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ABSTRACT
Internet traffic data is characterized by some unusual statistical proper-

ties, in particular, the presence of heavy-tailed variables. A typical model for
heavy tailed distributions is the Pareto distribution although this is not ade-
quate in many cases. In this article we consider a mixture of two-parameter
Pareto distributions as a model for heavy tailed data and use a Bayesian
approach based on the birth-death Markov chain Monte Carlo algorithm to
fit this model. We estimate some measures of interest related to the queueing
system k-Par/M/1 where k-Par denotes a mixture of k Pareto distributions.
Heavy tailed variables are difficult to model in such queueing systems because
of the lack of a simple expression for the Laplace Transform (LT). We use
a procedure based on recent LT approximating results for the Pareto/M/1
system. We illustrate our approach with both simulated and real data.

1. INTRODUCTION
Recently, the Internet has become so important in our society that it

has been necessary to characterize it from a statistical point of view and to
develop models able to explain and predict its behavior. It is of common
interest to improve the performance of Internet and with this end, since the
nineties researchers have been studying the statistical properties of internet
traffic data. In particular, it has been observed that internet traffic such as
packet arrivals or file sizes does not behave like a Poisson process (Paxson
and Floyd 1995) and that internet traffic variables possess some unusual char-
acteristics such as self-similarity (Willinger et al 1997, Park and Willinger
2000), long-range dependence (Beran et al 1995), burstiness and, in particu-
lar, heavy-tails (Crovella et al 1998). Many of these features are related and
Paxson and Floyd (1995) suggested that self-similarity can be captured by
modelling using a Pareto distribution with infinite variance.
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As the number of internet users grows, it becomes all the more necessary
to study models able to predict and analyze the congestion of such traffic.
Queueing theory has been studying such traffic congestion problems since
1900. However, due to the features of internet data described above, classical
queueing models cannot be applied in this context and new, more complex
queueing models are demanded, see e.g. Fischer and Harris (1999), Greiner
et al (1999), Harris et al (2000) and Fisher et al (2001). In particular, we
note that if the interarrival distribution is heavy tailed, then it will often
not possess a LT in closed form and therefore, the usual queueing theory
techniques to calculate equilibrium distributions etc. cannot be applied.

Several approaches trying to overcome the lack of a closed expression for
the LT of heavy tailed distributions can be found in the literature. One tech-
nique consists in approximating the interarrival distribution using a more
tractable (but light tailed) model. For example, Feldmann and Whitt (1998)
considered approximating heavy tailed distributions via mixtures of expo-
nentials and Riska et al (2004) used a phase-type distribution.

A second approach is to try to approximate the LT. Thus, Abate and
Whitt (1999) used continued fractions as an alternative to computation of
LTs, via infinite-series representations. Fisher and Harris (1999) developed
the Transform Approximation method or TAM, where the integral in the LT
is substituted by a finite sum. Harris et al (2000) introduced an alternative
way for directly finding the predictive equilibrium distributions, the Level
Crossing method. Here we shall apply these two last methods and provide a
comparison between them.

Recently, Rodŕıguez-Dagnino (2004, 2005) found an expression for the
LT of Pareto probability distribution, in terms of the Whittaker function. In
Rodŕıguez-Dagnino (2004) this approach is compared with the TAM method,
obtaining very similar results.

The objective of this article is firstly to model internet arrival traffic using
a mixture of Pareto distributions (denoted k−Par, where k is the number of
components in the mixture) as a more flexible alternative to the simple Pareto
distribution which should be able to better fit typical internet data samples.
Secondly, we will introduce a Bayesian algorithm based on the birth death
MCMC approach of Stephens (2000) in order to fit this model to a given data
set. Then we shall study the k-Par/M/1 queueing system, by combining the
Transform Approximation method and Level Crossing method techniques
with the MCMC output to enable us to obtain numerical predictions of the
equilibrium distributions of the system.
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The paper is organized as follows. In Section 2, we introduce the Pareto
mixture distribution model and then we describe how to carry out Bayesian
inference for this model, illustrating the procedure with a simulated data
set. In Section 3, we examine how to estimate the equilibrium queue size
and waiting time distributions for the k-Par/M/1 system conditional on the
system parameters and, predictively given the MCMC output comparing the
use of TAM and Level Crossing algorithms with the simulated interarrival
data of Section 3. In Section 4, we illustrate our approach with some real
data sets and finally, conclusions and possible extensions to this work are
considered in Section 5.

2. BAYESIAN INFERENCE FOR THE PARETO MIXTURE DISTRIBU-
TION.

A variable X is said to have a Pareto distribution with shape parameter
β > 0 and scale parameter b > 0 if its density function is:

fP (x|β, b) =
β bβ

(x + b)β+1
, for x > 0.

This distribution is power tailed and only possesses moments of order less
than β. In particular, the Pareto distribution has finite mean

E(X|β, b) =
b

β − 1

if and only if β > 1.
A more general model which shall be analyzed in this article is a mixture

of k Pareto densities:

f(x|w, β,b) =
k∑

r=1

wrfP (x|βr, br), (1)

where wr > 0 for r = 1, . . . , k and
∑k

r=1 wr = 1, which can also be expressed
in terms of an indicator variable:

f(x|w, β,b) =
k∑

r=1

P (Z = r|w)fP (x|βr, br), (2)

where P (Z = r|w) = wr, for r = 1, . . . , k.

3
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In the following subsection, we shall define a Bayesian procedure to fit
this model to a sample of interarrival data.

2.1. BAYESIAN INFERENCE WHEN THE NUMBER OF COMPONENTS
IS KNOWN

Suppose now that we have a sample x1, . . . , xn from the distribution in
(1). Initially, we shall assume that k is known and we fix the following prior
parameter distributions:

w ∼ Dirichlet(a, a, . . . , a), for constant a ≥ 0, (3)

βi ∝ Gamma(c, d), for i = 1, . . . , k, where c > 0, d > 0, (4)

bi ∝ Pareto(γ, δ), for i = 1, . . . , k, where γ > 0, δ > 0. (5)

Note that the prior distributions for (βi, bi) are suggested in Arnold and
Press (1989) as a natural prior structure for the Pareto model. Given these
prior distributions and the sample data, we are now able to calculate the
conditional posterior distributions of the model parameters (Z,w,β,b) where
Z = (Z1 . . . , Zn) are the indicator variables associated with x1, . . . , xn, as
defined in (2). Thus, we have

P (Zi = r|xi, β,b,w) =
wrfP (xi|βr, br)∑k
j=1 wjfP (xi|βj, bj)

, for i = 1, . . . , n,

w|Z ∼ Dirichlet(a + n1, . . . , a + nk), where nr = #{Zi = r},

βr|x,Z, br ∼ Gamma

(
c + nr, d +

n∑
i=1:Zi=r

log(xi + br)− log(bnr
r )

)

f(br|x,Z, βr) ∝ bnr
r (br + δ)−1−γ

n∏
i=1:Zi=r

(xi + br)
−1−βr .

for r = 1, . . . , k.
Thus, it is straightforward to define a Gibbs sampler algorithm to sample

the joint posterior distribution, where the only complicated step is sampling
the distribution of br. In this case, we simply use a Metropolis-Hastings step
with a gamma proposal distribution.

In the following subsection, we extend the algorithm to the case where
the mixture size, k, is unknown.

4
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2.2. EXTENSION TO RANDOM k
Assume now that the mixture size, k, is unknown. Then firstly we need

to define a prior distribution p(k) for k, for example a truncated Poisson
distribution,

p(k) ∝ λk

k!
k = 1, . . . , kmax.

Now, the parameter distributions introduced above can be treated as
densities conditional on k. In order to sample the posterior distribution of
k, there are two main approaches in the context of mixture modeling; the
reversible jump sampler (Green 1995, Richardson and Green 1997) and the
birth death MCMC (BDMCMC) sampler, Stephens (2000). Here we apply
the BDMCMC which is somehow simpler to program and we have found to
give better results in practice. We briefly outline this algorithm below.

This BDMCMC algorithm is based on a continuous time birth death
process, where components are born at a fixed rate, %, or die at a varying
rate, in exponentially distributed time intervals with rate the sum of the
birth and death rates. The birth death process is simulated during a fixed
time t0, for example, t0 = 1 and the current state of the process at this time
then provides the new mixture size and model parameter values.

In more detail, suppose that there are currently k components in the mix-
ture with associated parameters θ = (w,b, β). In order to generate a birth,
parameters βk+1 and bk+1 are generated from the prior distributions. A new
weight wk+1 is further generated from a beta distribution with parameters 1
and k and the weights of the remaining terms are normalized (by multiplying
by (1− wk+1)) so that they sum to 1.

If a death of a component occurs, then this component is removed from
the mixture and the weights of the remaining components are normalised.
Given the current mixture terms k,w, β,b, the overall death rate is ν =∑k

r=1 νr where νr, the death rate for component r is given by

νr = %
p(k − 1)

kp(k)

L(data|k − 1, θ−r)

L(data|k, θ)
, for r = 1, . . . , k, (6)

where L(data|k, θ) represents the likelihood function before the removal of
component r and L(data|k − 1, θ−r) is the likelihood when component r is
removed.

Following arguments given in Stephens (2000) it is possible to demon-
strate that this algorithm provides samples from the posterior parameter
distribution of k.

5
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Below, we illustrate that the Bayesian approach can be used to well ap-
proximate Pareto mixture distributions.

2.3. ILLUSTRATION WITH A SIMULATED DATA SET
In order to test the Bayesian algorithm, we simulated 1000 data from the

density

f(x|w, β,b) = 0.55fP (x|β1 = 0.5, b1 = 1) + 0.45fP (x|β2 = 10, b2 = 4). (7)

We assumed a truncated Poisson prior distribution with mean 2 for k and
relatively uninformative prior distributions for the remaining parameters set-
ting a = 1, (c, d) = (0.05, 0.05), γ > 1, (for example γ = 10.01), and δ = 1
in (3), (4) and (5) respectively, and ran the BDMCMC algorithm for 20000
iterations with initial values set to k(0) = 1 and (β(0), b(0)) = (β̂, b̂), the
maximum likelihood estimates for these values.

Figure 1 illustrates the mixing properties of the algorithm in terms of the
evolution of the mixture size k.

FIGURE 1 ABOUT HERE
Graph of mixture components k versus iterations.

We can see that the chain mixes quite well and in fact the acceptance
rate of the BDMCMC algorithm for k was around 15%.

Figure 2 shows the posterior distribution of k and it can be seen that
the algorithm correctly predicts that the data come from a two component
mixture.

FIGURE 2 ABOUT HERE
Posterior distribution of k.

Note also that, conditional on k = 2, the mean posterior parameter es-
timates (after imposing the order condition w1 > w2 to make the model
identifiable) were close to the true data generating values. Thus, for exam-
ple, we found E[w|k = 2, data] ≈ (0.57, 0.43).

Figure 3 illustrates the empirical, predictive (dotted lines) and theoretical
(pointed dotted lines) cumulative distribution function estimated for the first
900 data (top left), for the 900th-980th data (top right) and for the 980th-
990th data (bottom) respectively.

6
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FIGURES 3.1, 3.2 AND 3.3 ABOUT HERE
Empirical (solid line), predictive (pointed dotted line) and theoretical
(dotted line) cumulative distribution functions for the first 900 data

(top left), the 900th-980th data (top right) and the 980th-990th data (bottom).

It is easy to see that the fitted results are close to the empirical and
theoretical cumulative distribution functions.

Finally, in order to check prior sensitivity, we ran the algorithm with
various different prior distributions. In particular, we found that there was
little sensitivity (in the posterior parameter estimation) to changes in the
prior distributions for w, b and β although, as would be expected, there
was slightly more sensitivity to changes in the prior distribution for k. In-
creasing the prior variance leads to more variation in the posterior parameter
estimates. However, the predictive distribution functions in each case were
indistinguishable.

Similar results were also obtained with other simulated data sets, illustrat-
ing that the BDMCMC algorithm well approximates Pareto mixture data.

3. THE k-Par/M/1 QUEUEING SYSTEM
In this section, we shall consider the previously outlined Pareto mixture

distribution as a model for the arrival process in a single-server queueing
system with independent, exponential service times. This queueing system,
which we denote as k-Par/M/1 is an example of a G/M/1 queueing system.
The main properties of such systems are outlined below.

Firstly, if A and S denote the interarrival and service time distributions
and E(A) = 1/λ and E(S) = 1/µ are the expected interarrival and service
times, then the traffic intensity is defined by ρ = λ/µ. When ρ < 1 the
system is stable and then the steady-state probability for the number of
customers Q in system just before an arrival is, for all n ∈ N:

P (Q = n) = (1− r0)r
n
0 ,

where r0 ∈ (0, 1) is the unique real root of the equation

r0 = f ∗ (µ(1− r0)) , (8)

and f ∗(·) is the Laplace-Stieltjes transform of the interarrival-time density
function f(·) defined as

f ∗(s) =

∫ ∞

0

e−sxf(x)dx, for Re(s) > 0.

7
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Moreover, let Wq represent the stationary time spent queueing for service
and W the time spent in the system. Then

FWq(x) = P (Wq ≤ x) = 1− r0e
−µ(1−r0)x,

and
FW (x) = P (W ≤ x) = 1− e−µ(1−r0)x.

For the k-Par/M/1 system with parameters θ = (w, β,b) as given in (1),
then the mean interarrival time does not exist if any element of β is less than
or equal to one. In this case, the queueing system is automatically stable
whatever the service rate µ. Otherwise, the traffic intensity is given by

ρ =
1

µ
k∑

r=1

wr
br

βr−1

. (9)

However, the evaluation of the LT of the Pareto distribution is difficult,
requiring numerical techniques. Thus, the standard techniques for finding
the root of (8) cannot be easily applied and an alternative approach to ob-
taining the steady state distributions is needed. One method is suggested
in Rodŕıguez-Dagnino (2004, 2005) where the LT is expressed in terms of
the Whittaker function for which efficient estimation routines are available.
Here we consider two alternative algorithms: the Transform Approximation
method and the Level Crossing method.

3.1. THE TRANSFORM APPROXIMATION METHOD
The Transform Approximation Method was proposed in Fischer and Har-

ris (1999) for the case of the single parameter Pareto distribution and is
based on approximating the LT of the interarrival time distribution. Here
we describe the approach of Fisher and Harris in the more general case of
the mixture of two-parameter Pareto distributions.

The basic idea of the TAM approach is to select values, say x1, . . . , xM

from the support of the arrival distribution when we can define an M−point
approximation of the interarrival distribution LT as

f ∗M(s) =
1

M

M∑
i=1

e−sxi

8
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where the values xi (called the TAM samples), are chosen to cover the sup-
port of the original interarrival random variable. In particular, we approxi-
mate the LT of a two-parameter Pareto (β, b) distribution, by selecting values
xi given by

xi = b

[(
1− i

M + 1

)−1/β

− 1

]
,

when it can be proved that, as M increases, the TAM approximation con-
verges to the true LT.

Now, for the Pareto mixture model with density given by (1), we can
approximate the LT as

k∑
r=1

wrf
∗
M(s|βr, br)

where f ∗M(s|βr, br) is the TAM approximation to f ∗(s|β, b), the LT of the
two-parameter Pareto distribution with parameters (β, b).

Now, assuming that the queueing system is stable, the equilibrium dis-
tributions can be found by approximating the LT in (8) to give

M∑
i=1

k∑
g=1

wge
−µ(1−r0)bg

»
(1− i

M+1)
−1/βg−1

–
= r0M. (10)

which can be easily solved numerically.
Shortle et al (2004) propose a generalization of the TAM method called

geometric TAM or GTAM. Their idea is to pick quantiles further out in the
tail of the distribution. This could be important for heavy-tailed distribu-
tions, since in that way, the tail behavior could be better captured. The
M -point approximation of the interarrival distribution Laplace Transform is
given in this case by

f ∗M(s) =
M∑
i=1

pie
−sxi

where the TAM samples are the quantiles corresponding to some geometric
probabilites F (xi) = yi = 1−qi for some value of q ∈ (0, 1) and i = 1, . . . ,M .
For the Pareto distribution defined in Section 2,

xi = b
(
q−i/β − 1

)
.

9
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The values of the weights p(i) are defined as

p1 =
y1 + y2

2

pi =
yi+1 + yi−1

2
for i = 2, . . . ,M − 1

pM = 1− yM−1 + yM

2

(10) becomes for this method,

M∑
i=1

k∑
g=1

wgpie
−µ(1−r0)bg(q−i/βr−1) = r0. (11)

We also tried this extension in our simulations; see Subsection 3.4.

3.2. LEVEL CROSSING METHOD
Harris et al (2000) introduce an alternative algorithm for directly finding

the root r0 of (8), the Level Crossing Method. They demonstrate that for
any stable G/M/1 queueing system that if F (x) is the cumulative distribu-
tion function of the interrarival time, then the associated survival function,
F̄ (x) = 1− F (x) verifies: ∫ ∞

0

F̄ (u)e−γdu =
1

µ
, (12)

where γ = µ(1− r0).
In the case where the interarrival distribution is the Pareto mixture, (12)

becomes: ∫ ∞

0

k∑
r=1

wr
bβr
r

(u + br)βr
e−γdu =

1

µ
. (13)

This equation can be solved numerically to estimate γ and therefore r0

Thus, conditional on the system parameters and assuming that the queu-
ing system is stable, either the TAM or the Level Crossing algorithm can be
used to estimate r0 and facilitate the estimation of the predictive equilibrium
distributions of queue size etc.

It is not clear which of the two root estimation methods is more effi-
cient. We consider this aspect in Section 3.4 where we analyze the real and
simulated queueing data.
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3.3. INFERENCE FOR THE k-Par/M/1 QUEUEING SYSTEM
Given a sample of interarrival data, we have seen that the BDMCMC

algorithm can be used to produce a sample of values
{

k(i),w(i), β(i),b(i)
}

for

i = 1, . . . , N from the posterior distribution of the interarrival parameters.
Supposing that the service rate µ is known, then it is straightforward to

estimate the probability that the system is stable,

P (ρ < 1|data) ' 1

N

N∑
i=1

I
(
ρ(i) < 1

)
where ρ(i) is the value of ρ calculated from (9) using the i’th set of interarrival
parameters and µ and I(·) is an indicator function. Given that this probabil-

ity is high, then for each set
{

µ, k(i),w(i), β(i),b(i)
}

of generated parameters

such that ρ(i) < 1, the root r
(i)
0 can be generated and the posterior predictive

distributions of queue size etc. can be estimated by Rao Blackwellization.
One point to note however is that, as commented in Wiper (1997), it can

be shown that the predictive means of the equilibrium queue size or waiting
time distributions do not exist. This is a typical feature for Bayesian inference
in G/M/· or M/G/· queueing systems. Thus, if posterior summaries of these
distributions are required, it is preferable to use the median and quantiles.

Note that in the case that µ is unknown, we can consider the experiment
of observing a number of service times as, for example, in Armero and Bayarri
(1994). Then, a sample of size N could also be generated from the posterior
distribution of µ and, combined with the interarrival parameter sample, can
be used to estimate the traffic intensity and predictive distributions as above.

3.4. COMPARISON OF THE TAM and Level Crossing METHODS WITH
SIMULATED DATA

Here we consider the simulated arrival data analyzed in Section 2.3 and
we shall assume a single exponential server with known service time E[S] = 1.
In this case, the queueing system is stable, as the expected interarrival time
is infinite. Given the true interarrival time distribution, then the value of
r0 can be computed to be equal to 0.5873 using either the TAM or Level
Crossing method. We also tried the GTAM method. The problem we found
with this generalized TAM is the fact that the method performs well only
for some “appropriate” values of q. If q is very close to 1 (0.999) the tail is
not captured, but if it is close to the 0, the body of the distribution is not
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taken into account. In Shortle et al (2004), the authors propose choosing q
so that the TAM mean matches the mean of the original distribution. Our
experiments showed that in that way, the obtained value for r0 (0.5872) is
similar to that found with the original TAM but given the extra effort needed
to find the optimal q, the computational time increases.

Based on the sampled interarrival data, the posterior probability that
the queueing system was stable was estimated to be 0.9999. Thus, in Table
1 we are able to compare the true distribution of the equilibrium queue
size and the posterior predictive distributions calculated using the sampled
interarrival data via the TAM and Level Crossing methods respectively.

Table 1: True and predicted equilibrium queue size distributions

True TAM Level Crossing
n P (Q = n) P (Q = n|data) P (Q = n|data)
0 0.4127 0.3940 0.3929
1 0.2424 0.2385 0.2382
2 0.1423 0.1414 0.1416
3 0.0836 0.0876 0.0878
4 0.0409 0.0531 0.0534
5 0.0288 0.0323 0.0325
6 0.0169 0.0196 0.0198
7 0.0099 0.0119 0.0120
8 0.0058 0.0073 0.0073
9 0.0034 0.0044 0.0045

The results are almost identical but from the computational point of view
the TAM method is up to four times faster than the Level Crossing algo-
rithm. Although this is unimportant when the root has only to be evaluated
once, within the MCMC algorithm where many evaluations are made this
time difference can be considerable. Thus, we would suggest that the TAM
method be preferred in this context.

4. RESULTS FOR REAL DATA SETS
In this section, we examine two real data sets taken from the xtremes

site:

http://www.xtremes.de/xtremes/xtremes/download/download.htm.
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The first of these (t2a) consists of 50000 interarrival times in seconds of a
trace of 1 million ethernet packets, and the second one (t4a) is composed of
226386 world wide web transfer packet sizes in bytes.

Figure 4 shows the empirical and fitted distribution functions, based on
20000 MCMC iterations and given the same prior distributions as outlined
in Section 2.3, for both data sets fitted on two scales in each case so that the
tail behaviour can be observed.

FIGURES 4.1, 4.2, 4.3 AND 4.4 ABOUT HERE
Empirical (solid line) and Predictive (dotted line) distributions for

the t2a data (top) and the t4a data (bottom).

We can see that the t4a data in particular are very long tailed. The t4a

data appear very well fitted although the fit of the t2a data is not quite so
good, although the tail behaviour is well estimated.

Table 2 gives the posterior distributions of the number of mixture com-
ponents for both data sets. There is a high posterior probability of 2 mixture
components for the t2a data set and more uncertainty for the t4a data al-
though the posterior mode is also 2 components.

Table 2: Posterior probabilities of numbers of mixture components
Data set

t2a t4a

k P (k|data) P (k|data)
1 0.03 0.375
2 0.763 0.4096
3 0.198 0.2113
4 0.009 0.0042

Now we shall consider the queueing aspects. Firstly we consider the t2a

data. Figure 5 gives the posterior probability that the system is stable for a
various different values of the service rate µ. From the table, it is clear that
there is a high probability that the system is stable for values of µ greater
than 385.

FIGURE 5 ABOUT HERE
Posterior probabilities of stability for various values of µ.

In the following figures we illustrate the predictive queueing and system
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time distributions and the distribution of the number of clients in the system
in equilibrium for values of µ greater than 385.

FIGURES 6.1 AND 6.2 ABOUT HERE
Predictive system waiting time and queue waiting time distributions

for t2a data set.

FIGURE 7 ABOUT HERE
Predictive system size distribution just before an arrival for t2a data set.

We can see that as the service rate increases, then the median waiting
and system times and the numbers of clients in the system decrease, as would
be expected.

We now consider the t4a data set. There exists a relationship between
the file size and the transfer time: if a file has a large size, its transmission
(or download) time is longer, so these data can be also thought as interarrival
times in a k-Par/M/1 queueing system for some time measure depending on
the transfer system features.

As the expected interarrival time (predictive size mean) is infinite, this
queue is stable for all values of µ and no congestion traffic problems happen.
Figure 8 shows the predictive queueing and system time distributions when
µ = 0.01.

FIGURES 8.1 AND 8.2 ABOUT HERE
Predictive system waiting time and queue waiting time

distributions for t4a data set if µ = 0.01.

Finally, Table 3 gives the distribution of the equilibrium queue size when
µ = 0.01.

Table 3: Predictive system size distribution just before an arrival for t4a

data set when µ = 0.01.
n 0 1 2 3 4

P (Q = n) 0.8263 0.1419 0.0255 0.0049 0.001
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5. CONCLUSIONS AND EXTENSIONS
In this paper, we have illustrated how to carry out Bayesian inference

for a mixture of Pareto distributions and then combined this approach with
techniques from the queueing literature in order to estimate predictive equi-
librium distributions for the k-Par/M/1 system.

An advantage of our mixture model is the flexibility it provides in fitting
data sets where the single Pareto model is not adequate. From the queueing
point of view, we may also conclude that the TAM algorithm should be pre-
ferred to the Level Crossing approach for root estimation in this context as,
although both methods produce similar results, the computational expense
in implementation of the TAM algorithm is somewhat lower.

A number of extensions are possible. Firstly, following Harris et al (2000),
we could extend our results to the case of a multiple number of servers, that
is, to study the behaviour of the queueing system k-Par/M/c. A different
interesting extension would be to compare both TAM and Level Crossing
methods with the approach proposed in Rodŕıguez-Dagnino (2005).

Another important objective in the queueing context is optimal control
of the system, that is, when to open and close the system or optimizing the
number of servers. Methods of Bayesian decision theory can be combined
with Bayesian inference to do this. See for example, Auśın et al (2004).

In this article, we have considered just exponentially distributed service
times. One possible extension is to consider the case of more general ser-
vice time distributions, in particular the so called phase type service type
distributions.

Finally, we would like to develop Bayesian inference methods and queue-
ing results for another heavy-tailed distribution variables or internet-related
variables, such us the double Pareto or double Pareto lognormal distribu-
tion, recently suggested to be very suitable in the Internet context. See for
example, Mitzenmacher (2003) or Reed and Jorgensen (2004).
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Figure 1: Graph of mixture components k versus iterations.
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Figure 2: Posterior distribution of k.
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Figure 3: Empirical (solid line), predictive (pointed dotted line) and theoret-
ical (dotted line) cumulative distribution functions for the first 900 data (top
left), the 900th-980th data (top right) and the 980th-990th data (bottom).
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Figure 4: Empirical (solid line) and Predictive (dotted line) distributions for
the t2a data (top) and the t4a data (bottom).
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Figure 5: Posterior probabilities of stability for various values of µ.
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Figure 6: Predictive system waiting time and queue waiting time distribu-
tions for t2a data set.
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Figure 7: Predictive system size distribution just before an arrival for t2a

data set.
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Figure 8: Predictive system waiting time and queue waiting time distribu-
tions for t4a data set if µ = 0.01.
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