed.

6. Final remarks

The theoretical properties of the Meixner distribution, as semi-heavy tails and

infinite divisibility, make it potentially very effective in modeling short-term

financial returns. However, the usefulness of a certain distribution depends

also on the availability of algorithms to simulate from it, and to estimate its

parameters. This article proposes a rejection-based method to generate random
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values from the Meixner, and shows how maximum likelihood estimators can be

obtained. The convergence of these estimators to their asymptotic multivariate

normal distribution is assessed through a Monte Carlo study.

In order to study the applicability of the Meixner distribution, a GARCH-

type model is then analyzed, assuming a standardized Meixner distribution for

the innovations. Some real financial time series are considered to investigate

goodness of fit, through bootstrap tests based on the empirical process of the

residuals. The results of these tests, together with good computational proper-

ties, suggest that the Meixner distribution can be considered a good candidate

for representing series of financial returns.
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Appendix A

The average log-likelihood function introduced in equation (6) can also be writ-

ten as

ℓn(θ) = 2 d log(2 cos(b/2)) − log(2 a π) − log(Γ(2 d)) + b z̄

+
1

n

n
∑

j=1

(log(Γ(d+ ı zj)) + log(Γ(d− ı zj))),

since |Γ(d+ ı zj)|2 = Γ(d+ ı zj)Γ(d− ı zj); hence, the gradient of ℓn(θ) is defined

as

∂ln(θ)

∂m
= −1

a

(

b+
ı

n

n
∑

j=1

Ψ−
j

)

,

∂ln(θ)

∂a
= −1

a

(

b z̄ + 1 +
ı

n

n
∑

j=1

zj Ψ−
j

)

,

∂ln(θ)

∂b
= z̄ − d tan(b/2) ,

∂ln(θ)

∂d
= 2 (log(2 cos(b/2)) − ψ(2 d)) +

1

n

n
∑

j=1

Ψ+
j .

On the other hand, the diagonal elements of the Hessian matrix are

∂2ln(θ)

∂m2
= − 1

a2 n

n
∑

j=1

Υ+
j ,

∂2ln(θ)

∂a2
=

1

a2

(

2 b z̄ + 1 +
1

n

n
∑

j=1

(2 ı zj Ψ−
j − z2

j Υ+
j )

)

,

∂2ln(θ)

∂b2
= − d

1 + cos(b)
,

∂2ln(θ)

∂d2
= −4ψ′(2 d) +

1

n

n
∑

j=1

Υ+
j ,

while the off-diagonal components of the Hessian matrix are defined as

∂2ln(θ)

∂m∂a
=

1

a2

(

b+
1

n

n
∑

j=1

(ıΨ−
j − zj Υ+

j )

)

,

∂2ln(θ)

∂m∂b
= −1

a
,
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∂2ln(θ)

∂m∂d
= − ı

a n

n
∑

j=1

Υ−
j ,

∂2ln(θ)

∂a ∂b
= − z̄

a
,

∂2ln(θ)

∂a ∂d
= − ı

a n

n
∑

j=1

zj Υ−
j ,

∂2ln(θ)

∂b ∂d
= − tan(b/2) ,

where zj = (xj −m)/a, z̄ =
∑n

j=1 zj/n,

Ψ+
j = ψ(d+ ı zj) + ψ(d− ı zj),

Ψ−
j = ψ(d+ ı zj) − ψ(d− ı zj),

Υ+
j = ψ′(d+ ı zj) + ψ′(d− ı zj),

Υ−
j = ψ′(d+ ı zj) − ψ′(d− ı zj),

and ψ(·) is the psi function.

Appendix B

When an AR(r)-APARCH(1,1) model is adopted for defining the relations

in (9), the derivative of µt with respect to ν is 1, while the derivative with

respect to φi is yt−i. Therefore, from equation (11), we have that (Laurent,

2004)

∂ht

∂(φ, ω, α, γ, β)
=

2ht

δh
δ/2
t

∂h
δ/2
t

∂(φ, ω, α, γ, β)

and

∂ht

∂δ
=

2ht

δh
δ/2
t

(

∂h
δ/2
t

∂δ
− h

δ/2
t log(h

δ/2
t )

δ

)

.

If the sequence of the variances h1, . . . , hT is initialized with h1 = ω2/δ, the

partial derivatives of the generic term ht with respect to the parameters of the

APARCH(1,1) model defined in equation (11) can be obtained in a recursive
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form since, for t > 1,

∂h
δ/2
t

∂ν
= α1 δ (|εt−1| − γ1εt−1)

δ−1(−sign(εt−1) + γ1) + β1

∂h
δ/2
t−1

∂µ
,

∂h
δ/2
t

∂φj
= α1 δyt−j(|εt−1| − γ1εt−1)

δ−1(−sign(εt−1) + γ1) + β1

∂h
δ/2
t−1

∂φj
,

j = 1, . . . , r ,

∂h
δ/2
t

∂ω
= 1 + β1

∂h
δ/2
t−1

∂ω
,

∂h
δ/2
t

∂α1
= (|εt−1| − γ1εt−1)

δ + β1

∂h
δ/2
t−1

∂α1
,

∂h
δ/2
t

∂γ1

= −α1 δ εt−1 (|εt−1| − γ1εt−1)
δ−1 + β1

∂h
δ/2
t−1

∂γ1

,

∂h
δ/2
t

∂β1
= h

δ/2
t−1 + β1

∂h
δ/2
t−1

∂β1
,

∂h
δ/2
t

∂δ
= α1 (|εt−1| − γ1εt−1)

δ log(|εt−1| + γ1εt−1) + β1

∂h
δ/2
t−1

∂δ
,

where εt−1 = yt−1 − ν −∑r
i=1 φi yt−i−1. Obviously, on the basis of the formu-

lations of the APARCH(1,1) model, we must observe that the differentiation

of the absolute value of a variable is not defined in zero. Nevertheless, as also

observed by Laurent (2004), even if this situation is possible, it is most unlikely

in practice.

We also have that

g′
MXN

(zt : η)

gMXN(zt; η)
= MXNσ (b+ ı (ψ(d+ ı wt) − ψ(d− ı wt))) .

The logarithmic derivatives of gMXN with respect to b and d are given by

∂ log gMXN(zt; η)

∂b
=

MXNσ
(1,0)

MXNσ
− d tan(b/2) + wt

+ w
(1,0)
t (b+ ı(ψ(d+ ı wt) − ψ(d− ı wt))),

∂ log gMXN(zt; η)

∂d
=

MXNσ
(0,1)

MXNσ
+ 2 (log(2 cos(b/2)) − ψ(2 d))

+ ψ(d+ ı wt) + ψ(d− ı wt)

+ w
(0,1)
t (b+ ı(ψ(d+ ı wt) − ψ(d− ı wt))),
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where wt = µt + σtzt, w

(1,0)
t = µ

(1,0)
t + σ

(1,0)
t zt and w

(0,1)
t = µ

(0,1)
t + σ

(0,1)
t zt, being

µ
(1,0)
t =

∂ MXNµ

∂b
=

d

2 cos(b/2)2
,

σ
(1,0)
t =

∂ MXNσ

∂b
=

d sin(b)

2 MXNσ(1 + cos b)2
,

and

µ
(0,1)
t =

∂ MXNµ

∂d
= tan(b/2) ,

σ
(0,1)
t =

∂ MXNσ

∂d
=

1

1 + cos b
,

with the notation defined above.
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AEX DJ CAC 40 DAX S&P 500

Mean -0.0033 0.0855 0.0648 0.0828 0.0824
StDev 2.9817 1.9313 2.5136 3.0674 1.9131
Skewness -0.6427 -0.3161 -0.4143 -0.1237 -0.3290
Kurtosis 4.9723 5.5891 4.2721 4.2031 5.3452

m̂ 0.9315 0.5989 0.9247 0.8448 0.4183
1.3334 0.9494 1.7355 1.6947 0.9253

â 6.3637 3.8138 4.1745 5.7616 3.9324
5.7571 3.4508 4.3937 5.5278 3.6518

b̂ -0.7225 -0.5556 -0.6020 -0.4794 -0.3714
1.0668 1.1206 1.1566 1.1382 1.1272

d̂ 0.3888 0.4720 0.6636 0.5411 0.4547
0.5656 0.7234 0.2171 0.9004 0.7144

MALL -2.4500 -2.0281 -2.3096 -2.5090 -2.0222

TKS(ν̂n) 0.0227 0.0311 0.0265 0.0292 0.0310
0.9445 0.4735 0.7850 0.6125 0.4630

TCV(ν̂n) 0.0126 0.0371 0.0153 0.0251 0.0267
0.9890 0.3330 0.9560 0.6750 0.6000

Table 3: Bootstrap goodness of fit for weekly returns (2002–2006). The dis-

played results concern some properties of the observed series, and the estimated

parameters of the Meixner distribution, with their estimated standard errors.

By MALL we indicate the maximum of the average log-likelihood. The ob-

served values of the Kolmogorov-Smirnov and Cramér-von Mises statistics, and

the corresponding bootstrap p-values, are also shown.
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AEX DJ CAC 40 DAX S&P 500

µ̂ 0.0371 0.0197 0.0362 0.0503 0.0210
0.1526 0.1281 0.1603 0.1745 0.1281

φ̂1 -0.0302 -0.0594 -0.0782 -0.0597 -0.0698
0.1791 0.1818 0.1813 0.1784 0.1812

ω̂ 0.0172 0.0058 0.0239 0.0213 0.0058
0.0408 0.0221 0.0579 0.0645 0.0202

α̂ 0.0453 0.0243 0.0314 0.0331 0.0159
0.1419 0.2621 0.1012 0.1083 0.1030

γ̂ 0.3893 0.5870 0.3261 0.2079 0.4242
1.0833 0.6586 0.7528 0.5302 1.9390

β̂ 0.8788 0.8880 0.8541 0.8452 0.8984
0.1171 0.1328 0.1580 0.1549 0.1209

δ̂ 3.1868 4.3395 4.0319 4.5788 4.2042
2.6108 5.0896 3.6445 4.6931 4.4061

b̂ -0.3265 -0.0592 -0.4730 -0.5987 -0.2128
1.0374 1.1249 1.0966 1.2303 1.2397

d̂ 1.2357 1.5904 1.5101 1.8496 1.9752
2.7857 4.3321 3.4274 4.9910 6.3142

MALL -1.5024 -1.2289 -1.4866 -1.6126 -1.2470

TKS(ζ̂T ) 0.0189 0.0256 0.0195 0.0287 0.0248
0.6160 0.2880 0.6160 0.4020 0.3560

TCV(ζ̂T ) 0.0504 0.1973 0.1122 0.2859 0.1678
0.7560 0.2120 0.4360 0.3280 0.3140

Table 4: Bootstrap goodness of fit results for daily returns (2002–2006). The

displayed results concern the estimated parameters of the Meixner AR(1)-

APARCH(1,1) model, with their estimated standard errors. By MALL we

indicate the maximum of the average log-likelihood. The observed values of the

Kolmogorov-Smirnov and Cramér-von Mises statistics, and the corresponding

bootstrap p-values, are also shown.

30

Page 31 of 32

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
Reply to the Referee’s Report on the revised version of

LSSP-2007-0145 by Grigoletto and Provasi

Simulation and Estimation of the Meixner Distribution

Main concerns

The authors give a satisfactory answer to the first main concern. However, I do not
see completely solved the second one. Authors state that there are differences between
Meixner and Johnson distributions (that is right), that SU -distributions have been applied
in financial literature and that according to Perez (2004) SU -distributions may fail to
capture financial risk. I have not been able to get this paper and, then, I can say nothing
about whether Meixner distributions suffer from the same problem or not.
Anyway, the statement of the authors “the Meixner distribution studied in our paper may
prove to be a useful alternative, when the available distributions fail to adequately describe
the observations at hand”, from me point of view, is weak unless the authors provide
some guidelines to see under which conditions are Meixner distributions preferable to the
available alternatives.

The paper by Perez (2004) which, among others, highlights the possible shortcomings of
SU -distributions, is available at

http://administracion.itam.mx/workingpapers/hedgefunds.pdf

In the concluding remarks, Perez (2004) states:
“. . . although the Johnson approximation carries information about skewness and kurtosis,
it still fails to reflect entirely higher moment effects. It also fails to detect entirely the
left tail risk, specially in the cases where we have a “short option” behavior. In these
cases, the left tail of the associated Johnson distribution underestimates the probability of
losses. The isolated but large negative returns seem to be too rare to make any difference
on the Johnson parameters, and hence they remain undetected.”
It would be simple to look for particular observed time series for which the Meixner
distribution has better fitting properties than the SU , but this would not make the message
in the paper come through more clearly. We simply suggest that, when fitting models for
financial time series, the Meixner distribution deserves to be in the analyst’s toolbox.
In our view, it is not possible to find general guidelines suggesting a priori when to prefer
the Meixner distribution: the suitability of this distribution for representing observed time
series is to be found with the usual goodness of fit procedures. On the other hand, there
are not even general a priori guidelines stating when the SU distributions is preferable to
the available alternatives.
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Technical points

Technical points 1 and 3 have been satisfactorily solved. Let us analyze points 2 and 4.
2. I consider that simulations can not replace proofs. Thus, in me opinion, authors do not
provide enough justification to use asymptotic distributions. Moreover, if we assume that
the results hold, taking into account the slow speed of convergence that the simulations
suggest, it seems that the conclusion would be that they are useless.
4. I also consider weak the reasons the authors give to justify the use of the bootstrap
here.

It is certainly true that simulations can not replace proofs. However, when formal proofs
are very hard to find (as in the present case), simulations can be useful to shed light on
the behavior of the procedures under investigation. Slow convergence speed, on the other
hand, is to be expected when many parameters are involved. Since no better alternatives
seem to be available, maximum likelihood estimation still appears to be the preferable
approach in the present framework (and is suggested, among others, by Davison and
Hinkley, 1997, p. 148).
The use of bootstrap in the context of parametric likelihood inference has been advo-
cated e.g. by Davison et al. (2003), while Boos (2003) applies resampling for a goodness
of fit problem based on the use of the Anderson-Darling statistic. In a now classic pa-
per, MacKinnon (2002) states “The astonishing increase in computer performance over
the past two decades has made it possible for economists to base many statistical infer-
ences on simulated, or bootstrap, distributions rather than on distributions obtained from
asymptotic theory”.
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