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The Meixner distribution is a special case of the generalized zdistributions. Its properties make it potentially very useful in modeling short-term financial returns. This article proposes an algorithm to simulate the Meixner distribution, and shows how to obtain maximum likelihood estimators of its parameters. A GARCHtype model is then assessed, assuming that the innovation distribution is a standardized Meixner. Goodness of fit properties are investigated for some real financial time series, using bootstrap tests based on the empirical process of the residuals.

Introduction

It is well known that financial returns measured on short time intervals, i.e. daily or weekly, are non-Gaussian. In fact, numerous empirical evidences show that their distribution has heavier than Gaussian tails, and is often skewed (see, e.g., [START_REF] Cont | Empirical properties of asset returns: stylized facts and statistical issues[END_REF]. [START_REF] Barndorff-Nielsen | Normal inverse Gaussian distributions and stochastic volatility modelling[END_REF], which is a subclass of the generalized hyperbolic distribution [START_REF] Barndorff-Nielsen | Exponentially decreasing distributions for the logarithm of particle size[END_REF], and is characterized by important theoretical properties, as semi-heavy tails and infinite divisibility. For these reasons the NIG distribution has been often adopted in financial applications, both as conditional distribution in GARCH-type models (see, among others, [START_REF] Jensen | The NIG-S & ARCH model: a fat-tailed stochastic, and autoregressive conditional heteroscedastic volatility model[END_REF][START_REF] Jensen | The NIG-S & ARCH model: a fat-tailed stochastic, and autoregressive conditional heteroscedastic volatility model[END_REF][START_REF] Forsberg | Bridging the gap between the distribution of realized (ecu) volatility and ARCH modelling: the GARCH-NIG model[END_REF][START_REF] Forsberg | Bridging the gap between the distribution of realized (ecu) volatility and ARCH modelling: the GARCH-NIG model[END_REF] and as marginal return distribution (e.g. [START_REF] Eberlein | Hyperbolic distributions in Finance[END_REF][START_REF] Eberlein | Hyperbolic distributions in Finance[END_REF][START_REF] Lillestøl | Risk analysis and the NIG distribution[END_REF]. It should be noted, however, that since the derivatives of the NIG log-likelihood involve the Bessel function, direct likelihood maximization is difficult. As a further complication, the kurtosis parameter is constrained to be larger than the absolute value of the skewness parameter. As a consequence, maximization algorithms suffer from problems like non-convergence and the need for good initial values. This is especially true when the NIG is used within GARCH-type models, and many parameters need to be estimated simultaneously. [START_REF] Karlis | An EM type algorithm for maximum likelihood estimation of the normal-inverse Gaussian distribution[END_REF] proposed, as a solution to these problems, an EM type algorithm for finding maximum likelihood estimators of the NIG parameters. The algorithm assures convergence, which however might be reached very slowly.

In the present work we will consider, as an alternative approach, the adoption of the Meixner distribution, which has properties similar to those of the NIG. In fact, it has semi-heavy tails and is infinitely divisible. The Meixner distribution was introduced by [START_REF] Schoutens | The Meixner process: theory and applications in Finance[END_REF] in the context of stochastic volatility models, and is a subclass of the generalized z-distributions [START_REF] Grigelionis | Generalized z-distributions and related stochastic processes[END_REF]. The derivatives of the Meixner log-likelihood are more analytically tractable than those of the NIG, and the Meixner joint parameter space is the Cartesian product of each parameter space; likelihood maximization is therefore much easier to perform. These properties make the Meixner distribution very useful both as conditional distribution in GARCH-type models, and as marginal return distribution.

The paper is organized as follows. In Section 2 the Meixner distribution is defined, while in Section 3 we propose a method to generate pseudo-random samples from it. Section 4 exposes the details of moment and maximum likelihood estimation and investigates, by means of suitable bootstrap tests, goodness of fit to weekly returns of some financial indices. In Section 5 the MXN-APARCH model is introduced, assuming that the conditional distribution for an APARCH model is Meixner, and its goodness of fit to several series of daily returns is analyzed. Concluding remarks are discussed in Section 6.

The Meixner distribution

A random variable X is said to follow a Meixner distribution having parameters m, a, b, d, with a > 0, -π < b < π, d > 0, and m ∈ IR, in symbols X ∼ MXN(m, a, b, d), if its density function, for x ∈ IR, is The characteristic function of X is [START_REF] Grigelionis | Generalized z-distributions and related stochastic processes[END_REF]) can also be immediately derived:

f MXN (x; m, a, b, d) = a -1 f MXN x -m a ; 0,
φ MXN (u) = e ı m u 2 cos(b/2) cosh a u-i b
E[X] = MXN µ = m + a d tan(b/2) , Var[X] = MXN σ 2 = a 2 d cos b + 1 , Skew[X] = MXN κ 1 = sin b 1 d (cos b + 1) , Kurt[X] = MXN κ 2 = 3 - cos b -2 d .
(1)

Here, Skew[X] = E[(X -E[X]) 3 ]/[Var(X)] 3/2 and Kurt[X] = E[(X -E[X]) 4 ]/
[Var(X)] 2 . It follows that when b = 0 the distribution is symmetric; besides, its kurtosis is always larger than 3, the Gaussian kurtosis.

An important property of the Meixner distribution, that makes it potentially useful in financial applications, is that it has semi-heavy tails [START_REF] Grigelionis | Generalized z-distributions and related stochastic processes[END_REF]. Formally, this implies that, for a MXN(m, a, b, d) distribution, we have

f MXN (m, a, b, d) ∼ C |x| ρ e -σ |x| as x → -∞, f MXN (m, a, b, d) ∼ C + |x| ρ e -σ + |x| as x → +∞,
for some ρ ∈ IR and C , C + , σ , σ + ≥ 0, with

ρ = 2d -1, σ = π -b a and σ + = π + b a .

Simulation

Generating random values from a Meixner distribution requires some effort, since the quantile function is not available in closed form and the inversion method is therefore difficult to implement.

As an alternative, since f MXN is unimodal, in the present context we considered the rejection method which, in its most basic form, assumes the existence of a density g and the knowledge of a constant c ≥ 1 such that [START_REF] Devroye | Non-Uniform Random Variate Generation[END_REF] f (x) ≤ c g(x) , ∀x .

(2) [START_REF] Johnson | Systems of frequency curves generated by methods of translation[END_REF]. The Johnson system is highly flexible and, through one of its four functional forms, is able to closely approximate many standard continuous distribution. Also, simulating from this distribution is relatively simple and fast (a random sample from a standardized normal distribution is all that is required). The latter point is especially important since, in order for the Meixner density to be dominated, the factor c needs to grow with the kurtosis. As a consequence, the number of rejections also increases and, if the algorithm to generate from the dominating density is not sufficiently fast, computation becomes slow. An inversion based method was also considered, but was found to be too computationally expensive.

For a generic random variable Y , the transformations that originate the Johnson system have the general form

Z = γ + δ h Y -ξ λ , (3) 
where Z is a standard normal random variable, γ ∈ IR and δ > 0 are shape parameters, λ > 0 is a scale parameter and ξ is a location parameter. The nature of function h defines the four families of distributions in the Johnson translation system: bilities is relatively easy, since these distributions are generated by an increasing transform of the Gaussian distribution and their cdf can be expressed in terms of Φ, the standard Gaussian cdf:

                  
F (y; ξ, λ, γ, δ) = Φ γ + δ h y -ξ λ .
As we have seen, the Meixner distribution is always characterized by a kurtosis greater than 3. As a consequence, an examination of the diagram by [START_REF] Johnson | Systems of frequency curves generated by methods of translation[END_REF] (but see also [START_REF] Johnson | Continuous Univariate Distributions[END_REF] shows that the distribution most apt to approximate the Meixner distribution is the S U , with density function defined by

f S U (y; ξ, λ, γ, δ) = λ -1 f S U y -ξ λ ; 0, 1, γ, δ ,
where

f S U (u; 0, 1, γ, δ) = δ √ 2π √ u 2 + 1 exp - 1 2 (γ + δ sinh -1 (u)) 2 , u ∈ IR .
The moments of S U can be obtained by the inverse transformation of (3), and are given by

E(Y r ) = ∞ -∞ ξ + λ sinh z -γ δ r φ(z) dz, r = 1, 2, . . . ,
where φ denotes the standard Gaussian density. It can be shown that these moments are available analytically; therefore, by the usual relations among the central moments and the moments about the origin, we have that the mean, the variance and the skewness and kurtosis indices for the S U distribution are, respectively where ω = exp(δ -2 ) and θ = γ/δ. It should be noted that when γ = 0, γ < 0 or γ > 0, the S U density function is symmetric, right-skewed and left-skewed, respectively.

E[Y ] = S U µ = ξ -λ ω 1/2 sinh θ , Var[Y ] = S U σ 2 = λ 2 2 (ω -1) (ω cosh(2 θ) + 1) , Skew[Y ] = S U κ 1 = - ω 1/2 (ω -1) 2 [ω (ω + 2) sinh(3 θ) + 3 sinh θ] √ 2 [(ω -1) (ω cosh(2 θ) + 1)] 3/2 , Kurt[Y ] = S U κ 2 = {ω 2 [(ω 4 + 2 ω 3 + 3 ω 2 -3) cosh(4 θ) + 4 (ω + 2) cosh(2 θ)] + 3 (2 ω + 1)}/[2 (ω cosh(2 θ) + 1) 2 ] , (4) 
In order to parametrize the distributions in the Johnson system, numerous moment or quantile-based procedures have been proposed (see, among others, [START_REF] Palmitesta | Estimating distribution functions in Johnson translation system by the starship procedure with simulated annealing[END_REF]. Here we followed the procedure introduced by [START_REF] Hill | Fitting Johnson curves by moments[END_REF], which implies equating the first four moments of the target distribution to those of one of the four distributions in the Johnson system, using the Johnson diagram. In the present case, for approximating the Meixner distribution with the S U , this procedure amounts to equating MXN µ, MXN σ 2 , MXN κ 1 and MXN κ 2 , obtained with a parameter vector (m, a, b, d), to S U µ, S U σ 2 , S U κ 1 and S U κ 2 . Then, equations (4) can be solved in (ξ, λ, γ, δ).

The procedure can be applied in two steps: first, the values of γ and δ satisfying the last two equations in (4) are found numerically; then, conditionally on these values, the first two equations in (4) are explicitly solved for ξ and λ. Figure 1 shows the densities of some zero mean and unit variance Meixner and S U distributions, for several values of the skewness and kurtosis coefficients.

The last two equations in (4) have been solved employing the Newton algorithm.

Figure 1 clearly indicates that, especially when the kurtosis increases, the density of S U does not dominate that of the Meixner distribution, especially around the mode. Then, in order to satisfy inequality (2), the constant c can be chosen as

c = sup f MXN (x; m, a, b, d) f S U (x; ξ, λ, γ, δ) , (5) 
where the parameter vector ( ξ, λ, γ, δ) satisfies the equations in (4), with mean, variance, skewness and kurtosis equal to those of a MXN(m, a, b, d).

The value of c can be approximated graphically or, if an higher precision is desired, by using numerical algorithms.

To sum up, the procedure to obtain rejection based Monte Carlo samples from a Meixner distribution is composed of the following steps: 2. Use (5) to compute c, graphically or with a numerical algorithm.

3. Generate u from a U(0, 1) distribution.

4. Generate x g from S U using the transformation

x g = ξ + λ sinh((z -γ)/ δ) ,
where z was generated from a N (0, 1) distribution. 

If

u ≤ 1 c f MXN (x g ; m, a, b, d) f S U (x g ; ξ, λ, γ,

Estimation methods

Moment estimation

The moments of the Meixner distribution, defined in (1), have a form that makes moment based estimation relatively simple. By equating the theoretical moments to their sample counterparts, and solving for the parameters, we obtain

d = 1 κ2 -κ2 1 -3 , b = sign(κ 1 ) cos -1 (2 -d (κ 2 -3)) ā = s cos b + 1 ā , m = x -ā d tan b/2
, where x and s 2 represent, as usual, the sample mean and variance, respectively, while κ1 = μ3 /μ 3/2 2 and κ2 = μ4 /μ 2 2 , with μk = n -1 n i=1 (x ix) k , are the sample skewness and kurtosis indices. It should be noted that the method of moment estimates do not exist when κ2 < 2κ 2 1 + 3. 

ℓ n (θ) = 2 d log(2 cos(b/2)) -log(2 a π) -log(Γ(2 d)) + b z + 1 n n j=1 log |Γ(d + ı z j )| 2 , (6) 
where z j = (x jm)/a and z = n j=1 z i /n. Then, the MLE of θ, indicated by θML , is the solution of the following optimization problem:

θML = arg max θ∈Θ ℓ n (θ),
where Θ is the parameter space for θ.

In general it is known that, if θ 0 is the true and unknown parameter vector and under certain regularity conditions [START_REF] Lehmann | Theory of Point Estimation[END_REF], the ML estimator θML satisfies

√ n ( θML -θ 0 ) → N(0, I n (θ 0 ) -1 ) (7)
in distribution as n → ∞, where I n (θ) is the information matrix defined as

I n (θ) = -E ∂ 2 ℓ n (θ) ∂θ∂θ ′ = E ∂ℓ n (θ) ∂θ ∂ℓ n (θ) ∂θ ′ .
In practical situations, we can use

În ( θML ) = - ∂ 2 ℓ n (θ) ∂θ∂θ ′ θ= θML or În ( θML ) = ∂ℓ n (θ) ∂θ ∂ℓ n (θ) ∂θ ′ θ= θML
to obtain an estimate of I n (θ 0 ).

For the Meixner distribution it is possible to compute the matrix În ( θML )

with high accuracy, since the expressions defining the first and second derivatives of the log-likelihood functions are explicitly available: see Appendix A. These expressions allow to maximize very efficiently the log-likelihood function, using Newton-type algorithms relying on both the first and second derivatives.

The method of moments parameter estimates can be used as starting points.

The regularity conditions underlying (7) appear very difficult to prove analytically in the present framework. For this reason we performed a Monte Carlo experiment in order to check the convergence of maximum likelihood estimators to the multivariate normal distribution. In particular, we assessed normality using the multivariate skewness and kurtosis measures by [START_REF] Mardia | Measures of multivariate skewness and kurtosis with applications[END_REF] It should be noted that, apart from some inconsistency due to sampling errors, convergence of the multivariate skewness and kurtosis indexes to the values characterizing the multivariate normal (i.e. 0 and 24, respectively) is very slow. The speed of convergence is, in particular, inversely related to the kurtosis parameter d. These results suggest that inferential procedures based on the asymptotic properties of the maximum likelihood estimators, when the Meixner distribution is involved, must be carefully evaluated, even when medium-sized samples are considered. The parametric bootstrap can be used for this assessment (see e.g. Shao and Tu, 1996).

It is interesting to remark that the log-likelihood optimization can be simplified on the grounds of the following lemma. Proof. As shown in Appendix A, the derivative of the average log-likelihood function with respect to b is

∂ l n (θ) ∂b = z -d tan(b/2) .
Equating this expression to zero, and solving for b, the lemma is proved.

Goodness of fit

We are going to assess the ability of the MXN distribution to represent financial data. In particular, misspecification tests based on empirical processes will be considered. For iid observations x 1 , . . . , x n with cumulative distribution function F θ , characterized by parameters θ, the empirical process is defined as

1 √ n n i=1 {I[x i ≤ x] -F θ (x)} . ( 8 
)
For a survey of the contributions of empirical and quantile processes, for iid observations, to the asymptotic theory of goodness-of-fit tests, see del Barrio (2004) and del [START_REF] Del Barrio | Contributions of empirical and quantile processes to the asymptotic theory of goodness-of-fit tests[END_REF].

We will consider a bootstrap implementation of the goodness of fit assessment, which will be based on the estimated empirical process

νn (x) = 1 √ n n i=1 {I[x i ≤ x] -F θ (x)} ,
where θ is assumed to be a consistent estimate of θ. Therefore, rather than that of a single MXN distribution, we mean to test the appropriateness of the MXN family as a whole.

The process νn (x) can be used for the empirical analysis of several functionals as, for instance, the

• Kolmogorov-Smirnov statistic (KS):

T KS (ν n ) = max 1≤i≤n |ν n (x i )| ,
or the

• Cramér-von Mises statistic (CV):

T CV (ν n ) = [ν n (x)] 2 dx .
Le us suppose that x * 1 , . . . , x * n are generated independently from an estimate Fθ of F θ as, for instance, the empirical distribution function of the observations, or the estimate F θ found by substituting an estimate θ in the definition of F θ (parametric bootstrap). 

* n (x) = 1 √ n n i=1 {I[x * i ≤ x] -F θ * (x)} .
This process can be used for computing the bootstrap functionals T KS (ν * n ) and T CV (ν * n ). By repeating the procedure B times, the quantiles of the empirical distribution of the B bootstrap functionals can be used to define suitable critical regions and p-values.

Bootstrap based goodness of fit tests in the presence of estimated parameters have been studied e.g. in Stute et al. (1993), [START_REF] Babu | Goodness-of-fit tests when parameters are estimated[END_REF], [START_REF] Genz | Empirical processes with estimated parameters under auxiliary information[END_REF] and Szũcs (2008). These results suggest that the present bootstrap resampling scheme is consistent, although we do not attempt a formal proof here.

The bootstrap procedure has been applied to the weekly returns for five international stock indices, in a five year period from January 2002 to December 2006. The percentage returns are defined as y t = 100 (log p tlog p t-1 ), where p t is the weekly price. The indices are the AEX, Dow Jones, CAC 40, DAX and S&P 500. The goodness of fit results are summarized in Table 3 and show that the Meixner family is well suited for representing the considered data sets.

MXN-APARCH Model

The most elaborate GARCH-type model suggested so far seems to be the model presented in [START_REF] Hentschel | All in the family: nesting symmetric and asymmetric GARCH models[END_REF] or [START_REF] Duan | Augmented GARCH(p,q) process and its diffusion limit[END_REF]. The conditional heteroskedasticity of a time series y t , t = 1, . . . , T , is assumed to be generated by the following equations: where the {z t } are iid random variables, having zero mean, unit variance and density g η , with derivative g ′ η and cdf G η , that might depend on unknown shape parameters, henceforth denoted by η. Expressions µ t ≡ µ t (ϑ) and h t ≡ h t (ϑ) indicate the mean and variance of y t , respectively, conditional on the information Φ t-1 available at time t -1. By ϑ ∈ IR q we represented the vector containing all the parameters in equations ( 9). It should be noted that this framework includes many GARCH-type models introduced in the literature.

y t = µ t (ϑ) + ε t , ε t = h t (ϑ) z t , (9) 
Besides, the conditional mean µ t can depend on exogenous variables, or be a nonlinear function of past observations. The average log-likelihood function generated by equations ( 9) can be written as

ℓ T (θ) = - 1 2 T T t=1 log h t + 1 T T t=1 log g(z t ; η) , (10) 
where θ = (ϑ, η), while z t = (y tµ t )/ √ h t denotes the residuals.

ML estimates can be computed maximizing (10) with respect to the vector of parameters θ. In particular, the gradient of the average log-likelihood function is

∂ ℓ T (θ) ∂θ =                ∂ ℓ T (θ) ∂ϑ = - 1 T T t=1 1 √ h t ∂µ t ∂ϑ g ′ (z t ; η) g(z t ; η) + 1 2 h t ∂h t ∂ϑ 1 + z t g ′ (z t ; η) g(z t ; η) , ∂ ℓ T (θ) ∂η = 1 T T t=1 1 g(z t ; η) ∂ g(z t ; η) ∂η .
In the present context we are going to consider a GARCH-type model very widespread in applications: the AR(r)-APARCH(p,q) model [START_REF] Ding | A long memory property of stock market returns and a new model[END_REF] see also [START_REF] He | Statistical properties of the asymmetric power ARCH process[END_REF], further assuming that the data generating process is ruled by the MXN distribution, transformed in order to have zero mean and unit variance. In other terms, the density of z t is

g MXN (z t ; η) = MXN σ 2 cos b 2 2 d 2 π Γ(2d) exp(b ( MXN µ + MXN σ z t )) • |Γ(d + ı ( MXN µ + MXNσ z t ))| 2 ,
with η = (b, d), while the other parameters are as defined previously. The AR(r)-APARCH(p,q) specifies the conditional means in (9), for t = 1, . . . , T , as

µ t = ν + r i=1 φ i y t-i ,
while conditional variances are determined by

h δ/2 t = ω + p i=1 α i (|ε t-i | -γ i ε t-i ) δ + q j=1 β j h δ/2 t-j , (11) 
where µ ∈ IR, -1 < φ i < 1 (i = 1, . . . , r), ω > 0, α i ≥ 0 (i = 1, . . . , p), β j ≥ 0 (j = 1, . . . , q), δ ≥ 0 and -1 < γ i < 1. The most relevant characteristics of the model are the presence of a Box-Cox power transformation of the conditional variances and the asymmetric absolute errors. The APARCH model includes as special cases seven other ARCH type models, including the ARCH by [START_REF] Engle | Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[END_REF], the GARCH by [START_REF] Bollerslev | Generalized autoregressive conditional heteroskedasticity[END_REF], the NARCH by [START_REF] Higgins | A class of nonlinear ARCH models[END_REF], the log-ARCH by [START_REF] Geweke | Comments on "Modelling the persistence of conditional variances[END_REF] and [START_REF] Pentula | Comments on "Modelling the persistence of conditional variances[END_REF], and simple asymmetric and threshold GARCH models.

In financial applications the conditional variance h t of a time series is often assumed to follow an APARCH(1,1) model. In Appendix B we compute the derivatives necessary for maximizing the average log-likelihood when this model is adopted.

Goodness of fit

Our objective here is to validate the AR-APARCH model, with MXN distribution for the innovations. We will use an approach analogous to that followed in Section 4.3, but applied to the squared residuals. [START_REF] Horváth | Empirical process of the squared residuals of an ARCH sequence[END_REF] studied the weak convergence of the empirical process of squared residuals of ARCH sequences, defined as

ζ T (x) = 1 √ T T t=1 I[ẑ 2 t ≤ x] -Q η (x) , ( 12 
)
where Q η is the cumulative distribution function of the squared disturbances.

Here we are assuming that a consistent estimate θ of ϑ is available, so that the squared residuals for model ( 9) can be computed by [START_REF] Horváth | Empirical process of the squared residuals of an ARCH sequence[END_REF] assumed h t to have an ARCH structure. Extensions to GARCH(p, q) processes and more general ARCH processes are available, respectively, in [START_REF] Berkes | Limit results for the empirical process of squared residuals in GARCH models[END_REF] and [START_REF] Koul | Weighted Empirical Processes in Dynamic Nonlinear Models[END_REF]. In any case, the asymptotic distribution of the residual empirical process for GARCH models depends in a complicated way on the model parameters and on the distribution of the innovations. This implies that classical goodness-of-fit tests, like the Cramér-von Mises and Kolmogorov-Smirnov tests, are not readily applicable.

ẑ2 t = (y t -µ t ( θ)) 2 h t ( θ) , t = 1, . . . , T .
However, the existence of a limiting distribution suggests that bootstrap tests based on the empirical process can be expected to detect departures from the postulated distribution of the unobservable innovations [START_REF] Horváth | Bootstrap misspecification tests for ARCH based on the empirical process of squared residuals[END_REF].

We will consider the estimated empirical process

ζT (x) = 1 √ T T t=1 I[ẑ 2 t ≤ x] -Q η(x) ,
where the parameter vector η has also been consistently estimated.

This approach is limited in that the quadratic residuals {ẑ 2 t } are not independent nor identically distributed, and therefore the usual inferential procedures cannot be applied. For this reason, here bootstrap goodness-of-fit procedures for dependent data are considered, as documented, e.g., in [START_REF] Lahiri | Resampling Methods for Dependent Data[END_REF].

More specifically, assume that a sequence of observations {y t } T t=1 is available from a process of the kind described in (9). Then, an estimate θ = ( θ, η) ′ can be obtained. The replicates of the observed series are generated from

y * t = µ t ( θ) + h t ( θ) z * t , (13) 
where the {z 

(x) = 1 √ T T t=1 I[ẑ * 2 t ≤ x] -Q η * (x) .
By obtaining B bootstrap replicates T KS ( ζ * T ) and T CV ( ζ * T ), critical regions and p-values for the goodness of fit tests can be computed.

The available contributions on the consistency of bootstrap based goodness of fit tests in the presence of estimated parameters assume the observations to be iid (see e.g. Szũcs, 2008). As a consequence, these results do not apply to the present case, where tests concern residuals. The theoretical asymptotic behaviour of bootstrap tests, in this framework, has yet to be studied. However, [START_REF] Horváth | Bootstrap misspecification tests for ARCH based on the empirical process of squared residuals[END_REF] and [START_REF] Grigoletto | Misspecification testing for the conditional distribution model in GARCH-type processes[END_REF], on the grounds of theoretical results concerning the asymptotic distribution of the relevant empirical processes, applied such tests, finding them to have an overall correct size. The procedure described above has been applied to the same series of stock indices used in Section 4.3, but considering daily (instead of weekly) returns.

The results of the goodness of fit assessment are shown in Table 4. The pvalues of the Kolmogorov-Smirnov and Cramér von-Mises tests indicate good agreement of the Meixner APARCH(1,1) model with the data sets analyzed.

Final remarks

The theoretical properties of the Meixner distribution, as semi-heavy tails and infinite divisibility, make it potentially very effective in modeling short-term financial returns. However, the usefulness of a certain distribution depends also on the availability of algorithms to simulate from it, and to estimate its parameters. This article proposes a rejection-based method to generate random In order to study the applicability of the Meixner distribution, a GARCHtype model is then analyzed, assuming a standardized Meixner distribution for the innovations. Some real financial time series are considered to investigate goodness of fit, through bootstrap tests based on the empirical process of the residuals. The results of these tests, together with good computational properties, suggest that the Meixner distribution can be considered a good candidate for representing series of financial returns. The average log-likelihood function introduced in equation ( 6) can also be written as

ℓ n (θ) = 2 d log(2 cos(b/2)) -log(2 a π) -log(Γ(2 d)) + b z + 1 n n j=1 (log(Γ(d + ı z j )) + log(Γ(d -ı z j ))), since |Γ(d + ı z j )| 2 = Γ(d + ı z j )Γ(d -ı z j ); hence, the gradient of ℓ n (θ) is defined as ∂l n (θ) ∂m = - 1 a b + ı n n j=1 Ψ - j , ∂l n (θ) ∂a = - 1 a b z + 1 + ı n n j=1 z j Ψ - j , ∂l n (θ) ∂b = z -d tan(b/2) , ∂l n (θ) ∂d = 2 (log(2 cos(b/2)) -ψ(2 d)) + 1 n n j=1 Ψ + j .
On the other hand, the diagonal elements of the Hessian matrix are

∂ 2 l n (θ) ∂m 2 = - 1 a 2 n n j=1 Υ + j , ∂ 2 l n (θ) ∂a 2 = 1 a 2 2 b z + 1 + 1 n n j=1 (2 ı z j Ψ - j -z 2 j Υ + j ) , ∂ 2 l n (θ) ∂b 2 = - d 1 + cos(b) , ∂ 2 l n (θ) ∂d 2 = -4ψ ′ (2 d) + 1 n n j=1 Υ + j ,
while the off-diagonal components of the Hessian matrix are defined as

∂ 2 l n (θ) ∂m ∂a = 1 a 2 b + 1 n n j=1 (ı Ψ - j -z j Υ + j ) , ∂ 2 l n (θ) ∂m ∂b = - 1 a , F o r P e e r R e v i e w O n l y ∂ 2 l n (θ) ∂m ∂d = - ı a n n j=1 Υ - j , ∂ 2 l n (θ) ∂a ∂b = - z a , ∂ 2 l n (θ) ∂a ∂d = - ı a n n j=1 z j Υ - j , ∂ 2 l n (θ) ∂b ∂d = -tan(b/2) ,
where z j = (x jm)/a, z = n j=1 z j /n,

Ψ + j = ψ(d + ı z j ) + ψ(d -ı z j ), Ψ - j = ψ(d + ı z j ) -ψ(d -ı z j ), Υ + j = ψ ′ (d + ı z j ) + ψ ′ (d -ı z j ), Υ - j = ψ ′ (d + ı z j ) -ψ ′ (d -ı z j ),
and ψ(•) is the psi function.

Appendix B

When an AR(r)-APARCH(1,1) model is adopted for defining the relations in (9), the derivative of µ t with respect to ν is 1, while the derivative with respect to φ i is y t-i . Therefore, from equation ( 11), we have that [START_REF] Laurent | Analytical derivates of the APARCH model[END_REF]) 

∂h t ∂(φ, ω, α, γ, β) = 2h t δh δ/
∂ν = α 1 δ (|ε t-1 | -γ 1 ε t-1 ) δ-1 (-sign(ε t-1 ) + γ 1 ) + β 1 ∂h δ/2 t-1 ∂µ , ∂h δ/2 t ∂φ j = α 1 δy t-j (|ε t-1 | -γ 1 ε t-1 ) δ-1 (-sign(ε t-1 ) + γ 1 ) + β 1 ∂h δ/2 t-1 ∂φ j , j = 1, . . . , r , ∂h δ/2 t ∂ω = 1 + β 1 ∂h δ/2 t-1 ∂ω , ∂h δ/2 t ∂α 1 = (|ε t-1 | -γ 1 ε t-1 ) δ + β 1 ∂h δ/2 t-1 ∂α 1 , ∂h δ/2 t ∂γ 1 = -α 1 δ ε t-1 (|ε t-1 | -γ 1 ε t-1 ) δ-1 + β 1 ∂h δ/2 t-1 ∂γ 1 , ∂h δ/2 t ∂β 1 = h δ/2 t-1 + β 1 ∂h δ/2 t-1 ∂β 1 , ∂h δ/2 t ∂δ = α 1 (|ε t-1 | -γ 1 ε t-1 ) δ log(|ε t-1 | + γ 1 ε t-1 ) + β 1 ∂h δ/2 t-1 ∂δ ,
where ε t-1 = y t-1ν -r i=1 φ i y t-i-1 . Obviously, on the basis of the formulations of the APARCH(1,1) model, we must observe that the differentiation of the absolute value of a variable is not defined in zero. Nevertheless, as also observed by [START_REF] Laurent | Analytical derivates of the APARCH model[END_REF], even if this situation is possible, it is most unlikely in practice.

We also have that

g ′ MXN (z t : η) g MXN (z t ; η) = MXN σ (b + ı (ψ(d + ı w t ) -ψ(d -ı w t ))) .
The logarithmic derivatives of g MXN with respect to b and d are given by 

∂ log g MXN (z t ; η) ∂b = MXN σ (1,0) MXN σ -d tan(b/2) + w t + w (1,0) t (b + ı(ψ(d + ı w t ) -ψ(d -ı w t ))), ∂ log g MXN (z t ; η) ∂d = MXN σ (0,1) MXN σ + 2 (log(2 cos(b/2)) -ψ(2 d)) + ψ(d + ı w t ) + ψ(d -ı w t ) + w (0,

Main concerns

The authors give a satisfactory answer to the first main concern. However, I do not see completely solved the second one. Authors state that there are differences between Meixner and Johnson distributions (that is right), that S U -distributions have been applied in financial literature and that according to Perez ( 2004) S U -distributions may fail to capture financial risk. I have not been able to get this paper and, then, I can say nothing about whether Meixner distributions suffer from the same problem or not. Anyway, the statement of the authors "the Meixner distribution studied in our paper may prove to be a useful alternative, when the available distributions fail to adequately describe the observations at hand", from me point of view, is weak unless the authors provide some guidelines to see under which conditions are Meixner distributions preferable to the available alternatives.

The paper by Perez (2004) which, among others, highlights the possible shortcomings of S U -distributions, is available at http://administracion.itam.mx/workingpapers/hedgefunds.pdf

In the concluding remarks, Perez (2004) states: ". . . although the Johnson approximation carries information about skewness and kurtosis, it still fails to reflect entirely higher moment effects. It also fails to detect entirely the left tail risk, specially in the cases where we have a "short option" behavior. In these cases, the left tail of the associated Johnson distribution underestimates the probability of losses. The isolated but large negative returns seem to be too rare to make any difference on the Johnson parameters, and hence they remain undetected." It would be simple to look for particular observed time series for which the Meixner distribution has better fitting properties than the S U , but this would not make the message in the paper come through more clearly. We simply suggest that, when fitting models for financial time series, the Meixner distribution deserves to be in the analyst's toolbox.

In our view, it is not possible to find general guidelines suggesting a priori when to prefer the Meixner distribution: the suitability of this distribution for representing observed time series is to be found with the usual goodness of fit procedures. On the other hand, there are not even general a priori guidelines stating when the S U distributions is preferable to the available alternatives. 2. I consider that simulations can not replace proofs. Thus, in me opinion, authors do not provide enough justification to use asymptotic distributions. Moreover, if we assume that the results hold, taking into account the slow speed of convergence that the simulations suggest, it seems that the conclusion would be that they are useless. 4. I also consider weak the reasons the authors give to justify the use of the bootstrap here.

It is certainly true that simulations can not replace proofs. However, when formal proofs are very hard to find (as in the present case), simulations can be useful to shed light on the behavior of the procedures under investigation. Slow convergence speed, on the other hand, is to be expected when many parameters are involved. Since no better alternatives seem to be available, maximum likelihood estimation still appears to be the preferable approach in the present framework (and is suggested, among others, by Davison and Hinkley, 1997, p. 148). The use of bootstrap in the context of parametric likelihood inference has been advocated e.g. by [START_REF] Davison | Recent developments in bootstrap methodology[END_REF], while [START_REF] Boos | Introduction to the bootstrap world[END_REF] applies resampling for a goodness of fit problem based on the use of the Anderson-Darling statistic. In a now classic paper, [START_REF] Mackinnon | Bootstrap inference in Econometrics[END_REF] states "The astonishing increase in computer performance over the past two decades has made it possible for economists to base many statistical inferences on simulated, or bootstrap, distributions rather than on distributions obtained from asymptotic theory".

  One of the most interesting distributions introduced in the literature to interpret financial returns is the normal inverse Gaussian distribution (NIG)

  1, b, d , where f MXN (z; 0, 1, b, d) = (2 cos(b/2)) 2 d 2 π Γ(2 d) e b z |Γ(d + ı z)| 2 , with ı = √ -1 and Γ(•) being the gamma function. It should be noted that m and a are location and scale parameters, while b and d decide the shape of the distribution. In other terms, if X ∼ MXN(m, a, b, d), then Z = (Xm)/a is its standardized form, with distribution MXN(0, 1, b, d).

  Meixner distribution is clearly infinitely divisible. From this definition the mean, variance, skewness and kurtosis of a MXN(m, a, b, d) distribution

Figure 1 :

 1 Figure 1: Densities of some zero mean and unit variance Meixner (solid lines) and S U (dashed lines) distributions.

Figure 2 :

 2 Figure 2: Frequency plots for random samples of size 10000 from a Meixner distribution with zero mean, unit variance and several values of the skewness and kurtosis indices. The dashed lines represent the true Meixner densities.

  likelihood estimation Suppose that the n observations x 1 , . . . , x n are a random sample from a Meixner distribution with unknown parameters θ = (m, a, b, d). The average log-likelihood function is defined as

  Lemma. The ML estimate of the b parameter characterizing the Meixner distribution can be expressed as a function of the sample mean and of the ML estimates for the remaining parameters: b = 2 tan -1 z/ d .

F

  

  new estimate θ * for θ can be computed, with the same method used to obtain θ. The corresponding estimated bootstrap empirical process is defined as ν

  Source: http://finance.yahoo.com

  Meixner, and shows how maximum likelihood estimators can be obtained. The convergence of these estimators to their asymptotic multivariate normal distribution is assessed through a Monte Carlo study.

  3 have been satisfactorily solved. Let us analyze points 2 and 4.

  Therefore, in order to apply the rejection algorithm, one needs to be able to determine a suitable constant c. Besides, it is necessary to specify and appropriate random variable Y , with density g and cdf G easily invertible. The density g has to dominate f MXN for any value of its parameters(m, a, b, d). In this regard, we propose to approximate the density f MXN with one of the distributions in the Johnson translation system

	F o r
	P
	e
	e r
	R
	e
	v i e
	w
	O n l
	y

Table 1 :

 1 As an illustration, Table1displays the value of c, the number of rejections and the sample statistics for Monte Carlo samples of size n = 10000 from zero mean and unit variance Meixner distributions with several values of the skewness and kurtosis indices. Figure2shows the frequency plots comparing the pseudo-random samples and the true Meixner densities.

	κ 1 F κ 2 -0.2 4.0 1.0932 c o r 0.0 4.0 1.0772	Rejects Mean 894 -0.0031 1.0195 -0.2600 4.4613 Var Skew Kurt 764 -0.0199 1.0021 0.0009 4.0287
	0.5 4.0 1.5021 P -0.2 6.0 1.2270 e 5021 0.0042 0.9952 0.5250 3.9047 2330 0.0050 0.9803 -0.2365 5.8214 0.0 6.0 1.2413 2372 -0.0023 0.9972 0.0368 6.3294 e r 0.5 6.0 1.2048 2068 0.0034 1.0068 0.4831 6.4086
	-0.2 8.0 1.3909 0.0 8.0 1.3677	3938 -0.0017 1.0059 -0.2540 8.3552 R 3739 -0.0043 0.9913 0.0187 7.5852
	0.5 8.0 1.4480	e 4386 -0.0006 1.0015 0.5911 8.0002
	-0.2 10.0 1.4959 0.0 10.0 1.4699 0.5 10.0 1.5527	5008 0.0014 1.0108 -0.3311 9.5562 v i 4623 -0.0145 0.9815 -0.2505 9.9530 e w 5573 -0.0001 1.0002 0.5078 10.2164
		O n l
		y

δ) , accept x g as a random value from MXN(m, a, b, d); otherwise, return to step 3. c, number of rejections and sample statistics for Monte Carlo samples of size n = 10000 from zero mean and unit variance Meixner distributions with several values of the skewness and kurtosis indices κ 1 and κ 2 .

Table 2 :

 2 Multivariate skewness and kurtosis measures for the maximum likeli-

				MultiSkewness	MultiKurtosis
	κ 1	κ 2	250	500	1000 2000	250	500	1000 2000
	-0.2 4.0	13.20 9.67 7.67 7.68	44.54 36.53 33.57 35.48
	0.0 4.0	11.28 10.47 7.93 6.96	40.66 39.90 35.12 33.77
	0.5 4.0	13.21 15.98 12.79 9.33	53.21 49.98 43.54 36.81
	-0.2 6.0	8.83 5.90 4.63 2.31	37.49 31.39 32.63 27.22
	0.0 6.0 0.5 6.0	6.56 5.81 3.85 2.03 o r 7.56 6.68 3.32 2.16	31.68 32.23 30.07 26.41 33.99 36.05 28.06 27.14
	-0.2 8.0 0.0 8.0	8.11 4.74 2.91 1.48 P 6.48 5.55 2.91 1.92	35.58 31.20 29.17 26.24 32.14 33.55 29.30 27.26
	0.5 8.0	e 6.92 4.27 2.69 1.79	33.42 30.38 27.74 26.21
	-0.2 10.0 0.0 10.0	7.54 4.34 2.92 1.51 e r 7.75 4.26 2.99 1.66	35.67 30.40 29.17 25.93 36.26 30.33 28.27 25.89
	0.5 10.0	R 5.82 3.88 3.27 1.53	32.43 28.24 31.17 25.88
					e			
					v i e		
						w		
						O n l
								y

hood estimators. The results concern 2000 Monte Carlo replications and samples (with sizes equal to 250, 500, 1000 and 2000) from zero mean and unit variance Meixner distributions, characterized by several values of the skewness and kurtosis indexes (κ 1 and κ 2 , respectively).

  * t } are iid from an estimate Ĝη of G η . Having generated a bootstrap replicate {y * t } T t=1 from process (9), a new estimate θ * = ( θ * , η * ) ′ can be computed, with the same method used to obtain

	θ. As a consequence, the bootstrap residuals
	ẑ * 2 t =	(y * t -µ t ( θ * )) 2 h t ( θ * )	, t = 1, . . . , T ,
	become available. The corresponding estimated bootstrap empirical process is
	defined as	
	ζ * T	r o F
			P
			e
				e r
				R
				e
				v i e
				w
				O n l
				y

  If the sequence of the variances h 1 , . . . , h T is initialized with h 1 = ω 2/δ , the partial derivatives of the generic term h t with respect to the parameters of the

	form since, for t > 1,			
	δ/2 ∂h t					
	F o r			
				P	
				e
					e r
							R
							e
							v i e
								w
	and				t	2	∂h δ/2 t ∂(φ, ω, α, γ, β)	O n l y
	∂h t ∂δ	=	2h t δh δ/2 t	∂h δ/2 t ∂δ	-	h δ/2 t log(h δ/2 t ) δ	.
	APARCH(1,1) model defined in equation (11) can be obtained in a recursive

Table 3 :

 3 where w t = µ t + σ t z t , w Empirical and Quantile Processes in the Asymptotic Theory of Goodness-of-Fit Tests. Lecture Notes presented at the European Shao, D.J.,Tu, D. (1996). The Jackknife and Bootstrap. New York: Springer. Bootstrap goodness of fit for weekly returns(2002)(2003)(2004)(2005)(2006). The displayed results concern some properties of the observed series, and the estimated parameters of the Meixner distribution, with their estimated standard errors.By MALL we indicate the maximum of the average log-likelihood. The observed values of the Kolmogorov-Smirnov and Cramér-von Mises statistics, and the corresponding bootstrap p-values, are also shown.

	t	1)	(b + ı(ψ(d + ı w t ) -ψ(d -ı w t ))),