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BAYESIAN VARIABLE SELECTION

IN MARKOV MIXTURE MODELS

ROBERTA PAROLI LUIGI SPEZIA

Dipartimento di Scienze Statistiche, Dipartimento di Statistica,

Università Cattolica S.C., Milano Università Ca’ Foscari, Venezia

May 2007

Abstract - Bayesian methods for variable selection and model choice have become increasingly

popular in recent years, due to advances in Markov chain Monte Carlo (MCMC) computational

algorithms. Several methods have been proposed in literature in the case of linear and generalized

linear models. In this paper we adapt some of the most popular algorithms to a class of non-linear

and non-Gaussian time series models, i.e. the Markov mixture models (MMM). We also propose

the “Metropolization” of the algorithm of Kuo and Mallick (1998), in order to tackle variable

selection efficiently, both when the complexity of the model is high, as in MMM, and when the

exogenous variables are strongly correlated. Numerical comparisons among the competing MCMC

algorithms are also presented via simulation examples.

Keywords - Gibbs variable selection; Kuo-Mallick method; Metropolized-Kuo-Mallick method;

Stochastic search variable selection.

1 Introduction

In recent years, several methods have been proposed in Bayesian literature for selecting exogenous

variables in regression models: they include Stochastic Search Variable Selection (SSVS) by George

and McCullogh (1993), the unconditional priors Gibbs sampler (KM) by Kuo and Mallick (1998)
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and Gibbs Variable Selection (GVS) by Dellaportas et al. (2000). These methods have been also

extended to generalized linear models (George et al. 1996), log-linear models (Ntzoufras et al.,

2000) and multivariate regression models (Brown et al., 1998). Other authors provide alternative

solutions to the variable selection problem: see, among others, Carlin and Chib (1995), Denison

et al. (1998), Kohn et al. (2001), Nott and Green (2004), Nott and Kohn (2005), Schneider and

Corcoran (2004) for some different approaches and recent developements. We focus our attention

on the first three methods because they are the most popular and the most referred in recent

literature.

The basic idea of these approaches is that the promising predictors are identified by their

highest posterior probability, that is the “best” subset of predictors is that with the most frequent

appearance in the sequence of the Markov chain Monte Carlo (MCMC) algorithm developed to

evaluate the posterior probability. To give a simple idea, we consider the multiple linear regression

model defined by the usual equation

Y =

qX
j=1

βjXj +E,

where Y is a dependent variable; X1,X2, . . . ,Xq are the potential fixed exogenous variables or

covariates, which are candidates for inclusion in the model, and β1,. . .,βq are the regression coef-

ficients. As usual the r.v. E is Normal with zero mean and variance σ2 (N (0, σ2)). There are 2q

possible submodels to select, i.e. there are 2q possible subsets of predictors. The selection of a

subset is also equivalent to setting to 0 those regression coefficients that are not included in the

final model, so a binary indicator vector γ of dimension q is added in the specification of the model

and it represents which of the q variables are included: any γj (j = 1, . . . , q) assumes the value 1

if the variable Xj is included, 0 if it is not included.

Let f(γ) be the prior distribution of γ; the “best” subset of regressors is identified by analysing

the marginal posterior distribution of γ, f(γ|yn) ∝ f(yn|γ)f(γ), which contains the information

relevant to variable selection supported by the data yn = (y1, y2, . . ., yn)0 and by the prior.

Intractable integrals are involved in the computation of this posterior distribution and in the

evaluation of its mode, so an MCMC sampling procedure can be developed.

The differences among the above mentioned methods of variable selection depend on how the

2
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vector γ is involved in the model. In particular, in the SSVS approach the indicator vector γ is

involved through the prior of the regression coefficients; in the Kuo-Mallick approach γ is part of

the regression equation, while the GVS approach is a “hybrid” of SSVS and KM.

Our aim is twofold: first, we extend these three approaches to Markov switching autoregres-

sive models with exogeneous variables (MSARX) and non-homogeneous hidden Markov models

(NHHMM), which belong to the class of Markov mixture models (MMM), as defined by Chib

(1996); second, we propose the “Metropolization” of the algorithm of Kuo and Mallick (1998),

giving rise to Metropolized-Kuo-MallicK (MKMK) method, which increases the performance of

the algorithm both when the complexity of the model is high, as in MMM, and when exogenous

variables are strongly correlated. The correct selection of exogenous variables is due to the ac-

ceptance in block of both the coefficients and the indicators of the exogenous variables, because

blocking increases the precision of the estimators and improves the chain mixing.

The paper is organized as follows. The four techniques for variable selection, i.e. KM, SSVS,

GVS and MKMK, are applied to MSARX and to NHHMM in Section 2, while, in Section 3,

several simulation examples are performed to illustrate the methods and to compare numerically

the competing algorithms.

2 Variable selection in Markov mixture models

In this section we apply KM, SSVS, GVS and MKMK to the Markov mixtures models. The general

MMM is analysed by Chib (1996), who describes it in terms of finite mixture distributions in which

the component populations are selected according to contemporary states of an unobserved Markov

process: at each time t, a realization of the Markov chain, also called regime, occurs hiddenly. The

conditional density of the current observation of the time series, given the previous ones and

the previous regime, is a finite mixture of densities, whose mixing distribution is the row of the

transition matrix corresponding to the previous regime.

Two special MMM are considered here: Markov switching autoregressive models and hidden

Markov models. Suppose we have a couple of discrete-time stochastic processes, one observed

and one unobserved, or hidden: the realizations of the latter can be observed only through the

3
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realizations of the former one. Suppose also the dynamics of the unobserved process affects the

dynamics of the observed one. We model the hidden process as a finite-state Markov chain and

assume that the observed process, given the Markov chain, is a sequence of conditional independent

random variables, whose conditional distribution depends on the Markov chain only through its

contemporary state. The conditional distributions belong to a single parametric family, usually

Poisson or Normal. This class of models is called hidden Markov models (HMM). A hidden

Markov chain may be assumed because it is either suggested by the physical nature of the observed

phenomenon, such as in speech recognition (Elliott, Aggoun, Moore (1995)) and in biology for the

analysis of the architecture of proteins and nucleic acids (Koski (2001)), or just for convenience

in formulating the model, such as in overdispersed Poisson processes (MacDonald and Zucchini

(1997)).

By contrast, in Markov switching autoregressive (MSAR) models the conditional independence

condition is replaced by the autoregressive dependence condition and the conditional distributions

are always Normals. We have that different autoregressions, each one depending on a latent regime,

alternate according to the regime switching, which is driven by the Markov chain. These models

have been introduced in econometric literature to study economic and financial time series with

asymmetric cycles and changes in regime generated by a stochastic process (Hamilton (1993)).

Krolzig (1997), Kim and Nelson (1999) and Franses and van Dijk (2000) provide generalizations

and applications of this class of models to economic and financial time series, in which the hidden

states represent different macroeconomic regimes.

2.1 Markov Switching Autoregressive models with exogenous variables

A Markov switching autoregressive model of order m and p, i.e. MSAR(m, p), is defined as a

bivariate discrete-time stochastic process {St;Yt}, where {St} is a latent, or hidden, finite-state

Markov chain and {Yt}, given {St}, satisfies the order-p dependence and the contemporary depen-

dence conditions: we have a sequence of observed random variables {Yt} depending on the p past

observations, whose conditional distributions depend on {St} only through the contemporary state

of the Markov chain.

4
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Let {St} be a discrete-time, first-order, homogeneous, ergodic Markov chain on a finite state-

space with cardinality m. The transition matrix of the process is P = [pi,j ], where pi,j = P (St =

j | St−1 = i), for any i, j ∈ {1, . . . ,m} and any t = 2, . . . , n. The sequence of the states of the

Markov chain is denoted with sn = (s1, . . . , sn)
0 and, for any t = 1, . . . , n, any st has values in

{1, . . . ,m} .

Hence, given the order-p dependence and the contemporary dependence conditions, the equation

describing MSAR(m, p) is

Yt(i) = µi +

pX
τ=1

ϕτ(i)yt−τ +Et(i),

where Yt(i) denotes the conditional variable Yt when St = i, for any 1 ≤ t ≤ n and for any

i ∈ {1, . . . ,m}, and Et(i) denotes the Gaussian noise Et when St = i, with zero mean and variance

σ2i
¡
Et(i) ∼ N

¡
0;σ2i

¢¢
, for any i ∈ {1, . . . ,m}, with the discrete-time processes {Et}, given {St},

satisfying the conditional independence and the contemporary dependence conditions. Any signal

µi, any variance σ
2
i and any autoregressive coefficient ϕτ(i), for any τ = 1, . . . , p, depend on the

current state i of the Markov chain, for any i ∈ {1, . . . ,m}.

If we join to the MSAR(m, p) model q contemporary exogenous variables, we have the MSARX(m,p)

model, defined by the equation

Yt(i) = µi +

pX
τ=1

ϕτ(i)yt−τ +
qX

j=1

βj(i)Xtj +Et(i), (1)

where Xt1,Xt2, . . . ,Xtq are the potential fixed exogenous variables which are candidates for in-

clusion in the final model and βi =
³
β1(i), . . . , βq(i)

´0
are their q coefficients when the hidden

chain visits state i; hence the observed process, at any time t, can be affected by different ex-

ogenous variables, according to the hidden state we assume in t. The matrix n × q of the

observations of the exogenous variables will be denoted with X = [xtj], for t = 1, . . . , n and

j = 1, . . . , q. To automatically satisfy the constraint of stationarity of any AR subprocess on any

vectors ϕi =
³
ϕ1(i), . . . , ϕp(i)

´0
, we reparametrize the model in terms of the log trasformation of

the partial autocorrelations ri =
¡
r1(i), . . . , rp(i)

¢0
, according to Mariott et al. (1996).

Identifiability of the model is ensured by imposing increasing signals µi, but the procedures

we introduce can be easily adapted to models with any other type of constraint, provided the

chosen constraint respects the geometry of the posterior distribution. An alternative option to

5
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fixed constraints is postprocessing the MCMC outputs (Celeux et al. (2000)).

The unknown parameters of the model are (µ, σ2, R, β, P ) where µ is the vector of the m

signals µi; σ
2 is the vector of the m variances σ2i ; R is the matrix of the m vectors Ri of the

log trasformations of the partial autocorrelations, i.e. R = (R01, . . . , R0i, . . . , R
0
m)

0 with Ri =¡
R1(i), . . . , Rτ(i), . . . , Rp(i)

¢0
and Rτ(i) = ln

³
1+rτ(i)
1−rτ(i)

´
; β is the matrix of the m vectors βi, i.e.

β =
¡
β01, . . . , β

0
i, . . . , β

0
m

¢0
; P is the matrix of the m2 transition probabilities pi,j ; also the sequence

of the hidden states sn is unknown and it will be estimated. The priors are so specified:

1) any parameter µi is Normal with known µM and σ2M (µ ∼ N (µM , σ2M ), for any i = 1, . . . ,m);

2) each entry of matrix R is an independent Normal with known µR and σ2R (Rτ(i) ∼ N
¡
µR;σ

2
R

¢
,

for any i = 1, . . . ,m and for any τ = 1, . . . , p);

3) each row of matrix β is an independent multivariate Normal of dimension q with known vector

µB and matrix ΣB (βi ∼ Nq (µB;ΣB), for any i = 1, . . . ,m);

4) any variance σ2i is an independent Inverse Gamma with known ν and η (σ2i ∼ IG(ν, η), for any

i = 1, . . . ,m);

5) any row of P , Pi• = (pi,1, pi,2, . . . , pi,m), is an independent Dirichlet with parameter ω =

(ω1, . . . , ωm) (Pi• ∼ D (ω), for any i = 1, . . . ,m).

The following subsections will be devoted to develope the MCMC variables selection procedures

of KM, SSVS, GVS and MKMK for this type of models. We assume that the observed process

can be influenced by different exogenous variables, depending on the state visited by the hidden

Markov chain; this means that we have a multiple selection problem, consisting in the estimation

of m indicator vectors γi =
³
γ1(i), . . . , γj(i), . . . , γq(i)

´0
, with i = 1, . . . ,m, which are entries of the

indicator matrix γ = (γ01, . . . , γ0i, . . . , γ
0
m)

0.

2.1.1 KM method

In the KM approach, we assume that binary indicators are associated to the parameters of any

exogenous variables, for any state i, and that they are embedded in the model equation: model

(1) becomes

Yt(i) = µi +

pX
τ=1

ϕτ(i)yt−τ +
qX

j=1

γj(i)βj(i)Xtj +Et(i).

6
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The model also includes the prior distributions of the γj(i)’s that are independent Bernoulli with

known probability ξj (γj(i) ∼ Be
¡
ξj
¢
, for any i and for any j = 1, . . . , q), where ξj = P (γj(i) =

1) = 1− P (γj(i) = 0). If ξj = 0.5, for any j = 1, . . . , q, we have the uniform or indifference prior

f(γ) = 2−q, while if ξj < 0.5 large models are penalized in favour of the parsimonious ones.

The MCMC scheme used to generate, at any iteration k, the sequence of sn(k), µ(k), σ2(k),

R(k), β(k), γ(k), P (k) of the KM algorithm for this class of models is Metropolis-within-Gibbs. The

algorithm proposed here provides the identifiability constraint on the signals (µ(k)i < µ
(k)
j , for any

k and for any i, j = 1, . . . ,m, so that i < j), but it can be easily rearranged when another type of

constraint is specified.

[step 1] The sequence sn(k) of hidden states is generated by the well-known forward filtering-

backward sampling (ff-bs) algorithm (Chib (1996)).

[step 2] Them parameters µ(k)i , for any i, are independently generated from a Normal distribution

with mean

σ
−2(k−1)
i

Pn
t≥1:s(k)t =i

o
Ã
yt −

pP
τ=1

ϕ
(k−1)
τ(i) yt−τ −

qP
j=1

γ
(k−1)
j(i) β

(k−1)
j(i) xt,j

!
+ µMσ−2M

N
(k)
i σ

−2(k−1)
i + σ−2M

and variance ³
N
(k)
i σ

−2(k−1)
i + σ−2M

´−1
,

where N (k)
i is the number of observations corresponding to the contemporary hidden state i in the

sequence sn(k) generated at step [1]. The entries of the vector µ(k) must be in increasing order to

satisfy the identifiability constraint, so we apply the constrained permutation sampling algorithm

(Frühwirth-Schnatter (2001)) to order them.

[step 3] The parameters R(k)τ(i), for any τ = 1, . . . , p and any i, are independently generated from

the random walk R
(k)
τ(i) = R

(k−1)
τ(i) + UR, where UR is a univariate Gaussian noise with zero mean

and constant variance, for any k. Then any vector R(k)i is accepted with probability

A
³
R
(k−1)
i ;R

(k)
i

´
= min

1; π
³
R
(k)
i | µ(k), σ2(k−1), β(k−1), γ(k−1), sn(k),X, yn

´
π
³
R
(k−1)
i | µ(k), σ2(k−1), β(k−1), γ(k−1), sn(k),X, yn

´
 ,

for any i, where the numerator of the acceptance ratio is proportional to

exp

−12σ−2(k−1)i

X
n
t≥1:s(k)t =i

o
yt − µ

(k)
i −

pX
τ=1

ϕ
(k)
τ(i)yt−τ −

qX
j=1

γ
(k−1)
j(i) β

(k−1)
j(i) xt,j

2

− 1
2
σ−2R

pX
τ=1

³
R
(k)
τ(i) − µR

´2

7
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and the denominator is identical to the numerator except the introduction of ϕ(k−1)τ(i) and R
(k−1)
i .

Notice that once the R(k)i ’s have been generated, the new vectors ϕ(k)i ’s can be obtained by the

inverse trasformation.

[step 4] The parameters β(k)i , for any i, are independently generated from a Normal distribution

of dimension q with mean vector

³
X∗0Q(k)i X∗ +Σ−1B

´−1 ³
X∗0Q(k)i byT (k)i +Σ−1B µB

´
and covariance matrix ³

X∗0Q(k)i X∗ +Σ−1B
´−1

,

where X∗ is the n× q matrix with elements x∗tj = γ
(k−1)
j(i) xtj , for any t = 1, . . . , n and j = 1, . . . , q;

Q
(k)
i is a n×n diagonal matrix whose t-th term on the diagonal is either σ−2(k−1)i , if s(k)t = i, or zero,

otherwise; byni is a n-dimensional vector whose generic t-th element is either yt−µ(k)i −
pP

τ=1
ϕ
(k)
τ(i)yt−τ ,

if s(k)t = i, or zero, otherwise.

[step 5] For any i-th row of the indicator matrix γ(k), every coefficient γ(k)j(i) is independently

generated from a Bernoulli distribution

γ
(k)
j(i) ∼ f

³
γj(i)|µ(k), σ2(k−1), β(k), γ(k−1)\j(i) , s

n(k),X, yn
´
∼ Be

³
π
(k)
j(i)

´
,

where γ
(k−1)
\j(i) =

³
γ
(k)
1(i), . . . , γ

(k)
j−1(i), γ

(k−1)
j+1(i), . . . , γ

(k−1)
q(i)

´0
is the vector of the entries of γ(k−1)(i) in

which the j-th entry is suppressed and the first (j − 1)-th are updated by the new values. The

parameter of the Bernoulli distribution is π(k)j(i) = a
(k)
j(i)

.³
a
(k)
j(i) + b

(k)
j(i)

´
, with

a
(k)
j(i) = f

³
yn|µ(k), σ2(k−1), β(k), sn(k),X, γ

(k−1)
\j(i) , γ

(k)
j(i) = 1

´
f
³
γ
(k−1)
\j(i) , γ

(k)
j(i) = 1

´
∝

∝ exp

−12σ−2(k−1)i

Pn
t≥1:s(k)t =i

o
³
yt − µ

(k)
i −

Pp
τ=1 ϕ

(k)
τ(i)yt−τ −

Pq
h=1 θ

∗(k)
h(i)xth

´2 ξj

and

b
(k)
j(i) = f

³
yn|µ(k), σ2(k−1), β(k), sn(k),X, γ

(k−1)
\j(i) , γ

(k)
j(i) = 0

´
f
³
γ
(k−1)
\j(i) , γ

(k)
j(i) = 0

´
∝

∝ exp

−12σ−2(k−1)i

Pn
t≥1:s(k)t =i

o
³
yt − µ

(k)
i −

Pp
τ=1 ϕ

(k)
τ(i)yt−τ −

Pq
h=1 θ

∗∗(k)
h(i) xth

´2 (1− ξj),

8
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where f
³
yn|µ(k), σ2(k−1), β(k), sn(k),X, γ

(k−1)
\j(i) , γ

(k)
j(i) = 1

´
and f

³
yn|µ(k), σ2(k−1), β(k), sn(k),X, γ

(k−1)
\j(i) ,

γ
(k)
j(i) = 0

´
are the likelihoods computed either with γ

(k)
j(i) = 1 or γ

(k)
j(i) = 0, with the θ

∗(k)’
h(i) s

entries of the vector θ
(k)
(i) =

³
γ
(k)
1(i)β

(k)
1(i), . . . , γ

(k−1)
q(i) β

(k)
q(i)

´0
in which the j-th entry is replaced

by β
(k)
j(i), i.e. θ

∗(k)
(i) =

³
γ
(k)
1(i)β

(k)
1(i), . . . , γ

(k)
j−1(i)β

(k)
j−1(i), β

(k)
j(i), γ

(k−1)
j+1(i)β

(k)
j+1(i), . . . , γ

(k−1)
q(i) β

(k)
q(i)

´0
, and

the θ
∗∗(k)’
h(i) s entries of the vector θ

(k)
(i) in which the j-th entry is replaced by 0, i.e. θ

∗∗(k)
(i) =³

γ
(k)
1(i)β

(k)
1(i), . . . , γ

(k)
j−1(i)β

(k)
j−1(i), 0, γ

(k−1)
j+1(i)β

(k)
j+1(i), . . . , γ

(k−1)
q(i) β

(k)
q(i)

´0
.

[step 6] Them parameters σ2(k)i are independently generated from an Inverse Gamma distribution

with parameters

N
(k)
i

2 + ν and 1
2

Pn
t≥1:s(k)t =i

o
Ã
yt − µ

(k)
i −

pP
τ=1

ϕ
(k)
τ(i)yt−τ −

qP
j=1

γ
(k)
j(i)β

(k)
j(i)xt,j

!2
+ η.

[step 7] Each vector P (k)i• is independently generated from a Dirichlet distribution D
³
ω +N

(k)
i•
´
,

where N (k)
i• =

³
N
(k)
i,1 , . . . , N

(k)
i,m

´
, with N

(k)
i,j the number of couples of consecutive hidden states i, j

in the sequence sn(k), for any i, j.

2.1.2 SSVS method

In the SSVS method, the indicator vectors γi are involved in the model through the prior of the

coefficients βj(i), that are mixtures of two Normals with different variances

βj(i)|γj(i) ∼ γj(i)N (µβj , c2jτ2j) + (1− γj(i))N (µβj , τ2j ),

for specified c2j and τ2j and µβj the j-th entry of µB . The prior distribution of any vector βi, for

any i, is a multivariate Normal of dimension q

βi|γi ∼ Nq(µB ,Dγ(i)),

where Dγ(i) = diag
£
(δ1(i)τ1)

2, . . . , (δq(i)τ q)
2
¤
with δj(i) = cj if γj(i) = 1 and δj(i) = 1 if γj(i) = 0.

The choice of the hyperparameters c2j and τ2j and the interpretation of this prior is discussed in

George and McCullogh (1993) and Ntzoufras et al. (2000). The hyperparameters cj and τ j must

be chosen carefully because the posterior probability is mostly dependent on them, given that the

exogenous variables are never eliminated from the model space, but coefficients of the variables

to be excluded are set close to zero with high probability. So it is recommended to run various

9
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simulations with different values of cj and τ j and to analyse how the posterior probability of any

vector γi is sensitive to the choice of these tuning factors.

The prior distributions of the remaining parameters are the same as for those in the KMmethod.

In the SSVS scheme used to generate the sequence of sn(k), µ(k), σ2(k), R(k), β(k), γ(k), P (k),

only the step [7] remains the same as for KM, since it does not depend on βi and γi; step [5] is

completly different, while the remaining steps are identical to those in KM, except the presence of

the γj(i)’s that multiply the βj(i)’s. More in details, step [5] is so defined.

[step 5] For any i-th row of the indicator matrix γ(k), every coefficient γ(k)j(i) is independently

generated from a Bernoulli distribution Be
³
a
(k)
j(i)

.³
a
(k)
j(i) + b

(k)
j(i)

´´
, where

a
(k)
j(i) = f

³
β
(k)
i |γ(k−1)\j(i) , γ

(k)
j(i) = 1

´
f
³
γ
(k−1)
\j(i) , γ

(k)
j(i) = 1

´
∝ f

³
β
(k)
i |γ(k−1)\j(i) , γ

(k)
j(i) = 1

´
ξj

and

b
(k)
j(i) = f

³
β
(k)
i |γ(k−1)\j(i) , γ

(k)
j(i) = 0

´
f
³
γ
(k−1)
\j(i) , γ

(k)
j(i) = 0

´
∝ f

³
β
(k)
i |γ(k−1)\j(i) , γ

(k)
j(i) = 0

´
(1− ξj),

with f
³
β
(k)
i |γ(k−1)\j(i) , γ

(k)
j(i) = 1

´
or f

³
β
(k)
i |γ(k−1)\j(i) , γ

(k)
j(i) = 0

´
the density functions of the prior dis-

tribution of βi|γi when γj(i) = 1 or γj(i) = 0, respectively. Their explicit forms are

f
³
β
(k)
i |γ(k−1)\j(i) , γ

(k)
j(i) = 1

´
∝ exp

−12X
j 6=i

³
β
(k)
i − µB

´0
D
∗(k)−1
γ(i)

³
β
(k)
i − µB

´
and

f
³
β
(k)
i |γ(k−1)\j(i) , γ

(k)
j(i) = 0

´
∝ exp

−12X
j 6=i

³
β
(k)
i − µB

´0
D
∗∗(k)−1
γ(i)

³
β
(k)
i − µB

´ ,

where D∗(k)γ(i) and D
∗∗(k)
γ(i) are the covariance matrix of the prior of β(k)i in which the j-th entries

of D∗(k)γ(i) are replaced by δj(i) = cj

³
which corresponds to γ(k)j(i) = 1

´
, while those of D∗∗(k)γ(i) by

δj(i) = 1
³
which corresponds to γ(k)j(i) = 0

´
.

2.1.3 GVS method

GVS is a mixed approach between the two previous methods. Here the indicator variable influences

both the prior distribution of the regression coefficients, as in SSVS, and the model equation, as in

KM. The prior distributions are the same as for SSVS. In the MCMC scheme, steps [1], [2], [3], [6]

and [7] are identical to those in KM, while steps [4] and [5] are a combination of KM and SSVS.

10
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In details, the elements of the parameters of the Bernoulli distributions of any γ(k)j(i) are

a
(k)
j(i) ∝ f

³
yn|µ(k), σ2(k−1), β(k), sn(k),X, γ

(k−1)
\j(i) , γ

(k)
j(i) = 1

´
f
³
β
(k)
i |γ(k−1)\j(i) , γ

(k)
j(i) = 1

´
ξj

and

b
(k)
j(i) ∝ f

³
yn|µ(k), σ2(k−1), β(k), sn(k),X, γ

(k−1)
\j(i) , γ

(k)
j(i) = 0

´
f
³
β
(k)
i |γ(k−1)\j(i) , γ

(k)
j(i) = 0

´
(1− ξj).

Notice that both the likelihoods f (yn|·), as in KM, and the conditional priors f
³
β
(k)
i |·

´
, as in

SSVS, are present in the expressions of a(k)j(i) and b
(k)
j(i).

2.1.4 MKMK method

When the complexity of the model is high, as for MSARX and NHHMM, or when exogenous

variables are strongly correlated, the performances of KM, SSVS and GVS can be improved by

introducing Metropolized-Kuo-MallicK method (MKMK), based on the acceptance in block of

the coefficients βi’s and the indicators of the exogenous variables γi’s: Liu, Wong, Kong (1994)

showed that the precision of the estimators increases when the unknown parameters are gathered in

separated blocks, while Gilks and Roberts (1996) showed that blocking improves the chain mixing.

In the basic MCMC algorithm only one step must be modified w.r.t. KM: for any state i, the

coefficients of the exogenous variables and the associated dummy indicators are sampled jointly and

updated in block within a Metropolis step. For MSARX models, the pair of vectors
³
β
(k)
i ; γ

(k)
i

´
must be accepted in block, so steps [4] and [5] of Subsection 2.1.1 are joined in only one step and

modified as follows. We assume a random walk proposal for any β(k)j(i) and an independent Bernoulli

proposal for any γ(k)j(i).

For any i (i = 1, . . . ,m), first, parameters β(k)j(i), for any j = 1, . . . , q, are independently gener-

ated from the random walk β(k)j(i) = β
(k−1)
j(i) +UB, where UB is a Gaussian noise with zero mean and

constant variance, for any k; then, every parameter γ(k)j(i), for any j = 1, . . . , q, is independently

generated from a Bernoulli distribution with probability π
(k)
j(i) = a

(k)
j(i)

.³
a
(k)
j(i) + b

(k)
j(i)

´
, where a(k)j(i)

and b
(k)
j(i) are the same as in step [5] of Subsection 2.1.1; finally the pair of vectors

³
β
(k)
i ; γ

(k)
i

´
is

11
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accepted in block with probability

A
h³
β
(k−1)
i ; γ

(k−1)
i

´
;
³
β
(k)
i ; γ

(k)
i

´i
= min

½
1;

π
³
β
(k)
i ;γ

(k)
i

´
q
³
β
(k−1)
i ;γ

(k−1)
i

¯̄̄
β
(k)
i ;γ

(k)
i

´
π
³
β
(k−1)
i ;γ

(k−1)
i

´
q
³
β
(k)
i ;γ

(k)
i

¯̄̄
β
(k−1)
i ;γ

(k−1)
i

´ ¾ =

= min

½
1;

f
³
yn
¯̄̄
β
(k)
i ;γ

(k)
i

´
p
³
γ
(k)
i

´
p
³
β
(k)
i

´
q
³
γ
(k−1)
i

¯̄̄
β
(k−1)
i ;β

(k)
i ;γ

(k)
i

´
f
³
yn
¯̄̄
β
(k−1)
i ;γ

(k−1)
i

´
p
³
γ
(k−1)
i

´
p
³
β
(k−1)
i

´
q
³
γ
(k)
i

¯̄̄
β
(k)
i ;β

(k−1)
i ;γ

(k−1)
i

´ ¾ ,

by the factorization of the proposal density, i.e.

q
³
β
(k)
i ; γ

(k)
i

¯̄̄
β
(k−1)
i ; γ

(k−1)
i

´
= q

³
γ
(k)
i

¯̄̄
β
(k)
i ;β

(k−1)
i ; γ

(k−1)
i

´
q
³
β
(k)
i

¯̄̄
β
(k−1)
i ; γ

(k−1)
i

´
,

by the independence of β(k)i on γ
(k−1)
i and cancelling the ratio q

³
β
(k−1)
i

¯̄̄
β
(k)
i

´.
q
³
β
(k)
i

¯̄̄
β
(k−1)
i

´
for the symmetry of the proposal distribution.

2.2 Non-homogeneous hidden Markov models

In the MSARX models of the previous section, the Markov chain of the latent process is supposed

homogeneous, that is the transition probabilities do not depend on time t. In the most general case,

the Markov chain can be non-homogeneous, that is the transition probabilities are time-varying, by

assuming that their dynamics depend on exogenous variables. If we consider a HMM with a non-

homogeneous Markov chain, we obtain a Non-Homogeneous Hidden Markov model (NHHMM).

It is a discrete-time stochastic processes {St, Yt} where {St} is now a non-homogeneous Markov

chain whose transition probabilities pti,j = P (St = j | St−1 = i) vary at any time t by depending on

exogenous variables. We suppose that they can be expressed as logistic functions of q exogenous

variables. Let Xt be a (q+1)-dimensional vector of the observations of the exogenous deterministic

variables at time t, Xt = (1, xt,1, . . . , xt,q)
0 and αi,j be a (q+1)-dimensional vector of parameters,

αi,j =
¡
α0(i,j), α1(i,j), . . . , αq(i,j)

¢0
, for any i, j ∈ {1, . . . ,m}, if i 6= j, and a (q + 1)-dimensional

vector of zeros, if i = j. For any t = 2, . . . , n, the transition probabilities can be expressed as

logit(pti,j) = ln
¡
pti,j

±
pti,i
¢
=

qX
h=0

αh(i,j)xth = X 0
tαi,j

pti,j = (exp (X
0
tαi,j))

,Ã
1 +

P
j 6=i
exp (X 0

tαi,j)

!
,

(2)

for any i, j ∈ {1, . . . ,m} and let Pt =
£
pti,j
¤
be the m×m transition matrix of the chain, for any

t = 2, . . . , n.
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Process {Yt}, given process {St}, is an observed sequence of conditionally independent random

variables, whose conditional distributions depend on {St} only through the contemporary St. Here

we assume the probability density function of any Yt, given St, is Gaussian; hence we have Gaussian

NHHMM. The model equation is

Yt(i) = µi +Et(i),

where Et(i) denotes the Gaussian random variable Et, when St = i, with zero mean and variance

σ2i
¡
Et(i) ∼ N

¡
0;σ2i

¢¢
, for any i, with the discrete-time process {Et}, given {St}, satisfying the

conditional independence and the contemporary dependence conditions; so Yt(i) ∼ N ¡
µi;σ

2
i

¢
,

for any i. Notice that the inferential tools and the variable selection machinery we are going to

describe can also be applied when another conditional distribution, both discrete and continuous,

is hypothesized.

Identifiability of the model is again ensured by imposing increasing signals µi. The unknown

parameters and the latent data of the NHHMM are µ, σ2, α, sn, where µ is the vector of the m

signals µi, σ
2 is the vector of the m variances σ2i , α is the m×m matrix of the vectors αi,j and sn

is the sequence of the hidden states.

The following prior assumptions are stated in analogy with those in Subsection 2.1:

1) the prior distribution of any parameter µi is an independent Normal with known µM and σ2M

(µi ∼ N (µM , σ2M ), for any i = 1, . . . ,m);

2) the prior distribution of any vector αi,j is an independent multivariate Normal of dimension

(q + 1) with known vector µA and matrix ΣA (αi,j ∼ Nq+1 (µA;ΣA), for any i, j = 1, . . . ,m, with

i 6= j);

3) the prior distribution of any variance σ2i is assumed to be an independent Inverse Gamma

(σ2i ∼ IG(ν, η), for any i = 1, . . . ,m).

2.2.1 KM method

Let αi =
¡
α0(i), α1(i), . . . , αq(i)

¢0
, i = 1, . . . ,m, be the i-th row of matrix α; we associate to

any entry of matrix α, i.e. the vector of parameters αi,j , a vector of binary indicators γ(i) =³
1, γ1(i), . . . , γq(i)

´0
of dimension q + 1, which regulates the inclusion of the exogenous variables
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when the hidden chain visits state i at time t− 1; finally, let γ be the m× (q + 1) matrix of any

vector γ(i), i.e. γ =
³
γ0(1), . . . , γ

0
(m)

´0
. Expression (2) becomes

logit(pti,j) =
qX

h=0

γh(i)αh(i,j)xth = X 0
tθ(i,j)

pti,j = exp

Ã
qX

h=0

γh(i)αh(i,j)xth

!,Ã
1 +

P
j 6=i
exp

Ã
qX

h=0

γh(i)αh(i,j)xth

!!
=

= exp
¡
X 0
tθ(i,j)

¢,Ã
1 +

P
j 6=i
exp

¡
X 0
tθ(i,j)

¢!
,

(3)

with θ(i,j) =
³
α0(i,j), γ1(i)α1(i,j), . . . , γq(i)αq(i,j)

´0
.

Notice that we assume the transition from state i to any other state j is regulated by the

same set of covariates, hence the same vector γ(i) is associated to any
¡
α0(i,j), α1(i,j), . . . , αq(i,j)

¢0
(j = 1, . . . ,m) and consequently to Pi•.

The prior distribution of any γh(i) is an independent Bernoulli with known probability ξh

(γh(i) ∼ Be(ξh), for any i = 1, . . . ,m and any h = 1, . . . , q).

The steps of the MCMC algorithm used to simulate the sequence of sn(k), µ(k), α(k), γ(k), σ2(k)

are the following.

[step 1] The sequence of hidden states sn(k) is still generated by the ff-bs algorithm.

[step 2] Them parameters µ(k)i , for any i, are independently generated from a Normal distribution

with mean
σ
−2(k−1)
i

Pn
t≥1:s(k)t =i

oyt + µMσ−2M

N
(k)
i σ

−2(k−1)
i + σ−2M

and variance ³
N
(k)
i σ

−2(k−1)
i + σ−2M

´−1
,

with the entries of the vector µ(k) in increasing order to satisfy the identifiability constraint, so

we apply the constrained permutation sampling algorithm (Frühwirth-Schnatter (2001)) to order

them.

[step 3] Any vector α(k)i,j , for any i, j, with i 6= j, is independently generated from a random

walk α(k)i,j = α
(k−1)
i,j +UA, where UA is a multivariate Gaussian noise with zero mean and constant
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precision matrix, for any k. Then any matrix αi =
¡
α0i,1, . . . , α

0
i,m

¢0
is accepted with probability

A
³
α
(k−1)
i ;α

(k)
i

´
= min

1; π
³
α
(k)
i | sn(k), γ(k−1)(i) ,X

´
π
³
α
(k−1)
i | sn(k), γ(k−1)(i) ,X

´
 ,

where the numerator of the acceptance ratio is proportional to

Y
n
t≥2:s(k)t−1=i

opt(k)s
(k)
t−1,s

(k)
t

exp

−12X
j 6=i

³
θ
(k)
(i,j) − µA

´0
Σ−1A

³
θ
(k)
(i,j) − µA

´
and the denominator is identical to the numerator except the introduction of α(k−1)i and p

t(k−1)
i,j ,

with p
t(k)
i,j and p

t(k−1)
i,j functions of α(k)i and α

(k−1)
i , respectively, and X = (X 0

1, . . . ,X
0
t, . . . ,X

0
n)
0.

[step 4] Any coefficient γ(k)h(i) (h = 1, . . . , q; i = 1, . . . ,m) is independently generated from a

Bernoulli distribution Be
³
a
(k)
j(i)

.³
a
(k)
j(i) + b

(k)
j(i)

´´
, with

a
(k)
h(i) ∝

Y
n
t≥2:s(k)t−1=i

o
exp

µ
X 0
tθ
∗(k)
(i,s

(k)
t )

¶
1 +

P
j 6=i
exp

³
X 0θ∗(k)(i,j)

´ξh
and

b
(k)
h(i) ∝

Y
n
t≥2:s(k)t−1=i

o
exp

µ
X 0
tθ
∗∗(k)
(i,s

(k)
t )

¶
1 +

P
j 6=i
exp

³
X 0
tθ
∗∗(k)
(i,j)

´(1− ξh),

where θ∗(k)(i,j) is the vector θ
(k)
(i,j) in which the h-th entry is replaced by α

(k)
h(i,j), i.e. θ

∗(k)
(i,j) =

³
α
(k)
0(i,j), . . . ,

γ
(k)
h−1(i)α

(k)
h−1(i,j), α

(k)
h(i,j), γ

(k−1)
h+1(i)α

(k)
h+1(i,j), . . . , γ

(k−1)
q(i) α

(k)0
q(i,j)

´0
, while in θ

∗∗(k)
(i,j) the h-th entry of θ(k)(i,j)

is replaced by 0, i.e. θ∗∗(k)(i,j) =
³
α
(k)
0(i,j), . . . γ

(k)
h−1(i)α

(k)
h−1(i,j), 0, γ

(k−1)
h+1(i)α

(k)
h+1(i,j), . . . , γ

(k−1)
q(i) α

(k)
q(i,j)

´0
.

[step 5] The m parameters σ2(k)i are generated from independent Inverse Gamma distributions

with parameters

N
(k)
i

2 +ν and 1
2

Pn
t≥1:s(k)t =i

o
³
yt − µ

(k)
i

´2
+ η

2.2.2 SSVS method

In the SSVS method, the indicator variable is involved in the model through the conditional priors

of the coefficients αi,j that are mixtures of two Normals with different variances: i.e. any vector

αi,j , given γ(i), is an independent multivariate Normal of dimension (q + 1)

αi,j |γ(i) ∼ Nq+1(µA,Dγ(i)),
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whereDγ(i) = diag[1, (δ1(i)τ1)
2, . . . , (δq(i)τ q)

2] with δh(i) = ch if γh(i) = 1 and δh(i) = 1 if γh(i) = 0,

for specified ch and τh.

The prior distributions of the remaining parameters are the same of those elicited for the KM

method; the expression of the logit trasformation of the pti,j ’s is still the (2).

In the SSVS scheme used to generate the sequence sn(k), µ(k), σ2(k), α(k), γ(k), steps [2] and [5]

remain the same as for KM, since they do not depend on α(i) and γ(i), steps [3] and [4] change

totally and step [1] is identical to that in KM except the presence of the γ(i)’s that multiply the

αi,j ’s.

[step 3] Any vector α(k)i,j , for any i, j, with i 6= j, is independently generated from a multivariate

random walk α
(k)
i,j = α

(k−1)
i,j + UA. Then any matrix α

(k)
i =

³
α
(k)0
i,1 , . . . , α

(k)0
i,m

´0
is accepted with

probability

A
³
α
(k−1)
i ;α

(k)
i

´
= min

1; π
³
α
(k)
i | sn(k),X

´
π
³
α
(k−1)
i | sn(k),X

´
 ,

where the numerator of the acceptance ratio is proportional to

Y
n
t≥2:s(k)t−1=i

opt(k)s
(k)
t−1,s

(k)
t

· exp
−12X

j 6=i

³
α
(k)
i,j − µA

´0
D
(k)−1
γ(i)

³
α
(k)
i,j − µA

´
and the denominator is identical to the numerator except the introduction of α(k−1)i and p

t(k−1)
i,j ,

with p
t(k)
i,j and p

t(k−1)
i,j functions of α(k)i and α

(k−1)
i , respectively, and X = (X 0

1, . . . ,X
0
t, . . . ,X

0
n)
0.

[step 4] For every hidden state i, any coefficient γ(k)h(i) is independently generated, for h = 1, . . . , q,

from a Bernoulli distribution Be
³
a
(k)
j(i)

.³
a
(k)
j(i) + b

(k)
j(i)

´´
, with

a
(k)
h(i) ∝ f

³
α
(k)
i |γ(k−1)\h(i) , γ

(k)
h(i) = 1

´
ξh and b

(k)
h(i) ∝ f

³
α
(k)
i |γ(k−1)\h(i) , γ

(k)
h(i) = 0

´
(1− ξh),

where f
³
α
(k)
i |γ(k−1)\h(i) , γ

(k)
h(i) = 1

´
or f

³
α
(k)
i |γ(k−1)\h(i) , γ

(k)
h(i) = 0

´
are the density functions of the (q+1)-

variate Normal prior distribution of αi,j |γ(i) when γh(i) = 1 or γh(i) = 0, respectively, that is

f
³
α
(k)
i |γ(k−1)\h(i) , γ

(k)
h(i) = 1

´
∝ exp

−12X
j 6=i

³
α
(k)
i,j − µA

´0
D
∗(k)−1
γ(i)

³
α
(k)
i,j − µA

´
and

f
³
α
(k)
i |γ(k−1)\h(i) , γ

(k)
h(i) = 0

´
∝ exp

−12X
j 6=i

³
α
(k)
i,j − µA

´0
D
∗∗(k)−1
γ(i)

³
α
(k)
i,j − µA

´ ,
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where D∗(k)γ(i) and D
∗∗(k)
γ(i) are the covariance matrix of the prior of α(k)i,j in which the h-th entries δh(i)

are replaced by ch

³
which corresponds to γ(k)h(i) = 1

´
, and by 1

³
which corresponds to γ(k)h(i) = 0

´
,

respectively.

2.2.3 GVS method

As in the previous sections, the GVS method is a mixed approach between the two previous

methods: the indicator variable influences both the prior distributions of the coefficients of the

exogenous variables, as in SSVS, and the equation of the model (3), as in KM.

The prior distributions are the same of those in SSVS; in the MCMC scheme, steps [1], [2], [5]

are identical to those in KM, step [3] is identical to that in SSVS, while step [4] is a combination

of KM and SSVS. In details, the elements of the parameters of the Bernoulli distributions of any

γ
(k)
j(i) are

a
(k)
h(i) ∝ f

³
sn|α(k)i ,X, γ

(k−1)
\h(i) , γ

(k)
h(i) = 1

´
f
³
α
(k)
i |γ(k−1)\h(i) , γ

(k)
h(i) = 1

´
ξh

and

b
(k)
h(i) ∝ f

³
sn|α(k)i ,X, γ

(k−1)
\h(i) , γ

(k)
h(i) = 0

´
f
³
α
(k)
i |γ(k−1)\h(i) , γ

(k)
h(i) = 0

´
(1− ξh).

Notice that both the densities f
¡
sn(k)|·¢, as in KM, and the conditional priors f ³α(k)i |·

´
, as in

SSVS, are present in the expressions of a(k)h(i) and b
(k)
h(i).

2.2.4 MKMK method

For NHHMM the pair of vectors
³
α
(k)
i ; γ

(k)
(i)

´
must be accepted in block, so steps [3] and [4] of

Subsection 2.2.1 are joined in only one step and modified as follows. We assume the following

proposals: a multivariate random walk for any α(k)i,j and an independent Bernoulli for any entry of

the vector γ(k)(i) .

For any i, first, parameters α
(k)
i,j (j = 1, . . . ,m, with i 6= j) are independently generated

from the multivariate random walk α
(k)
i,j = α

(k−1)
i,j + UA, then, every parameter γ

(k)
h(i), for any

h = 1, . . . , q, is independently generated from a Bernoulli distribution with probability π
(k)
h(i) =

a
(k)
h(i)

.³
a
(k)
h(i) + b

(k)
h(i)

´
, where a(k)h(i) and b

(k)
h(i) are the same as in step [4] of Subsection 2.2.1; finally
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the pair of vectors
³
α
(k)
i ; γ

(k)
(i)

´
is accepted in block with probability

A
h³
α
(k−1)
i ; γ

(k−1)
i

´
;
³
α
(k)
i ; γ

(k)
i

´i
= min

½
1;

π
³
α
(k)
i ;γ

(k)
i

´
q
³
α
(k−1)
i ;γ

(k−1)
i

¯̄̄
α
(k)
i ;γ

(k)
i

´
π
³
α
(k−1)
i ;γ

(k−1)
i

´
q
³
α
(k)
i ;γ

(k)
i

¯̄̄
α
(k−1)
i ;γ

(k−1)
i

´ ¾ =

= min

½
1;

f
³
yn
¯̄̄
α
(k)
i ;γ

(k)
i

´
p
³
γ
(k)
i

´
p
³
α
(k)
i

´
q
³
γ
(k−1)
i

¯̄̄
α
(k−1)
i ;α

(k)
i ;γ

(k)
i

´
f
³
yn
¯̄̄
α
(k−1)
i ;γ

(k−1)
i

´
p
³
γ
(k−1)
i

´
p
³
α
(k−1)
i

´
q
³
γ
(k)
i

¯̄̄
α
(k)
i ;α

(k−1)
i ;γ

(k−1)
i

´ ¾
by the factorization of the proposal density, by the independence of α(k)i on γ

(k−1)
i and cancelling

the ratio q
³
α
(k−1)
i

¯̄̄
α
(k)
i

´.
q
³
α
(k)
i

¯̄̄
α
(k−1)
i

´
for the symmetry of the proposal distribution.

3 Simulation examples

3.1 MSARX models

We generate time series of length n = 500, for each pair (m, p) with m = 2, 3 and p = 1, 2, 3 and

different coefficient vectors βi and γi for any states i = 1, . . . ,m. The data generation details are the

following: we obtain the exogenous variables X1,. . .,X5 as a multivariate Normal, with independent

components or with low or high correlations between them. Specifically, for the case of correlated

variables, we set to non zero the correlations between variables (X2,X4) and (X1,X5), while the

correlations between the other variables are random values in modulo less then the previous ones.

With these values we explore several cases of correlation between variables which are included in

or excluded from the true model. For any state i = 1, . . . ,m and τ = 1, . . . , p, the values rτ(i)’s

are randomly generated from uniform distributions between −1 and +1 and then transformed to

obtain the autoregressive coefficients ϕτ(i)’s. The remaining parameters are set as follows:

• for m = 2, we suppose that the true model contains the covariates X4 and X5 in state 1, and

X2, X3, X4 in state 2. The corresponding coefficients and the values of the other parameters are:

state µi σ2i βj(i) γj(i) P

1 1 1 0 0 0 1 1.2 0 0 0 1 1 0.6 0.4

2 3 0.8 0 1 0.8 1 0 0 1 1 1 0 0.2 0.8

• for m = 3, we suppose that in states 1 and 2 there are the same covariates of the case m = 2,

while in state 3 the covariates in the model are X2, X4. The corresponding coefficients and the
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true values of the parameters are:

state µi σ2i βj(i) γj(i) P

1 1 1 0 0 0 1 1.2 0 0 0 1 1 0.6 0.3 0.1

2 3 0.8 0 1 0.8 1 0 0 1 1 1 0 0.05 0.8 0.15

3 5 1.25 0 1.2 0 0.8 0 0 1 0 1 0 0.1 0.2 0.7

Notice that the signals µi are in increasing order to ensure the identifiability.

For all the analysed models, we use independent N (0, 10) priors for any parameter µi and

Rτ(i) (for any i = 1, . . . ,m, and τ = 1, . . . , p); independent IG(0.5, 0.5) for any variances σ2i and

indifference priors for any γj(i) with ξj = 0.5. The priors of any row of the transition matrix Pi• are

independent Dirichlet with parameter ω = (ω1, . . . , ωk, . . . , ωm), and ωk = m · I(i = k)+0.6 · I(i 6=

k), for any i, k = 1, . . . ,m, where I(·) is the indicator function. By this prior the probability of

persistence is greater than the probability of transition: the probabilty of persistence is about 0.7

and it slowly decreases as the number of states increases. Finally, in KM the priors of any βj(i) are

independent N (0, 10), for i = 1, . . . ,m and j = 1, . . . , q, while in SSVS and GVS the conditional

priors of βi|γi are N5(0,Dγ(i)), where Dγ(i) is defined through the choice of the tuning parameters

cj and τ j : by the results of several simulations of the full models and following the suggestions by

George and McCullogh (1993), we use cj = 10 and τ j = 0.3, for any j = 1, . . . , q.

Tables 1, 2, 3, 4 show the results of the posterior model probabilities, estimated through the

relative frequencies, of the highest frequency models, for all the variable selection methods we

analysed, both in the case of independent covariates and in some special cases of correlation (i.e.

0.3, 0.7, 0.9). The results are based on 300,000 iterations for all the algorithms, after a burn-in

period of 100,000 iterations. All the Markov chain are initialized at the full model, while the

starting points of the parameters are generated at random from the priors.

TABLES 1, 2, 3, 4 ABOUT HERE

The results show that in general all the four methods predict the right MSARX model, choosing

that model which includes the right covariates. In the case of independent covariates the model

probability is high for each pair ofm and p, while as the correlation between covariates increases the
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model probability decreases till to assume very small values (i.e. 7%, for the case of MSARX(2,1),

in Table 4, for the SSVS method).

It can be pointed out also that all the sampling schemes explore local modes of the posterior

distribution because different results are obtained in different runs of the algorithms, although all

runs are able to identify the true model.

It can be seen that SSVS generally performs worse than the other methods, but reasonably

well, and only in the case of independent covariates the model probabilities are higher than 60%,

while in the case of high correlation they are always less than 30%.

On the other hand, GVS seems to be the best method, since in all the analysed cases, the true

model is identified with probability greater than 60%, sometimes exceeding the value 90%, even

if the choice of the tuning factors can represent a serious drawback of this method, as in SSVS.

Finally, the performances of KM and MKMK are almost equivalent and their model probabilities,

in some cases, tend to the values reached by GVS.

In Figure 1 the MCMC evolution of the corresponding ergodic posterior probabilities are plotted

in some special cases, at every 50-th iteration after the burn-in. We dealt with the convergence

of the MCMC algorithms by using many plots of output values and formal convergence

tests (i.e. Gamerman (1997)).

FIGURE 1 ABOUT HERE

We compared also the performances of all methods in problems with more data, for example

with n = 1000, or with a large number of potential covariates, q = 30 or 50. As we would expect,

the results are similar to those presented here and, again, GVS seems to perform better than other

methods. Moreover, as the number of data increases the values of the highest posterior model

probability increases and the convergence is reached more fastly.

3.2 NHHMM

The simulation examples for evaluating the performance of the previous methods are based on

time series of length n = 500, generated from NHHMM(m), for each values of m = 2, 3, with
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q = 5 potential covariates and different coefficients αh(i,j) of the logistic trasformation in (2), for

i = 1, . . . ,m; j = 1, . . . ,m and h = 0, 1, . . . , q.

The exogenous variables X1, . . . ,X5 are obtained again as multivariate Normal; for the cases

of correlated covariates we suppose that the pairs of variables (X2,X4) and (X1,X5) have a non-

zero fixed correlation, while the correlations between other variables are zero or random values, in

modulo less than the previous ones. The parameters values are taken as follows:

• for m = 2, we suppose that the true model contains covariates X2, X3, in state 1 and X2, X3,

X4, in state 2; the values of the parameters are:

state µi σ2i αh(i,j) γh(i)

1 1 1 α(1,2) 2 0 -2 2 0 0 1 0 1 1 0 0

2 3 0.8 α(2,1) 2 0 -2 2 2 0 1 0 1 1 1 0

• for m = 3, we suppose in states 1 and 2 the model contains the same covariates as in case m = 2,

while in the state 3 the covariates in the model are X1 and X3; the values of the parameters are:

state µi σ2i αh(i,j) γh(i)

1 1 1 α(1,2) 2 0 -2 2 0 0 1 0 1 1 0 0

2 3 0.8 α(1,3) 0.5 0 1 0.5 0 0 1 0 1 1 0 0

3 5 1.25 α(2,1) 2 0 -2 2 2 0 1 0 1 1 1 0

α(2,3) 1 0 0.5 -0.5 1 0 1 0 1 1 1 0

α(3,1) 2 -2 0 2 0 0 1 1 0 1 0 0

α(3,2) 2 -2 0 2 0 0 1 1 0 1 0 0

We use independentN (0, 10) priors for any parameter µi; independent IG(0.5, 0.5) for any variance

σ2i and indifference priors for any γh(i), with ξh = 0.5, for any h = 1, . . . , q. For KM the prior

of any vector αi,j (for any i = 1, . . . ,m, and j = 1, . . . ,m) is a multivariate Normal N6(0,ΣA),

with ΣA = 10 ∗ I (where I is the identity matrix), while, for SSVS and GVS, the conditional

priors of vectors αi,j |γ(i) are N6(0,Dγ(i)), where Dγ(i) is defined throught the choice of the tuning

parameters ch and τh, which are still set ch = 10 and τh = 0.3, for any i = 1, . . . ,m and

h = 1, . . . , 5. Again, all the Markov chain are initialized at the full model and the starting values

of the parameters are generated at random from the priors.
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In Table 5 the highest posterior model probabilities are diplayed, both in the case of independent

covariates and in some special cases of correlation (i.e. 0.3, 0.7, 0.9). The results are based on

300,000 iterations, after a burn-in period of 100,000 iterations.

TABLE 5 ABOUT HERE

For KM, SSVS, GVS, the results are very similar to those described for the MSARX models,

even if the values of the posterior model probablilities are much smaller: this means that the

performance of the methods decreases when the complexity of the model increases (m > 2),

expecially also when exogenous variables are strongly correlated. The algorithms in fact visit

a larger set of promising models that incorrectly include other variables or exclude the correct

variables: we can see that, in the case of independence, the true models have posterior model

probabilities less than 30% or, when high correlation exists (0.7 or 0.9), less than 10%. In these

last cases (marked with (*) in Table 5) the algorithms do not identify the correct model and the

associated probabilities are not the highest.

By contrast, MKMK works extremly well and always identify the right set of covariates with

high probablilities, both when the correlations we fixed are null and when they are positive.

In Figure 2 the MCMC evolution of the corresponding ergodic posterior probabilities are plotted

in some special cases, at every 50-th iteration after the burn-in. The convergence of the sam-

plers has been checked through plots and traditional convergence tests (i.e. Gamer-

man (1997)).

FIGURE 2 ABOUT HERE

The comparison among the results of Table 6 and those of the previous tables shows that our

method is very satisfactory: the values of the posterior model probabilities are always very high,

also in the critical cases of NHHMM.

4 Conclusions

Bayesian variable selection is an active research area in recent years. In this paper we developed

some alternative Bayesian procedures, based on Markov chain Monte Carlo algorithms, for variable
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selection in special Markov mixture models, i.e. the Markov switching autoregressive models with

exogenous variables (MSARX) and the non-homogeneous hidden Markov models (NHHMM). We

focused our attention on three methods based on the analysis of the highest model posterior

probability: the Stochastic Search Variable Selection (SSVS) by George and McCullogh (1993),

the unconditional priors Gibbs sampler (KM) by Kuo and Mallick (1998) and the Gibbs Variable

selection (GVS) by Dellaportas et al. (2000). These methods have been initially proposed for

linear models and so we decided to explore their performances when they are applied to highly

complex stochastic processes.

Simulation results show that GVS selects the true model with an excellent relative frequency,

both when the exogenous variables are independent and when they are correlated. By contrast,

SSVS and KM visit the right models with a much lower probability and sometimes they are not

able to choose the best ones.

The selection procedures of SSVS and GVS provides the employment of some tuning factors

which, in our modelling, are hard to identify; hence, our goal was the improvement of the perfor-

mances of KM, which is extremely straightforward, since it requires only to specify the prior and

no pilot runs are required to define the hyperparameters.

Our method is based on the scheme of KM, which is improved by accepting in block, through a

Metropolis step, both the coefficients and the indicators of the exogenous variables; so we decided

to call it Metropolized-Kuo-MallicK (MKMK). MKMK works very well and better than the other

methods, expecially in the NHHMM case, because always selects the right model with a high model

posterior probability. The correct selection of exogenous variables is due to the acceptance in block

of both the coefficients and the indicators of the exogenous variables, because blocking increases

the precision of the estimators and improves the chain mixing.

In Paroli and Spezia (2005), we successfully applied MKMK to a real data problem in the context

of non-homogeneous Markov mixtures of periodic autoregressions, that is MSARX models with

a Markov-dependent periodic component, all driven by NHHMM. We observed a series of hourly

mean concentrations of sulphur dioxide simultaneously to six meteorological variables (wind speed,

temperature, rain, solar radiation, relative humidity, pressure) and MKMK allows us to select the
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exogenous variables that, for any state of the hidden Markov chain, can influence the dynamics of

the observed process and/or the latent one.
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independent

m=2 m=3

state 1 2 state 1 2 3

model var. 4,5 2,3,4 model var. 4,5 2,3,4 2,4

p=1 KM 0.71 0.89 KM 0.61 0.83 0.48

SSVS 0.53 0.42 SSVS 0.42 0.35 0.28

GVS 0.92 0.91 GVS 0.91 0.94 0.85

MKMK 0.59 0.84 MKMK 0.52 0.78 0.64

p=2 KM 0.60 0.78 KM 0.51 0.37 0.75

SSVS 0.56 0.28 SSVS 0.42 0.35 0.36

GVS 0.92 0.95 GVS 0.63 0.95 0.91

MKMK 0.52 0.83 MKMK 0.42 0.82 0.52

p=3 KM 0.72 0.84 KM 0.65 0.86 0.65

SSVS 0.64 0.42 SSVS 0.63 0.29 0.30

GVS 0.92 0.95 GVS 0.77 0.94 0.80

MKMK 0.74 0.72 MKMK 0.79 0.59 0.68

Table 1: Highest posterior model probabilities for independent covariates

27

Page 28 of 32

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
corr=0.3

m=2 m=3

state 1 2 state 1 2 3

model var. 4,5 2,3,4 model var. 4,5 2,3,4 2,4

p=1 KM 0.61 0.76 KM 0.66 0.73 0.60

SSVS 0.53 0.35 SSVS 0.55 0.46 0.24

GVS 0.92 0.95 GVS 0.77 0.94 0.75

MKMK 0.78 0.82 MKMK 0.46 0.73 0.61

p=2 KM 0.62 0.77 KM 0.75 0.78 0.54

SSVS 0.53 0.44 SSVS 0.33 0.38 0.20

GVS 0.89 0.94 GVS 0.85 0.93 0.91

MKMK 0.65 0.60 MKMK 0.33 0.72 0.55

p=3 KM 0.75 0.87 KM 0.60 0.64 0.64

SSVS 0.52 0.39 SSVS 0.21 0.20 0.22

GVS 0.66 0.92 GVS 0.83 0.93 0.83

MKMK 0.60 0.75 MKMK 0.54 0.81 0.55

Table 2: Highest posterior model probabilities for correlated covariates: corr(X2,X4)=corr(X1,X5)=0.3
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corr=0.7

m=2 m=3

state 1 2 state 1 2 3

model var. 4,5 2,3,4 model var. 4,5 2,3,4 2,4

p=1 KM 0.68 0.74 KM 0.71 0.76 0.33

SSVS 0.36 0.31 SSVS 0.37 0.11 0.25

GVS 0.67 0.89 GVS 0.74 0.78 0.43

MKMK 0.68 0.74 MKMK 0.13 0.80 0.56

p=2 KM 0.63 0.81 KM 0.36 0.60 0.70

SSVS 0.45 0.30 SSVS 0.28 0.10 0.11

GVS 0.77 0.88 GVS 0.86 0.87 0.83

MKMK 0.60 0.85 MKMK 0.40 0.58 0.71

p=3 KM 0.41 0.59 KM 0.58 0.41 0.61

SSVS 0.36 0.23 SSVS 0.26 0.07 0.18

GVS 0.87 0.85 GVS 0.81 0.82 0.84

MKMK 0.55 0.61 MKMK 0.61 0.62 0.60

Table 3: Highest posterior model probabilities for correlated covariates: corr(X2,X4)=corr(X1,X5)=0.7
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corr=0.9

m=2 m=3

state 1 2 state 1 2 3

model var. 4,5 2,3,4 model var. 4,5 2,3,4 2,4

p=1 KM 0.65 0.25 KM 0.32 0.33 0.42

SSVS 0.18 0.07 SSVS 0.27 0.04 0.26

GVS 0.70 0.91 GVS 0.86 0.80 0.70

MKMK 0.52 0.45 MKMK 0.87 0.71 0.45

p=2 KM 0.60 0.21 KM 0.35 0.31 0.34

SSVS 0.26 0.31 SSVS 0.24 0.19 0.20

GVS 0.87 0.89 GVS 0.83 0.61 0.91

MKMK 0.40 0.42 MKMK 0.19 0.38 0.27

p=3 KM 0.36 0.46 KM 0.37 0.41 0.50

SSVS 0.24 0.18 SSVS 0.18 0.17 0.23

GVS 0.68 0.69 GVS 0.85 0.75 0.89

MKMK 0.43 0.35 MKMK 0.33 0.51 0.39

Table 4: Highest posterior model probabilities for correlated covariates: corr(X2,X4)=corr(X1,X5)=0.9
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model var. KM SSVS GVS MKMK KM SSVS GVS MKMK

m=2

state 1 2,3 0.25 0.05 0.11 0.75 0.46 0.05 0.16 0.71

state 2 2,3,4 0.19 0.06 0.27 0.85 0.30 0.04 0.26 0.88

m=3

state 1 2,3 0.09 0.03 0.11 0.87 0.08 0.03 0.09 0.90

state 2 2,3,4 0.08 0.04 0.10 0.79 0.10 0.04 0.26 0.95

state 3 1,3 0.05 0.03 0.03 0.63 0.04 0.03 0.04 0.70

corr=0.7 corr=0.9

model var. KM SSVS GVS MKMK KM SSVS GVS MKMK

m=2

state 1 2,3 0.41 0.04 0.18 0.74 0.49 0.04 0.08 0.68

state 2 2,3,4 0.34 0.06 0.25 0.85 0.48 0.04 0.17 0.67

m=3

state 1 2,3 0.07(∗) 0.04(∗) 0.13 0.64 0.02(∗) 0.02(∗) 0.05 0.27

state 2 2,3,4 0.08(∗) 0.04(∗) 0.12 0.44 0.01(∗) 0.04(∗) 0.09 0.81

state 3 1,3 0.05(∗) 0.03(∗) 0.10 0.70 0.03(∗) 0.02(∗) 0.02 0.20

Table 5: Highest posterior model probabilities for NHHMM(m) with independent

or correlated covariates - (*) = not the highest probability
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Figure 1: Ergodic highest posterior model probabilities for the simulated datasets of MSARX(2,1),

in state 1, for KM (black line); SSVS (grey line); GVS (bold line); MKMK(double black line)
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Figure 2: Ergodic highest posterior model probabilities for the simulated datasets of NHHMM(2),

in state 1, for KM (black line); SSVS (grey line); GVS (bold line); MKMK (double black line)
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