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ABSTRACT

Inference in Generalized linear mixed models with multivariate random effects is often

made cumbersome by the high-dimensional intractable integrals involved in the marginal

likelihood. This article presents an inferential methodology based on the GEE approach.

This method involves the approximations of the marginal likelihood and joint moments of

the variables. It is also proposed an approximate Akaike and Bayesian information criterions

based on the approximate marginal likelihood using the estimation of the parameters by the

GEE approach. The different results are illustrated with a simulation study and with an

analysis of real data from health-related quality of life.

Key words: Approximate AIC and BIC; Fixed effects; GEE approach; Generalized linear

mixed model; HR-QoL; Longitudinal data; Random effects; Rasch model.

1. INTRODUCTION

Generalized linear mixed models (GLMMs) are extensions of generalized linear models

(GLMs) which accommodate correlated and overdispersed data by adding random effects to

the linear predictor. Their broad applications are useful in various disciplines, such as the

analysis of clustered data including longitudinal data or repeated measures. Such generalized

linear mixed models are also increasingly used in various fields where subjective variables

(called latent traits) need to be measured using questionnaires with polytomous items. This

is usual in health sciences and clinical trials, where those subjective variables might be for

example depressive symptoms or quality of life. In such fields, the Rasch model, the most

popular IRT (Item Response Theory) model (Fischer and Molenaar [14], and Baker and

Kim [4]) is very often used. We consider the Rasch model with random person effects.

1

Page 2 of 35

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

This sometimes called the stochastic subject view. We call it the mixed Rasch model and is

different from the mixture Rasch models described by Rost and Davier (Fischer and Molenaar

[14], chapter 14). The fixed effects parameters and the random effects of this model which

belongs to the family of logistic linear mixed models (Diggle et al. [8], and De Boeck and

Wilson [9]), are called the difficulty or item parameters and latent traits or person parameters

respectively (Fischer and Molenaar [14], p. 39-51). The estimation of the fixed effects and

the variance components is needed in this type of model.

In the case of quality of life in clinical trials, the appearance of repeated measures arises

when the same set of items is presented to a sample of persons at different time points/under

different conditions. More complex mixed Rasch models have received attention in the

literature. Multidimensional mixed Rasch models with item parameters considered equal

across time points are analyzed by Embretson [10], Hoijtink [17], Adams et al. [1] and [2]

and Rijmen [25]. A longitudinal IRT model with item parameters varying over time has

been proposed by te Marvelde et al. [27], where the main goal of the authors was to test if

the change in these parameters was or not significant.

Our work is motivated by the real data in quality of life, which are from the emotional

behavior subscale of the Sickness Impact Profile (SIP) questionnaire. This subscale is admin-

istered to the same patients at three different time points. The interest is in the study of the

variation of the item difficulties, the quality of life in time and the possible correlation be-

tween the three latent traits. The responses of our model are two-way correlated. Firstly, at

a given point of time, the binary responses of a single individual are correlated and secondly,

when repeated, they become also longitudinally correlated. To model both correlations, we

have used a multidimensional mixed Rasch model with item parameters assumed to vary

across time points. This is an extension of the one considered by Feddag and Mesbah [12].

A problem inherent in GLMMs is that the marginal likelihood function obtained after

integrating over the multidimensional random effects always involves intractable integrals.

Therefore, several approximation methods have been proposed in the literature. One ap-

proach consists of the approximation of the integral using either numerical integration tech-

2
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niques (Rigdon and Tusutakawa [24], Hedeker and Gibbons [16], Pinheiro and Bates [21]),

or Markov chain Monte Carlo techniques (Zeger and Karim [32], Gilks and Wild [15] and

Wakefield et al. [28]). It is known that these methods become more and more difficult to use

as the number of random effects increases. As an alternative to numerical integration, two

different first order Taylor series expansion methods were used to approximate the marginal

likelihood and/or the joint moments. These methods are based on a series expansion of the

conditional mean or the likelihood about 0 or about the current estimates of the random

effects. The fixed effects parameters are generally estimated by the generalized estimating

equations (denoted by GEE) approach, defined by Liang and Zeger [18] as an extension

of quasi-likelihood approach [29] and the variance components by the restricted maximum

likelihood (REML) (Anderson and Bancroft [3]). These approaches include the method of

Zeger et al. [31], the penalized quasi-likelihood and the marginal quasi-likelihood methods

defined by Breslow and Clayton [6] and Breslow and Lin [7].

The application of GEE to GLMMs requires the first and second order marginal moments

of the responses to estimate the fixed effects; the third and fourth joint moments of the

responses are required to estimate the variance components. All these joint moments do

not have a closed form under GLMMs and must be approximated. Feddag et al. [11] have

proposed a GEE approach to estimate simultaneously the fixed effects and the variance of

the univariate random effects in the logistic mixed models. These equations are based on

the empirical pairwise covariances which are used by Prentice [22] and Prentice and Zhao

[23] to estimate the correlation parameters in GLMs for binary data. The joint moments

are obtained using the Sutradhar and Rao [26] approximations. This approach has been

extended to the longitudinal mixed Rasch model (Feddag and Mesbah [12]) where the fixed

effects parameters are assumed invariant in time.

This paper is thus an extension of the GEE method proposed by Feddag and Mesbah [12]

for the longitudinal mixed Rasch model. The work considered here differs from the previous

one in several aspects. We have generalized approximations of the marginal likelihood and

joint moments proposed in the longitudinal mixed Rasch model to the multidimensional

3
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mixed Rasch model, which assume that the fixed effects parameters vary across time points.

We also propose approximations to the Akaike and Bayesian information criterions. These

are based on the approximate marginal likelihood using the estimation of the parameters by

the GEE approach. The above criterions are used to compare the general structure of the

covariance matrix of the random effects of our model with two other matrices used commonly

in the literature. These two criterions are compared to the Wald test using the real data.

The specific outline of the paper is as follow. We present in Section 2 the studied model.

In Section 3 we give theoretical results of approximation of the marginal likelihood, then

we derive the approximate joint moments of the variables. The estimating equations for

the fixed effects parameters and the covariance matrix of random effects are constructed in

Section 4. We present thereafter some simulation results in order to illustrate our method.

The approximate Akaike information criterion (AIC) and approximate Bayesian information

criterion (BIC) are presented in Section 5. The various results are illustrated with a simula-

tion study and with an analysis of real data from a heath-related quality of life. A discussion

is presented in Section 6.

2. THE MATHEMATICAL SETTING OF THE MODEL

In our study, we consider binary responses of a questionnaire which is administrated to the

same subjects at various occasions t, t = 1, . . . , T . In such case, the responses are correlated

in two ways. Firstly, at a given time point, the binary responses of a single individual

are correlated and secondly, when repeated, they become also longitudinally correlated.

Recently, Feddag and Mesbah [12] have considered a longitudinal mixed Rasch model where

the fixed effects parameters are supposed to be invariant in time. The model considered in

this paper is a generalization of the preceding model, taking into account the variation of

the item parameters over time.

From now on, we will consider a sample of N independent (TJ × 1) random multivariate

binary observations Yi =
(

Y 1
i
′
, . . . , Y T

i
′
)′

, i = 1, . . . , N . The vector Y t
i = (Y t

i1, . . . , Y
t
iJ)′ is

the response variable of individual i to the questionnaire at time t and Y t
ij is the binary

variable response of individual i to item j at time t (t = 1, . . . , T ). Let Y = (Y1, . . . , YN)

4
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be the vector of the variables, bit the random effect associated with subject i at time t and

bi = (bi1, . . . , biT )′ be the multidimensional random effect for subject i. We denote by y a

response variable to the variable Y . The multidimensional mixed Rasch model satisfies the

following assumptions:

• Given the random effect bi, i = 1, . . . , N , we have

P
(

Y 1
i = y1

i , . . . , Y
T
i = yT

i | bi, β
)

=

T
∏

t=1

J
∏

j=1

P (Y t
ij = yt

ij | bit, β
t
j), (1)

where βt
j and bit are the fixed effects parameter associated to item j and the random

effects associated to the subject i at time t, respectively.

• For all i, j, t; i = 1, . . . , N, j = 1, . . . , J, t = 1, . . . , T , the probability distribution of the

random variable Y t
ij is given by

P
(

Y t
ij = yt

ij | bit, β
t
j

)

=
exp

{

(bit − βt
j)y

t
ij

}

1 + exp(bit − βt
j)

. (2)

• The random effects b1, . . . , bN , are independent and identically normally distributed with

mean vector µ = (µt)t=1,...,T and covariance matrix Σ = (σjl)j,l=1,...,T .

This mixed Rasch model is a particular case of the GLMMs (see McCullagh and Nelder [19])

with the link and variance functions respectively defined by

h(π) = ln(π/(1 − π)) , v(π) = π(1 − π).

It is clear that the model as formulated above is not identifiable, so some suitable restric-

tions will have to be imposed. If the mean µ is set to be 0, the model is identifiable without

any constraints on the item parameters. Elsewhere, it is usual for each time point t, to impose

the constraint
∑J

j=1(µt + βt
j) = 0. This restriction leads to the relation between the mean

of the random effects and the difficulty parameters which is given by µt = −
∑J

j=1 βt
j/J .

From now on, we suppose the mean µ = 0, and we are interested in estimating the fixed effects

parameters βt = (βt
1, . . . , β

t
J)′, t = 1, . . . , T , the vector of the variances of the random effects

5
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α = (σ11, σ22, . . . , σTT )′ and the vector of their covariances γ = (σ12, . . . , σ1T , σ23, . . . , σT−1,T )′.

Let β = (β1, . . . , βT ) be the fixed effects parameter associated to this model. The marginal

likelihood of y is then given by

L(β, α, γ | y) =

N
∏

i=1

∫

RT

T
∏

t=1

J
∏

j=1

exp
{

(bit − βt
j)y

t
ij

}

1 + exp(bit − βt
j)

ϕ(bi, α, γ) dbi, (3)

where

ϕ(bi, α, γ) =
1

(2π)T/2|Σ|1/2
exp

{

−
1

2
b′iΣ

−1bi

}

,

is the multivariate normal distribution with mean vector 0 and covariance matrix Σ(α, γ).

The maximization of this marginal likelihood is computationally difficult and needs nu-

merical evaluation of high dimensional integrals.

3. APPROXIMATIONS OF MARGINAL LIKELIHOOD AND JOINT MOMENTS

The results of this section are very similar to those given in Feddag and Mesbah [12]. The

variation of the fixed effects parameters βt across the time t = 1, . . . , T , leads to different

approximations given in Feddag and Mesbah [12]. We shall first give the approximation of

the marginal likelihood given by Eq. (3), then we derive the joint moments up to order four

of the observed variable yi which are required later on, in the estimating equations.

As in Feddag and Mesbah [12], we assume that the joint moments from order six of the

random effects bi satisfies the following condition:

E(‖bi‖
r) = o (fr(α, γ)) for all r ≥ 6, (4)

where fr is a function of r and of the parameters (α, γ).

Proposition 1 Under assumption (4), the marginal likelihood L(β, σ2 | y) defined by Eq.

(3), is given by

L(β, α, γ | y) = L∗(β, α, γ | y) + o (f4(α, γ)) , (5)

where

L∗(β, α, γ | y) =
N
∏

i=1

(1 + PT (yi, β, α, γ))
T
∏

t=1

J
∏

j=1

g∗
ij(y

t
ij; β

t
j), (6)

6

Page 7 of 35

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

and

PT (yi, β, α, γ) =

∫

RT

T
∑

t=1

∑

1≤t1<t2<...<tk≤T
P

j tj=t

[

k
∏

l=1

htl
i (yi, bi, β)

]

ϕ(bi, α, γ)dbi.

(7)

The quantities involved in the Eqs. (6) and (7) are defined below:

ht
i (yi, bi, β) = At

ibit +
1

2
Rt

ib
2
it +

1

6
P t

i b
3
it +

1

24
Qt

ib
4
it,

g∗ij(y
t
ij;β

t
j) = exp

{

−yt
ijβ

t
j − ln(1 + e−βt

j )
}

, ai,tj = ln
{

1 + exp
(

bit − βt
j

)}

,

At
i =

J
∑

j=1

At
i,j , Bt =

J
∑

j=1

Bt
j, Ct =

J
∑

j=1

Ct
j , F t =

J
∑

j=1

F t
j ,

At
i,j = yt

ij − a
(1)
tj , Bt

j = a
(2)
tj , Ct

j = a
(3)
tj , F t

j = a
(4)
tj ,

Rt
i,j = (At

i,j)
2 − Bt

j , P t
i,j = (At

i,j)
3 − 3At

i,jB
t
j − Ct

j,

Qt
i,j = (At

i,j)
4 − 6(At

i,j)
2Bt

j − 4At
i,jC

t
j + 3(Bt

j)
2 − F t

j ,

and a
(p)
tj is the p-order derivative of ai,tj at bit = 0, p = 1, . . . , 4.

The proof of this proposition is omitted since it is similar to the one given in Theorem 1 of

Feddag and Mesbah [12].

The likelihood approximation given by Eq. (5) is of order o (f4(α, γ)). The same order

of error is involved in the maximum of the approximate likelihood estimators and in the

following approximations.

We use the above proposition to derive the joint density within and between times which is

the subject of the following corollary.

Corollary 1 Under condition (4), we have the following assertions:

1. The joint density of Y t
i,m = (Y t

ij1
, . . . , Y t

ijm
), i = 1, . . . , N, m = 1, . . . , J, t = 1, . . . , T

is approximated by

L∗
i,(m)

(

yt
i,m; β, α, γ

)

=
m
∏

l=1

g∗
ijl

(yt
ijl

; βt
jl
)

[

1 +
1

2
σttR

t
i,j1...jm

+
1

8
σ2

ttQ
t
i,j1...jm

]

. (8)

7
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2. The density of (Y t
i,m, Y h

i,s) = (Y t
ij1

, . . . , Y t
ijm

, Y h
ij1

, . . . , Y h
ijs

), i = 1, . . . , N , m, s = 1, . . . , J ,

1 < t 6= h < T , is approximated by

L∗
i,(m,s)

(

yt
i,m, yh

i,s; β, α, γ
)

=
m
∏

l=1

g∗
ijl

(yt
ijl

; βt
jl
)

s
∏

l=1

g∗
ijl

(yh
ijl

; βh
jl
)

×

[

1 +
1

2

(

σttR
t
i,j1...jm

+ σhhR
h
i,j1...js

)

+ σthA
t
i,j1...jm

Ah
i,j1...js

+
1

2

(

At
i,j1...jm

P h
i,j1...js

σthσhh + P t
i,j1...jm

Ah
i,j1...js

σttσth

)

+
1

4
Rt

i,j1...jm
Rh

i,j1...js

(

σttσhh + 2σ2
th

)

+
1

8

(

σ2
ttQ

t
i,j1...jm

+ σ2
hhQ

h
i,j1...js

)

]

.

(9)

The quantities involved in Eqs. (8) and (9) are defined in Proposition 1 and below:

At
i,j1...jm

=

jm
∑

l=1

At
i,jl

, Bt
j1...jm

=

jm
∑

l=1

Bt
jl
, Ct

j1...jm
=

jm
∑

l=1

Ct
jl
, F t

j1...jm
=

jm
∑

l=1

F t
jl
,

Rt
i,j1...jm

= (At
i,j1...jm

)2 − Bt
j1...jm

, P t
j1...jm

= (At
j1...jm

)3 − 3At
j1...jm

Bt
j1...jm

− Ct
j1...jm

,

Qt
i,j1...jm

= (At
i,j1...jm

)4 − 6(At
i,j1...jm

)2Bt
j1...jm

− 4At
i,j1...jm

Ct
j1...jm

+ 3(Bt
j1...jm

)2 − F t
j1...jm

.

The proof of this corollary is similar to the one given in Theorem 2 of Feddag and Mesbah

[12].

This Corollary 1 is used to derive the joint moments up to order two which are given as

follows.

Corollary 2 Under assumption (4), we have the approximations of the joint moments which

are given by:

1. The marginal mean of Y t
ij is given by

E
(

Y t
ij

)

= µt
j =

1

1 + eβt
j

+
σtt

2

eβt
j (eβt

j − 1)

(1 + eβt
j)3

+
σ2

tt

8

eβt
j (e3βt

j − 11e2βt
j + 11eβt

j − 1)

(1 + eβt
j )5

. (10)

8
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2. The covariance (within time) of (Y t
ij, Y

t
ik) is given by

Cov
(

Y t
ij, Y

t
ik

)

=
σtt

2

1

(1 + eβt
j )2(1 + eβt

k)2
×
[

2eβt
jeβt

k +

σtt
(e3βt

j − 4e2βt
j + eβt

j )eβt
k

(1 + eβt
j )2

+ σtt
eβt

j (eβt
j − 1)eβt

k(eβt
k − 1)

(1 + eβt
j )(1 + eβt

k)

+ σtt
eβt

j (e3βt
k − 4e2βt

k + eβt
k)

(1 + eβt
k)2

]

. (11)

3. The covariance (between times) of (Y t
ij, Y

h
ik) is given by

Cov
(

Y t
ij, Y

h
ik

)

=
σth

2

1

(1 + eβt
j)2(1 + eβh

k )2
×
[

2eβt
jeβh

k +

σtt
(e3βt

j − 4e2βt
j + eβt

j )eβh
k

(1 + eβt
j )2

+ σth
eβt

j (eβt
j − 1)eβh

k (eβh
k − 1)

(1 + eβt
j)(1 + eβh

k )

+ σhh
eβt

j (e3βh
k − 4e2βh

k + eβh
k )

(1 + eβh
k )2

]

. (12)

4. ESTIMATION OF THE PARAMETERS

4.1. GENERALIZED ESTIMATING EQUATIONS

The estimating equations of the parameters of this model differ from those of Feddag

and Mesbah [12] only on the level of the dimension of the parameter β. In this particular

case, we note that this dimension is equal to TJ , whilst in the classical longitudinal case it

is equal to J .

Consider yi = (y1
i , . . . , y

T
i )′, i = 1, . . . , N, to be the outcomes of the model defined in

Section 2. The estimating equations for the parameters (β, α, γ) are based on the observa-

tions yi, i = 1, . . . , N and on their empirical covariances within and between times.

These empirical covariances are respectively given by the vectors S ′
i = (St

i )t=1,...,T and

W ′
i =

(

W lh
i

)

1≤l<h≤T
where St

i is a J(J−1)
2

× 1 vector of empirical pairwise covariances (within

times) associated with yt
i defined by

St
i =

(

St
i,jk

)

1≤j<k≤J
where St

i,jk = (yt
ij − µt

j)(y
t
ik − µt

k), (13)

9
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and W lh
i is a J2 × 1 vector of empirical pairwise covariances associated with

(

yl
i, y

h
i

)

defined

by

W lh
i =

(

W lh
i,km

)

1≤k,m≤J
where W lh

i,km = (yl
ik − µl

k)(y
h
im − µh

m). (14)

The mean τ and the covariance matrix V of the vectors ξi = (y′
i, S

′
i, W

′
i )

′, i = 1, . . . , N , are

given by

τ = (µ, η, ν) and V =











V11 V12 V13

V21 V22 V23

V31 V32 V33











,

respectively, where

µ = E (Yi) =
(

µt
)

t=1,...,T
, η = E (Si) =

(

ηt
)

t=1,...,T
, ν = E (Wi) =

(

νlh
)

1≤l<h≤T
,

µt = E(Y t
i ) =

(

µt
j

)

j=1,...,J
, ηt =

(

ηt
jk

)

1≤j<k≤J
, νlh =

(

νlh
jk

)

1≤j≤J

1≤k≤J

,

V11 = Var(Yi), V22 = V(Si), V33 = Var(Wi),

V12 = Cov(Yi, Si), V13 = Cov(Yi, Wi), V23 = Cov(Si, Wi).

All above quantities are computed using the marginal joint moments up to order four of the

variables. The quantities µl
j, ηl

jk, νlh
jk are given by Eqs. (10), (11) and (12) respectively. The

coefficients of the matrix V are computed using the joint moments of Yi up to order four.

The elements of V11 are obtained from Eqs. (11) and (12). The computation of V12, V13, V21

and V31 requires the joint moments up to order three and the other matrices require the joint

moments up to order four.

The parameters (β, α, γ) will be estimated using the solution of the following generalized

estimating equations

U(β, α, γ) = D′V −1

N
∑

i=1

(ξi − τ) = 0
TJ+ T (T+1)

2
, (15)

where

D =











D11 D12 D13

D21 D22 D23

D31 D32 D33











,

10
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with

D11 =
∂µ

∂β
, D12 =

∂µ

∂α
, D13 =

∂µ

∂γ
, D21 =

∂η

∂β
,

D22 =
∂η

∂α
, D23 =

∂η

∂γ
, D31 =

∂ν

∂β
, D32 =

∂ν

∂α
, D33 =

∂ν

∂γ
,

and 0p is the vector of zeros of order p. These derivatives are easily computed using Eqs.

(10), (11) and (12).

Let
(

β̂, α̂, γ̂
)

be the root of the estimating equations defined by Eq. (15). Following a

similar reasoning as in [12], it is easily seen that N1/2

{

(

β̂ − β
)′

, (α̂ − α)′ , (γ̂ − γ)′
}′

is

asymptotically multivariate normal with zero mean and covariance W . This covariance may

be consistently estimated by

Ŵ = lim
N 7−→∞

N
(

Â−1
1 Â2Â

−1
1

)

, (16)

where

A1 = N
(

D′V −1D
)

, A2 = D′V −1

(

N
∑

i=1

(ξi − τ)(ξi − τ)′

)

V −1D,

and Â1, Â2 are the values of A1 and A2 at (β̂, α̂, γ̂) respectively. The computation of (β̂, α̂, γ̂)

is achieved by the Fisher-scoring algorithm.

4.2. SIMULATION STUDY

We focus here on the sample performance for the estimation of the fixed effects parameters

β and the variance components α and γ by the GEE approach. We have considered two sets

of the items difficulties: the first is arbitrary and the second is related to the parameter

estimates given by this approach to the real data which is presented in the next section. We

note that these two sets of parameters are changing over time.

We performed 500 replications of the mixed Rasch model where the parameters are fixed as

follows:

• T = 3

• two sample sizes N = 100, 300 and two covariance matrices defined by:

11
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Σ1 =











0.3 0.1 0.2

0.1 0.4 0.3

0.2 0.3 0.5











, Σ2 =











0.7 0.4 0.5

0.4 0.8 0.6

0.5 0.6 0.9











• two different sets of difficulty parameters. The first one with J = 5, β1 = (−2.5,−1.5,−1, 0, 0.5),

β2 = (−2.5,−1, 0.5, 1, 2.5) and β3 = (1.5,−0.5, 0.5, 1, 2.5).

The second set with 6 items is related to the parameter estimates provided by this ap-

proach on the real data, which is given by: β1 = (−1.09,−0.53,−0.32,−1.01, 0.66,−2.71),

β2 = (1.79, 1.35, 1.05, 0.46, 1.43, 1.32) and β3 = (2.47, 2.54, 1.88, 1.18, 2.05, 2.58).

We denote by α1 = (0.3, 0.4, 0.5) and γ1 = (0.1, 0.2, 0.3) the parameters of Σ1 and by

α2 = (0.7, 0.8, .9) and γ2 = (0.4, 0.5, 0.6) the parameters of Σ2. The software package Splus

is used for the simulations.

The simulation results for the classical mixed Rasch model (Feddag et al. [11]) show that

the specification of the third and fourth joint moments of the variables do not improve the

estimates of different parameters. As in [12], all elements containing 3rd and 4th order joint

moments of the matrix V are set to equal zero. The different matrices Vjl, j, l = 1, 2, 3, are

defined as follows:

• V11 a matrix whose elements are obtained using Eqs. (10), (11) and (12).

• V12 a matrix with the property that Cov(Y h
ij , S

h
i,kl) = Cov(Y h

ij , S
t
i,kl) = 0 for j 6= k, l

and h 6= t.

• V13, where Cov(Y t
ij, W

sh
i,kl) = 0, (t 6= s 6= h), Cov(Y t

ij, W
th
i,kl) = Cov(Y t

ij, W
ht
i,kl) = 0,

(j 6= k, l).

• V22, V33 are diagonal and V23 = 0.

Tables 1,2,3 and 4 display the mean value and the standard deviation for each the above

cases, based on 500 data sets. From Tables 1 and 2, which correspond to the first set of

difficulty parameters, we note that all the estimates present a small bias. This bias tends

12
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Table 1: Mean values and standard deviation in parentheses of the estimates for the pa-

rameters (denoted by p) β1 = (−2.5,−1.5,−1, 0, 0.5), β2 = (−2.5,−1, 0.5, 1, 2.5), β3 =

(1.5,−0.5, 0.5, 1, 2.5), α1 = (0.3, 0.4, 0.5), γ1 = (0.1, 0.2, 0.3).

N p

100 β1 -2.564 (.416) -1.544 (.304) -1.028 (.250) 0.005 (.219) 0.499 (.228)

β2 -2.604 (.413) -1.004 (.257) 0.504 (.238) 1.045 (.254) 2.573 (.408)

β3 1.523 (.285) -0.506 (.231) 0.507 (.227) 0.989 (.239) 2.579 (.415)

α1 0.307 (.270) 0.463 (.328) 0.518 (.301)

γ1 0.102 (.168) 0.207 (.167) 0.315 (.192)

300 β1 -2.519 (.231) -1.506 (.155) -0.994 (.139) -0.002 (.124) 0.497 (.116)

β2 -2.526 (.212) -1.000 (.147) 0.488 (.133) 0.999 (.142) 2.513 (.230)

β3 1.508 (.159) -0.495 (.125) 0.496 (.130) 0.999 (.144) 2.535 (.215)

α1 0.315 (.147) 0.409 (.181) 0.493 (.170)

γ1 0.101 (.101) 0.202 (.096) 0.302 (.106)
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Table 2: Mean values and standard deviation in parentheses of the estimates for the pa-

rameters (denoted by p) β1 = (−2.5,−1.5,−1, 0, 0.5), β2 = (−2.5,−1, 0.5, 1, 2.5), β3 =

(1.5,−0.5, 0.5, 1, 2.5), α2 = (0.7, 0.8, 0.9), γ2 = (0.4, 0.5, 0.6).

N p

100 β1 -2.549 (.393) -1.527 (.323) -1.006 (.259) 0.000 (.221) 0.494 (.240)

β2 -2.561 (.374) -0.991 (.257) 0.492 (.244) 1.000 (.261) 2.550 (.420)

β3 1.508 (.310) -0.503 (.243) 0.494 (.235) 0.964 (.243) 2.530 (.390)

α2 0.706 (.340) 0.788 (.369) 0.835 (.333)

γ2 0.405 (.217) 0.529 (.239) 0.598 (.242)

300 β1 -2.518 (.236) -1.493 (.164) -0.980 (.145) 0.002 (.136) 0.499 (.131)

β2 -2.515 (.212) -0.986 (.150) 0.481 (.139) 0.985 (.146) 2.516 (.236)

β3 1.486 (.161) -0.482 (.135) 0.486 (.134) 0.979 (.153) 2.526 (.215)

α2 0.699 (.193) 0.791 (.215) 0.846 (.195)

γ2 0.407 (.128) 0.508 (.127) 0.599 (.130)
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to be negligible when the size increases. As expected, we also note that the standard errors

for almost all the estimates decrease when N increases. For the second set of the difficulty

parameters, the results displayed in Tables 3 and 4 are very similar to the first case. We

observe small bias for both difficulty parameters and variance component estimates. We

note as well an improvement in the estimates for the size N = 300. This simulation study

shows that this approach performs better for large values of N .

In terms of running time (s denotes second), this approach is very fast. For the first example,

in average, for each data set, it takes 0.74 s to converge with N = 100 and 1.04 s with

N = 300. For the second case, the convergence is reached in 0.92 s with N = 100 and 1.15

s with N = 300.

5. APPROXIMATE AKAIKE AND BAYESIAN INFORMATION CRITERIONS

It may be of interest to compare the general structure of the variance of the random

effects considered in the model with alternative structures, using selection model criterions

and tests. The well known AIC and BIC criterions based on the marginal likelihood appear

to be complicated since the maximum of the approximate likelihood for this model is prone

to numerical problems. This is not the case for the univariate random effects, where the

approximate likelihood method is comparable to the GEE approach (see Feddag and Mes-

bah [13]). In the following, we propose two alternative criterions, namely the approximate

AIC and the approximate BIC. These two criterions based on the approximate marginal

likelihood using the estimation of the parameters by the GEE approach, will be illustrated

by a simulation study and compared to the Wald test using real data.

5.1. DEFINITIONS

Definition 1 Let ℓ∗ = ln L∗(β̂, α̂, γ̂ | y) the logarithm of the approximate likelihood given by

the expression (6) where (β̂, α̂, γ̂) are the estimates of the parameters (β, α, γ) by the GEE

method. The Akaike Information Criterion (denoted by AIC) is defined as follows:

AIC = −2ℓ∗ + 2p,

15
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Table 3: Mean values and standard deviation in parentheses of the estimates for the param-

eters β1 = (−1.09,−0.53,−0.32,−1.01, 0.66,−2.71), β2 = (1.79, 1.35, 1.05, 0.46, 1.43, 1.32),

β3 = (2.47, 2.54, 1.88, 1.18, 2.05, 2.58), α1 = (0.3, 0.4, 0.5), γ1 = (0.1, 0.2, 0.3).

N Parameter

100 β1 -1.101 -0.524 -0.327 -1.035 0.660 -2.760

(.250) (.212) (.216) (.244) (.230) (.442)

β2 1.792 1.378 1.055 0.456 1.439 1.341

(.298) (.280) (.246) (.226) (.281) (.284)

β3 2.530 2.602 1.918 1.168 2.082 2.641

(.405) (.414) (.335) (.255) (.355) (.415)

α1 0.301 0.399 0.493

(.203) (.215) (.304)

γ1 0.103 0.203 0.294

(.131) (.168) (.168)

300 β1 -1.089 -0.531 -0.323 -1.007 0.661 -2.732

(0.141) (.130) (.124) (.140) (.132) (.239)

β2 1.795 1.351 1.053 0.460 1.427 1.330

(.164) (.152) (.139) (.138) (.152) (.159)

β3 2.483 2.547 1.874 1.178 2.047 2.581

(.223) (.234) (.187) (.149) (.181) (.223)

α1 0.313 0.392 0.483

(.118) (.117) (.176)

γ1 0.101 0.196 0.289

(.077) (.097) (.099)
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Table 4: Mean values and standard deviation in parentheses of the estimates for the param-

eters β1 = (−1.09,−0.53,−0.32,−1.01, 0.66,−2.71), β2 = (1.79, 1.35, 1.05, 0.46, 1.43, 1.32),

β3 = (2.47, 2.54, 1.88, 1.18, 2.05, 2.58), α2 = (0.7, 0.8, 0.9), γ2 = (0.4, 0.5, 0.6).

N Parameter

100 β1 -1.091 -0.529 -0.312 -1.001 0.636 -2.767

(.270) (.236) (.233) (.242) (.240) (.436)

β2 1.765 1.340 1.043 0.437 1.450 1.317

(.300) (.290) (.264) (.235) (.278) (.273)

β3 2.480 2.597 1.907 1.144 2.061 2.609

(.393) (.433) (.331) (.261) (.328) (.419)

α2 0.703 0.745 0.808

(.274) (.239) (.328)

γ2 0.429 0.494 0.539

(.188) (.210) (.208)

300 β1 -1.077 -0.521 -0.322 -1.001 0.661 -2.749

(.147) (.138) (.132) (.139) (.146) (.230)

β2 1.772 1.329 1.024 0.445 1.408 1.294

(.167) (.159) (.142) (.132) (.164) (.153)

β3 2.437 2.541 1.856 1.151 2.035 2.564

(.212) (.230) (.192) (.159) (.175) (.228)

α2 0.718 0.732 0.801

(.175) (.142) (.177)

γ2 0.407 0.489 0.546

(.106) (.126) (.109)
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the Bayesian information criterion (BIC) is defined by

BIC = −2ℓ∗ + p ln(N),

where p is the number of parameters in the model and N is the number of individuals.

We will illustrate these criterions with a simulation study and with real data from quality

of life. We achieve this by comparing the general structure of the covariance matrix of the

random effects considered in our model with two other structures classically used in the

literature. These different matrices are denoted as follows:

Type 1. The matrix Σ is completely unspecified with a general structure. It corresponds

to the one considered in the model.

Type 2. Exchangeable matrix where all off-diagonal elements are supposed to be equal.

In other words: σ12 = σ13 = σ23, while for j = 1, 2, 3, σjj remains unspecified.

Type 3. Diagonal matrix defined by Σ = diag{σjj}j=1,2,3.

The Wald test used to compare these three models is defined as follows.

Definition 2 let γ = (σjl)1≤j<l≤3 = (γ1, γ2), γ2 ∈ Rm (m = 1, 2) be the parameter of the

model. Consider the test: H0 : γ2 = 0 against H1 : γ2 6= 0.

Under H0, the Wald test statistic Sm is given by

Sm = γ̂1 [Ŵγ̂1/N ]−1 γ̂1

and has an asymptotic (as N → ∞) χ2 distribution with (3−m) degrees of freedom (χ2
3−m),

where Ŵγ̂1 is obtained using formula (16).

5.2. SIMULATION STUDY

A simulation study was conducted to evaluate the performance of the approximate AIC

and BIC criterions and to detect differences between the three covariance structures defined

above. The parameters considered in this simulation for the true model are the same as
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Table 5: Approximate AIC and BIC in the simulation study.

True model

N Type 1 Type 2 Type 3

AIC BIC AIC BIC AIC BIC

100 Type 1 50 49 48 41 39 34

Type 2 48 49 49 56 17 15

Type 3 2 2 3 3 44 51

300 Type 1 50 51 48 39 29 23

Type 2 47 46 51 60 14 11

Type 3 3 3 1 1 57 66

those given in Table 4: two different sizes N = 100 and 300, difficulty parameters related to

the estimates from the real data and Σ2 as variance components. From each of the three true

models, we simulate 100 data sets and we estimate the parameters under the three different

structures. Then we evaluate the AIC and BIC and for each of these criterions we select the

best one (smaller value) amongst the three values. Table 5 displays for each criterion the

number of times (frequency) that each structure is the best. From this table, the results are

similar for the two sizes. The frequencies for each criterion under the structures Type 1 and

Type 2 are very close to each other and a larger one under structure Type 3. For the Type 3

structure as the true model, it is clearly shown that the two criterions with large frequencies

perform better for this structure than other two. In conclusion, the two criterions are better

under the true model even there are very close under the two first structures.

5.3. REAL DATA

We illustrate in this section the application of this methodology in the analysis of the

data from a sickness impact profile (SIP) questionnaire (see Bergner et al. [5]). Initially,

this subscale is composed of 470 depressive patients who answered to 9 items. For the lon-

gitudinal study with three time points, there were only 131 individuals who respond to the
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Table 6: Description of the Emotional Behavior subscale of SIP.

1. I say how bad or useless I am, for example, that I am a burden on others

2. I laugh or cry suddenly

3. I often moan and groan in pain or discomfort

4. I act nervous or restless

5. I keep rubbing or holding areas of my body that hurt or are uncomfortable

6. I talk about the future in a hopeless way

six items given in Table 6. This subscale measures the deterioration of the health-related

quality of life (HR-QoL).

We estimate the various parameters using the GEE approach, then we evaluate the approx-

imate AIC and BIC criterions and the Wald tests to compare the three structures Types

1, 2 and 3. We report in Table 7 the difficulty parameters estimates and their standard

deviation and in Table 8 the variance components estimates and their standard deviation.

Table 9 displays the approximate AIC and BIC values and Wald tests under the three dif-

ferent structures. We note that the standard deviations are obtained by the estimate of the

covariance matrix given by formula (16).

From Table 7, we note that the fixed effects parameters are different between time points.

For each type of model, all the fixed effects parameters grow considerably in time. We

denote by µt = (µ1
t , µ

2
t , µ

3
t ) the mean of the latent trait at time point t (t = 1, 2, 3), where

µi
t is the corresponding mean under the structure i (i = 1, 2, 3). Then using the relation

µt = −
∑J

j=1 βt
j/J between the mean of the latent trait and the estimates of the difficulty

parameters, we deduce the different means which are given by µ1 = (0.83, 0.84, 0.86), µ2 =

(−1.24,−1.21,−1.20) and µ3 = (−2.12,−2.13,−2.13). The decreasing of the mean over time

denotes clearly the deterioration of the quality of life of the patients over the time period.

It should be noted that at each time point, the difference of the estimates of the fixed

effects parameters between the three models is negligible. However, as shown in Table 8,
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the estimates of the variance components differ from one model to another. If the estimates

of the variances (diagonal elements) are rather close, the estimates of the covariances are

very different from one model to another. It should be noted that the estimates of these

parameters for the models Type 1 and 2 are different from zero. This explains the correlation

between the three random effects (latent traits). For the general model (without constraints

on the variance components) the first and the second random effects are positively correlated

and the correlation between the third and the two first random effects are negative.

From Table 9, we note that the values of the AIC and BIC are smaller under the general

model (Type 1) relative to the other models. These criterions confirm the goodness of fit of

the suggested model compared to the two other models commonly used in the literature. We

note also that the largest values of these criterions are realized under the diagonal structure

of the covariance matrix of the random effects (Type 3). This reinforces the conclusion

that correlation exists between the three random effects. Table 9 lists the three Wald tests

considered where Type 2 and Type 3 models are compared with each other and with Type

1 model. These tests with significance level 0.05 are significant and reinforce the same

conclusion given by the two approximate AIC and BIC criterions.

6. DISCUSSION

In this paper, we used the GEE approach for the multidimensional mixed Rasch models.

Feddag et al. [11] have proposed estimating equations to estimate simultaneously the fixed

effects parameters and the variance of the random effects for the logistic mixed model. The

paper of Feddag and Mesbah [12] illustrates how the estimating equations proposed by Fed-

dag et al. [11], can be extended to the longitudinal mixed Rasch model with fixed effects

parameters being considered as invariant in time. The approximations of the marginal like-

lihood and the joint moments given in this work are generalizations of those of Feddag and

Mesbah [12]. The simulation results confirm the theoretical asymptotic properties of the

estimators and show the performance of this approach. The second main result is the pro-

posal of the Akaike and Bayesian information criterions which are based on the approximate

marginal likelihood combined with the estimate of the parameters by the GEE approach.
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Table 7: Parameter estimates for β and their standard deviation in parenthesis to the SIP

data.

Parameter Model

β1 Type 1 -1.091 -0.531 -0.323 -1.012 0.667 -2.717

(.231) (.203) (.203) (.220) (.214) (.332)

Type 2 -1.101 -0.540 -0.332 -1.023 0.660 -2.730

(.233) (.204) (.202) (.221) (.213) (.340)

Type 3 -1.125 -0.560 -0.354 -1.046 0.641 -2.736

(.233) (.205) (.201) (.224) (.211) (.345)

β2 Type 1 1.795 1.353 1.052 0.461 1.435 1.322

(.300) (.260) (.227) (.189) (.265) (.250)

Type 2 1.754 1.321 1.025 0.438 1.402 1.290

(.293) (.252) (.221) (.188) (.257) (.243)

Type 3 1.740 1.313 1.018 0.430 1.395 1.278

(.290) (.249) (.220) (.188) (.255) (.242)

β3 Type 1 2.473 2.545 1.888 1.188 2.053 2.588

(.347) (.336) (.359) (.298) (.378) (.343)

Type 2 2.497 2.569 1.898 1.177 2.048 2.618

(.357) (.347) (.375) (.302) (.396) (.349)

Type 3 2.483 2.556 1.895 1.187 2.059 2.599

(.350) (.339) (.367) (.299) (.385) (.347)
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Table 8: Parameter estimates for (α, γ) and their standard deviation in parenthesis to the

SIP data.

Model Parameters

α1 α2 α3 γ1 γ2 γ3

Type 1 0.871 1.472 1.812 0.265 -0.379 -0.532

(.283) (.183) (.258) (.201) (.174) (.242)

Type 2 0.881 1.457 1.841 -0.186 -0.186 -0.186

(.288) (.184) (.261) (.088) (.088) (.088)

Type 3 0.848 1.447 1.822 * * *

(.284) (.184) (.260) * * *

Table 9: Approximate AIC-BIC and Wald test to the SIP data.

AIC and BIC

p ℓ∗ AIC BIC

Type 1 24 -858.29 1764.59 1833.60

Type 2 22 -936.32 1916.65 1979.91

Type 3 21 -968.42 1978.84 2039.22

Wald tests

test df Sm χ2

,0.05

Type 3 vs Type 2 1 4.461 3.84

Type 2 vs Type 1 2 19.209 5.99

Type 3 vs Type 1 3 8.009 7.81
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By simulation study and analysis of real data from the emotional behavior subscale, these

criterions confirm the goodness of fit of the suggested model, compared to the two other

models classically used in the literature. The Wald test for the variance components used

for the real data, leads to the same conclusion as the two proposed approximate criterions.

Further, we point out that Pan [20] introduced two extensions of such measures based on the

quasilikelihood. It would be interesting to further compare our current results with those

of Pan. Finally, this work could be easily generalized to cope with scales containing several

correlated subscales.
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1 Report 1: To the Associate Editor

On Statistical inference for the multidimensional mixed Rasch model
by M-L. Feddag

Many thanks for your valuable and interesting comments on my submitted
paper. Please note that all changes made in the new version of the manuscript
are highlighted in red colour. The answers to your comments are as follows.

1. Page 5, after formula 3: with mean vector u instead of with
mean vector 0.

It is corrected.

2. We note that this dimension is equal TJ, whilst in the lon-
gitudinal case it is equal to J. Do you mean in the classical
longitudinal case?

Right, I mean the classical longitudinal case, like the one considered
by Feddag and Mesbah (2005).

3. The simulation study (section 4.2) are maid assuming that
the mean of the latent parameter is zero every time, u(t)=0
(=sum of beta(t)), while your model is interesting mainly
when u(t) is also changing with time. Why choosing for u
only an unchanged zero value?

Please note that the item difficulties of the first set considered in the
simulation study, has been changed (Tables 1 and 2). Regarding to the
relation between the mean µt and the mean of the item parameter βt,
deduced from the identifiability constraint (see the last paragraph of
page 5), we can consider that the mean is changing over time in both
two cases.

More details about the identifiability and the relation between the mean
µt and the mean of the item parameter βt are as follows :

At each time point t, let pt
ij = Pr(Y t

ij = 1 | bit, β
t
j). The Rasch model

defined in Section 2 can be expressed as

logit(pt
ij) = bit − βt

j, bit ; N(0, σ2

t ). (1)
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This model as defined by Eq.(1) does not have any identifiability prob-
lem (no constraints on the parameters βt

j), and it is equivalent to the
following one :

logit(pt
ij) = b⋆

it − (µt + βt
j), b⋆

it ; N(µt, σ
2

t ). (2)

To be identifiable, the model defined by Eq.(2) needs the following
constraint

J∑

j=1

(µt + βt
j) = 0.

This constraint leads to the relation between µt and βt
j which is given

by

µt = −
1

J

J∑

j=1

βt
j .

From this relation, we can deduce the mean of the random effects of
the studied model. That what I did for the real data in Section 5.3 (p.
20).
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1 Report 2: To the first referee

On Statistical inference for the multidimensional mixed Rasch model

by M-L. Feddag

Many thanks for your valuable and interesting comments on my submitted
paper. Please note that all changes made in the new version of the manuscript
are highlighted in red colour. The answers to your comments are as follows.

1. General comments

Some modifications in the introduction has been made, where the for-
mulas is removed. Further, three main references on this kind of models
has been added.

2. Specific comments

All the suggested changes were tooken into account in the new version
(highlighted in red colour). The formulae and eqn were all replaced by
Eq. (for one) or Eqs. (two or more).

3. Simulation study

Please note that the item parameters in the first example of the sim-
ulation study has been changed (Tables 1-2). These parameters are
changing over time, so the example is adaptable to the model consid-
ered.

1

Page 31 of 35

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
1 Report 3: To the second referee

On Statistical inference for the multidimensional mixed Rasch model
by M-L. Feddag

Many thanks for your valuable and interesting comments on my submitted
paper. Please note that all changes made in the new version of the manuscript
are highlighted in red colour. My answers to your comments are as follows.

1. First, the author proposes a developement of a longitudinal
model already proposed in the reference [11]. In this new de-
velopement, the author suggests to have different values for
the items parameters at each passation of the questionnaire.
The main problem is this one. Indeed, in Psychometrics, the
parameters which characterize the items are commonly con-
sidered as constant, because there is no reason to consider that
the properties of a given item change over time. This consid-
eration is presented by the author as the main improvement
of this paper compared to the reference [11], but the author
don’t made none justification of its choice !

This is an interesting question. I recognize that the real data considered
are not suitable in Psychometrics point of view, but the mathematical
modelling which considers the variation of the items parameters, per-
mits the deduction of the mean of the latent traits (see details to the
answers for your second comments).

The main idea of this model with item parameters varying over time is
its applications for certain scales with items changing over time. These
scales could be related to learning or reading ability.

More, the author named its model a multidimensional Rasch
model, but it can be considered only as a longitudinal IRT
model. In IRT, a multidimensional model allows consider-
ing several latent traits (or a multivariate latent trait). In
this paper, there is not several latent traits, but a unic latent
trait measured several times, so the model is not ”multidi-
mensional”. The Rasch model is a specific IRT model wich
has several specific properties. One of these properties is the
specific objectivity which implies that the individuals can be
compared independently of the characteristics of the question-
naire (=items parameters). A consequence of this property
is that the items parameters are the same for several samples
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of individuals (and so, constant over time). The main refer-
ences in the framework of the longitudinal IRT model always
considered the items parameters as fixed in the time... In the
present paper, the author don’t justify at all its choice to al-
low the items parameters to change over time, and this point
is the main drawback of these paper.

All the cited references are added in the introduction with some de-
tails on the paper of te Marvelde et al.. Even if this model seems to
be problematic in psychometric point of view, it is more general in
mathematical seeting than the classical one. The variation over time
of the item parameters, provides the estimation of the mean of the la-
tent traits (see the following comments). Further, this model could be
generalized to scales containing several correlated subscales, say Q and
each one with Jq items (q = 1, . . . , Q). In this case, the time T will be
replaced by Q and the term multidimensional as you have suggested, is
more suitable. This last comment is added in the Discussion (section
6).

2. A second point concerns the parametrization of the models.
Generally, in longitudinal model, we estimate the difference
on the latent trait over time. In the mixed IRT models, it as
frequent to estimate the mean of the latent trait. To allow
the model to be identified, a constraint is made on the items
parameters. In the paper, the author put the identifiability
constraints on the mean of the latent trait at each passation
of the questionnaire (µt = 0), and the results are more difficult
to interpret.

I have mentioned in the last paragraph of page 5, the relation between
the mean µt and the mean of the item parameter βt, deduced from the
identifiability constraint. This relation highlighted below, permits the
deduction of the estimate of the mean µt from the estimate of βt.

The details of this relation are as follows :

At each time point t, denote by pt
ij = Pr(Y t

ij = 1 | bit, β
t
j). The Rasch

model defined in Section 2 can be expressed as

logit(pt
ij) = bit − βt

j, bit ; N(0, σ2

t ). (1)

Hence, this model given by Eq.(1) does not have any identifiability
problem (no constraints on the parameters βt

j). It is equivalent to the

2
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following one :

logit(pt
ij) = b⋆

it − (µt + βt
j), b⋆

it ; N(µt, σ
2

t ). (2)

To be identifiable, the above model (Eq.(2)) needs the following con-
straint

J∑

j=1

(µt + βt
j) = 0.

This constraint leads to the relation between µt and βt
j which is given

by

µt = −
1

J

J∑

j=1

βt
j .

From this relation, we can deduce the mean of the random effects of
the studied model. What we made for the real data in Section 5.3 (p.
20).

3. A third point concerns the use of the GEE as method of esti-
mation of the parameters. A short simulation study is realized
and the author shows that the estimations are unbiased. Nev-
ertheless I found this simulation very short : only two cases
are treated - a first with parameters arbitrary chosen by the
authors (and constant over time with a different parametriza-
tion of the model), and another based on estimation obtained
in a real case. The author doesn’t compare its results with the
MML method which is the reference in this field. Advantages
and drawbacks of the GEE are not presented : time ? bias ?
asymptotic properties ? Robustess of the GEE approach when
the Taylor approximation of the Likelihood is bad (for exam-
ple for a large variance of the latent trait) ? This last point
is very problematic in Psychometrics, because large values of
the variance of the latent trait are frequent. These remarks
concern too the analysis of the approximation of the AIC and
BIC with the GEE approach : are the approximations of these
criteria enough precise to made this approach useless in prac-
tice in a large set of situations.

As, I have mentioned before, the item difficulties of the first example in
the simulation study has changed. According to the previous answer,
we can deduce the estimate of the mean of the random effects from the
item parameters estimates.

3
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For the mixed Rasch model with univariate random effects, the GEE
was compared to the MML (by the use of RSP software) and to the
CML (see Feddag et al., [12]). The results show the performance of the
GEE approach comparatively to the two methods for a small variance
components. For the multivariate case, it provides good properties
(consistency and asymptotic properties) and it performs well only for
a small variance components. In terms of running time, this approach
is very fast. The running time for each case is added in the simulation
study (end of the subsection).

Unfortunately, for a large variance components this approach is not
working well and sometimes it confronted to convergence problems.
Due to the Taylor approximation which is bad for large values. Re-
garding the large estimates of the variance of the second and third
latent traits (Table 8), I suspect a small bias in the estimates for the
real data. The proposed approximate AIC and BIC are useful only for
a data sets with a small variation.

4. Last, the example presented by the author is not very informa-
tive: The author uses a specific dimension of the Sickness Im-
pact Profile (SIP) with 3 repeated measures over time. First,
it is curious to use the Emotional Behaviour scale, because
generally, the emotional dimensions are the less stable dimen-
sions of the HR-Qol scales (often these dimensions are multi-
dimensional ones and a a poor fit to unidimensional models).
More, the SIP contains 9 items in the Emotional Behaviour
scale, and the author reports only 6 items (why the 3 others
items have been omited ?). Finally, the author finds differ-
ent values of the items parameters over the 3 passations, and
there is no justification or explanation of what it can be do
of this information !! The treatment opered by the author to
deduce the mean of the latent trait at each passation of the
questionnaire is unjustified and certainly is illusive as soon
as the items parameters are not considered as constant over
time.

In fact, for the univariate case (see Feddag et al., 2003 [11]), this sub-
scale is composed of 470 individuals who answers to 9 items. However,
for the longitudinal case, there were few patients who answered to the
9 items, so not enough information for the analysis. There were only
131 who answered to 6 items during three times.

About the deduction of the mean of the latent trait, please see the

4
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second comments given above.

5. Other minor points

• The three errors in page 1 has been corrected and the email ad-
dress appeared in pages 2 and 5 is removed.

• Simulation Study: More comments on the second set of param-
eters are added (lines 17-19, page 11). The first set of item pa-
rameters has been changed to another one which are varying over
time.

• The missing component in β1 is added (second example of the
simulation study).

• Page 20: More additional information on the SIP subscale is added
in this page with red colour.

5
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