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QUANTUM REVIVALS IN TWO DEGREES OF FREEDOM INTEGRABLE
SYSTEMS : THE TORUS CASE

OLIVIER LABLEE

ABSTRACT. The paper deals with the semi-classical behaviour of quantum dy-
namics for a semi-classical completely integrable system with two degrees of free-
dom near Liouville regular torus. The phenomomenon of wave packet revivals is
demonstrated in this article. The framework of this paper is semi-classical analy-
sis (limit : & — 0). For the proofs we use standard tools of real analysis, Fourier
analysis and basic analytic number theory.

1. INTRODUCTION

1.1. Motivation. In quantum physics, on a Riemannian manifold (M, g) the evo-
lution of an initial state ¢y € L?(M) is given by the famous Schrodinger equation

0 pp(e); 9(0) = o

Here h > 0 is the semi-classical parameter and the operator P, : D (P,) C L? (M) —

L? (M) is h-pseudo-differential operator (for example P, = —%Ag + V). In the
case of dimension 1 or for completely integrable systems, we can describe the
semi-classical eigenvalues of the Hamiltonian P, and by linearity we can write
the solutions of the Schrédinger equation. Nevertheless, the behaviour of the so-
lutions when the times ¢ evolves in larges times scales remains quite mysterious.

In dimension 1, the dynamics in the regular case and for elliptic non-degenerate
singularity have been the subject of many research in physics [Av-Pel], [LAS],
[Robil], [Robi2], [BKP], [Bl-Ko] and, more recently in mathematics [Co-Ro], [Rob],
[Paul], [Pau2], [Lab2]. The strategy to understand the long times behaviour of dy-
namics is to use the spectrum of the operator Pj,. In the regular case, the spectrum
of Py is given by the famous Bohr-Sommerfeld rules (see for example [He-Rol,
[Ch-VuN], [Col]) : in first approximation, the spectrum of P, in a compact set is a
sequence of real numbers with a gap of size /1. The classical trajectories are periodic
and supported on elliptic curves. Always in dimension 1, in the case of hyperbolic
singularity we have a non-periodic trajectory. The spectrum near this singularity
is more complicated than in the regular case. In [Lab3] we have an explicit de-
scription of the spectrum for an one-dimesional pesudo-differential operator near
a hyperbolic non-degenerate singularity. The article [Lab4] deals with the quan-
tum dynamics for the hyperbolic case. So, in dimension 1, we get the full and
fractionnals revivals phenomenon (see [Av-Pe], [LAS], [Robil], [Robi2], [BKP],
[B1-Ko], [Co-Ro], [Rob], [Paul] for the elliptic case and see [Lab4] or [Pau2] for
the the hyperbolic case). For an initial wave packets localized in energy, the dy-
namics follows the classical motion during short time, and, for large time, a new
period Tie, for the quantum dynamics appears : the initial wave packets form
again at t = Tep.
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Physicists R. Blhum, A. Kostelecky and B. Tudose are interested in the case of
the dimension 2 (see [BKTI). Our paper presents some accurate results on the time
evolution for a generical semi-classical completely integrable system of dimension
2 with mathematical proofs.

1.2. Results and paper organization. Here the quantum Hamiltonian is of the
type P, = F (Py, P,) where F is a real polynomial of two variables and Py, P, are
semi-classical one dimensional harmonic oscillators (see section 2 for details). By
a diffeomorphism this Hamiltonian is less particular than it seems to be, since
it gives the spectrum of any completely integrable system with two degrees of
freedom near regular torus or around elliptic singularity [VuN]. Therefore, the
Hamiltonian study leads to a study more or less general but which is not obvious
in dimension 2. In this paper, we consider an initial state 1y localized near some
regular Liouville torus of energies (Ej, E;) and we study the associated quantum
dynamics. To understand the behaviour of dynamics, we interested in the evolu-
tion of the autocorrelation :

a(t) = [ ($(1), Yo)r2re)

Due to the simple nature of the Hamiltonian operator the autocorrelation function
can be write as a serie :

400 +o0

Z Z |an,m|zeiiiF(Tnuqu) ,

n=0m=0

a(t) =

where T, = wih (n + %) , Um = woh (m + %) are eigenvalues of the one-dimensionnal
harmonic oscillators Py, P,. The sequence (ay,m),, ,, is just the decomposition of the
initial vector p on the Hermitte’s eigenbasis of L?(R?).

Most of the paper (section 3 and 4) consists in estimating and analyzing the
function a(t) for large times scales (t < 1/h° with various s > 0). We use Taylor’s
formula to expand the phase term tF (T, y) /h in the variables (n,m); first in
linear order (section 3), then to quadratic order (section 4).

In the section 3, we study the linear approximation a1 (t) (see definition 3.6) of
the autocorrelation function, valid up on a time scale [0,1/h*] where 0 < a < 1.
The dynamics depends strongly on the diophantin properties of the classical pe-
riods Ty, Ty, If the fraction Ty, /T, is commensurate (in this case the classical
Hamiltonian flow is T,;-periodic) we can describe accurately the behaviour of the
dynamics on a classical period [0, T;] (see theorem 3.12). In opposite, if the frac-
tion Ty, /T, is a bad approximation by rationals (we suppose T, /T, is Roth
number) the autocorrelation function collapse in the set |0, Ts| where T; is order of
1/h® (see theorem 3.24). For large time we use the continuous fraction expansion
of T, /T, to analyze some possible periods for linear approximation aq (t) (see
theorem 3.35).

In the last section, we use the quadradic approximation a,(t) (see definition
4.6) of the autocorrelation function, valid up on a time scale [O, 1/ hﬁ] where >
1. In this quadradic approximation appear three revivals periods Tiey,, Trev, and
Tev,, of order 1/h depending on the Hessian matrix of the function F at the point
(E1, Ep). If we suppose Trevy, Trev, and Tiep,, are commensurate, we can proove
and analyze the revivals phenomenon (see theorem 4.16 and corollary 4.17). In the
last subsection we compute the modulus of the revival coefficients (see theorem
4.19).
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2. GENERAL POINTS

2.1. Some basic facts on semi-classical analysis. To explain quickly the philoso-
phy of semi-classical analysis, starts by an example : for a real number E > 0; the
equation

K2

— 50 =Eg
(where A, denotes the Laplace-Beltrami operator on a Riemaniann manifold (M, g))
admits the eigenvectors ¢y as solution if
2

e
Hence if h — 07 then Ay — +oo. So there exists a correspondence between the
semi-classical limit (# — 07) and large eigenvalues.

The asympotic of large eigenvalues for the Laplace-Beltrami operator Ay on a
Riemaniann manifold (M, g), or more generally for a pseudo-differential opera-
tor Py, is linked to a symplectic geometry : the phase space geometry. This is
the same phenomenon between quantum mechanics (spectrum, operators alge-
bra) and classical mechanics (length of periodic geodesics, symplectic geometry).
For more details see for example the survey [Lab1].

2.2. Quantum dynamics and autocorrelation function. For a quantum Hamil-
tonian P, : D (P,) C H — H, where H is a Hilbert space, the Schrodinger dy-
namics is governed by the Schrédinger equation :

ih% — Pt).

With the functional calculus, we can reformulate this equation with the unitary
group U(t) = {e*iﬁp h}t . Indeed, for a initial state iy € H, the evolution is

€
given by :

p(t) = U(t)ipo € H.
We now introduce a simple tool to understand the behaviour of the vector (t) :
this tool is a quantum analog of the Poincaré return function :
Definition. The quantum return functions of the operator P, and for an initial
state 1 is defined by :
r(t) = ((t), Yoy

and the autocorrelation function is defined by :

a(t) = [x(t)] = [($ (), o)yl -

The previous function measures the return on the initial state ¢y. This function
is the overlap of the time dependent quantum state (t) with the initial state .
Since the initial state ¢y is normalized, the autocorrelation function takes values in
the compact set [0, 1].

2.3. The Hamiltonian of our model. For our study, the quantum Hamiltonian is
the operator :

Ph :=F (P], P2)
where F is a polynomial of R [X, Y] which does not depend on the paramater /;

P; and P, are the Weyl-quantization of the classical one dimensional harmonic
oscillator :

p] (xll gl/ X2, 62) = (U] (x}z + é"}2) /2
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with wy, wy > 0. Itis well know that the Hermitte functions (e,,m),, ,,, := (€n ® €m),, menz

is a Hilbert basis of the space L?(IR?). Let us consider for all integers (1,m) the
eigenvalues of P; and P, :

1 1
Ty = wih (n+§), Um := woh (m—i—z);

so, we get immediatly that for all integers (1, m)

F (P, Py) (en ®em) = F (Tu, hm) (en @ ) -

2.4. The autocorrelation function rewritten in a eigenbasis. Now, for a initial

vector Py = Z ay,men,m we have forall t > 0
n,meN2
it i P
P(t) = (e z;,F(Pl,Pz)) ( Z an,men,m> = Z Anm — i F(Tupim) o enm
n,meN2 n,meN2

so, for all t > 0 we obtain
400 400 t
= 5 et
n=0m=

and
+o0 +o0
Z Z |anm| e~ h F(T,ptm)
n=0m=

The aim of this paper is to study thlS sum, but unfortunately this function is too
difficult to be understood immediatly.

2.5. Strategy to study the autocorrelation function. The strategy for simplify the
sum function t +— a(t), performed by the physicists ([Av-Pe], [LAS], [Robil],
[Robi2], [BKP], [Bl-Ko]) is the following :

(1) we define a initial vector g = Z an,men,m localized near some regular
n,meIN2
Liouville torus of energies (E1, E) : consequently the sequence (an,m),, eN2
is localized close to a pair of quantum numbers ng, mg (depends on h and
on the Liouville torus (Eq, E3).
(2) Next, the idea is to expand by a Taylor formula’s the eigenvalues F (Ty, pm)
around the Liouville torus (E1, Ep) :

F (Tu, pim) =

oF oF
F (Tn()/ Vmo) + hawn (” - 7’10) ﬁ (Tn()f ﬂmo) + hw, (m - mO) W (Tn()f Mmg)

1 0°F 1 » 0°F
+2w1h2 (n - 0)2 ax2 (7”0/ Vmo) + 2w2h2 (m mO) aYz (Tnor .umo)
’ 0°F
el (11— 1) (1 — 1) ==z (Tig, g + -

(here Ty, pm, is the closest pair of eigenvalue to the pair Eq, E). As a con-
sequence we get forall t > 0

2 efit {wl(nfﬂo)gi (Tnorﬂmo)+“‘+w1w2h("*"0)(m*m0)aazia}; (TWO/P‘WO)+"' ]

n,meN2



(3) And, for small values of t, the first approximation of the autocorrelation
function a(t) is the function
Z |, m \2 e_it[wl(”_”O)g_F (Tug g ) +ew2(m—1m0) S5 (Tag tmg) | ‘ ;

n,meN2

al(t) =

and for larger values of ¢, the order 2-approximation is given by

. 2
) = | T a2 A0 ) it 1) ()] ‘ |

n,mcIN2

In section 3, we study in details the function ¢ — a; () and ¢ — ay(t) in section 4.

2.6. Choice of an initial state. Let us define an initial vector ¢y = Z An,men,m

n,meN2
localized near a regular Liouville torus of energies E := (Ej, E;) where E; € [0, 1]
and E; € [0,1].

Definition 2.1. Let us consider the quantum integers ny = ng(h, E1) and my =
mo(h, Ep) defined by

np := argmin |1, — E1|; mp := argmin |y, — Ep|.
n m

Remark 2.2. Without loss of generality, we may suppose that the integers #ny and
My are unique.

The integer ng (resp. my) is the eigenvalues index of the operator from the
family P; (resp. P,) the closest to the real number Eq (resp. Ep). Since the spectral
gap of P; (resp. P,) is equal to wih (resp. wyh ) we have, for b — 0: ny ~

2

£ ~ E2_
wlh’ mo wzh'

Now, we can give definition of our initial state :

Definition 2.3. Let us consider the sequence (anm), yezz = (Anm(h)), ez de-
fined by :

._ = Tng Bm = Hmg \ _ n—rny m—moy\ .
1= Kk ( i n% > o <w1 oL e ) ’
where the function yx is non null, non-negative and belong ot the space S(IR?). The

parameters (], 55) €]0,1[2. We also denote

(T T H— g
Kh’_HX( W n )

2(N?)

Let us detail this choice :
(1) the term y (T”hJZ”O , % localize around the torus (Ej, E3) (for techni-
cal reason we localize around the closest eigenvalues to (Ej, Ep).
(2) Constants 0] and &} are coefficients for dilate the function x (the reason to
take 0 < 5} < 1is the following : it is the unique way to have a non-trivial

localization (not tend to {0}) and a localization larger the spectral 1 > h).

So, clearly the sequence (anm), ,, € ¢*(Z*). Now, let us evaluate the constant of
normalization Kj;; start by the :

Lemma 2.4. For a function ¢ € S(IR?) and (e1,€2) € ]0,1]* then we have uniformly
for (ug,up) € R?:

)3

(SEZ2, |l+uy| >, |s+un| >3

l4+uy s+u
¢<—1,—2

- & >' =0(eT +€37).
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Proof. We see easily that, uniformly for (u1,u;) € R? we have

)3 qv(“—ul SHZ)‘:O(U-

7
€1 )
(SEZ2, [U+ug| >3, [s+up| >4

£+M1 S+ up
gL st
1 €

€—|—1/l1 S+ up %N
! i) (€+M1)2N

€—|—1/l1 S+u2
€

C+uy s+ up
L
1 1 €1 €2
0, s€Z2, [l411]> 3, [s+uz| >3

2N
+ l4+uy s+u
< 2NN 5T Us 1 230
&5 4 § ( Q P

lseZ? €2 €2

Next

X

0sEZ2, [0+uy| >3, [s+ua| >

< Z 1(€+u1)

0sEZ2, [0+uy|> L, [s+ua| >3

< €%N4N (f“‘ul)
lseZ?

And, similary we have

To conclude the proof, we apply that to the functions ¥(x,y) := x*N¢(x,y) and

P y) = yNo(xy). O
An obvious consequence of this lemma is the following result :

Proposition 2.5. We get

1
Ky, = + 0O (h™);

5/+02 -2
(%) (0,0)h
hence ||anm|| 2(n2y = 1+ O(h%).

Proof. By the Poisson formula and the lemma above we get the equality :

&1 &1
n—ng o m—mg\ 552 N LA
ZX< 5'1""2,15{2—1)_}112 ZS(X)<£w1’Sw2

n,meZ? lseZ?

pinn_g_ o)

LseZ2, 0| +|s|>1
— pOito-2g (XZ) (0,0) + O (h%).
Now, with the basic equality

Z XZ (7’[ —np m : WlO) _ héi-l—(Sé—Zg (X2) (0, O) +0 (hOO)

! 7
n,meN2 h(sl_l o2t

-1 +00 oo —1
2 ng m—my n—ng m-—1moy
Z Z X (hé’—l’ h()’—l ) Z Z X (hé’—l’ h()’—l )
N=—00 Mm=—00 n=0m=—oo

and with the lemma above we see easily that

BB e () ou)

N=—00 Mm=—00
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A ny m— g o
Y or (A n) — o).

n=0m=—oo

Finally we get :
n—ng m-—my
HX < ERE )
1

K, = +O(h).

/
5+z>2 -2

§(x?) (0,0)h
Hﬂ H2 _K2 Z w n—np w m — mg 2
n |l 2(N2) = hnmezz X 1 héifl W2 héé_*l

= K2K01+0r-2 [s (;8) (0,0) + O(hw)} =1+ 0(h™).

2

-3 <X2) (0, 0)h51+5£72 +0 (hw);
ZZ(]NZ)

hence

For finish, we write

O

2.7. Technical interlude : the set A. In this subsection, we introduce the set A C
IN?, this set is useful for making approximation for autocorrelation function. Start
by the definition :

Definition 2.6. Let us define the set of integers A = A(h, E1, E;) by :
A= {(n,m) € N?%; |Tn — Tnp| < wlhél and |pm — pmy| < th‘sz}

= {(n,m) € IN?; |n—ng| <k Land |m —my| < h‘sz_l}
where 0 < ; < 1; and we define the setI' = I'(h, E1, Ep) by :
I:=N?-—
We have the following usefull lemma :

Lemma 2.7. If we suppose for all i € {1,2}, 5} > 6; then we have

Y |anm|* = O(h®).

nmel

Proof. The starting point is the following inequality :

Z ‘an,m‘z < Z ‘an,m|2+ Z |an,m|2‘

nmel’ n,meZ2, |n—ng|>h’1-1 n,meZ2, |m—mo|>h%2""

Since the function x? is in the space S(IR?), for all integer N > 1 we have

2N
Z (n—n0> <m m0>
or—1 (5' 1
n,mecZ? h1 n,mcZ?

Without loss generality, we may suppose that ng = mg = 0. Next we write

2N
O T G N 2\ L
: 1) N

n,meZ?, |n|>h’11 n,meZ?, |n|>hf1=1

2=0(1).

— O (2N -8\ |
(2)



In a similar way, we get

Z |an,m‘2 =0 (hZN(%_(SZ)) ;
n,meZ2, |m|>h%2=1
because &/ > §;, this implies Y |ay,m 2 = O(h*), so we prove the lemma. O
nmel

3. ORDER 1 APPROXIMATION : CLASSICAL PERIODS

3.1. Introduction. In this section, we use a Taylor’s formula to expand the phase
term tF (T, ym) /h in the variables (n,m) in linear order. In this approximation
appear two periods T, and T, of order O(1) depending on the gradient of the
function F at the point (Eq, Ep).

3.2. Linear approximation and classical periods.

Assumption 3.1. Here, we suppose that g—§ (E1,E) #0, 3—5 (Eq,E) # 0.

3.2.1. Semi-classical and classical periods.

Definition 3.2. We define semi-classical periods T, and Ty, by :
27 27
————and Ty, i = ——"——.
g_f( (Tn()f ﬂmo) w1 ? g_F (Tn()/ Vmo) w2

So, in linear order approximation, we have :

Tsc11 =

Proposition 3.3. Let « a real number such that « > 1 — 2min ;. Then, uniformly for
all t € [0, h*]:

. —2int<”‘”°+"’_m°> .
r(t) _ e—ltF(TnO,plmO)/h Z ‘anm|2e Tocty * Teely +0 (ha+2mm(5;—1) )

n,meN2

Proof. Let us introduce the difference (t) := ¢(t, ) defined by

.t i 72int<n—n0+m—m0>
() = | X Jann e B ) ) 7 g, 2 P RS

n,meN? n,meIN2

For all integers (n,m) € IN? the Taylor-Lagrange’s formula (at order 2) around
(Tng, Hmy ) On the function F gives the existence of a real number 6 = 6 (1, m, ng, mg) €
10, 1[ such that
27th (n —ng)  27th (m — my)
+
Tscll Tsclz

19%F
a)%hz (n — n0)2 + 5 78({/);”1) w%hz (m — mo)2
+—82 ( )wwhz(n—n)(m—m)

0XoY Pnm) W12 0 0/

with opm = p(n,m, no, mo, ) := (Tug + 0(Tu — Tng), g + 0 (pm — pmg)) -
So, we get

F (Tn, pim) = F (Tug, Pimy) +

19?F (onm)
T

_n; Yl*n(l M*m(l .
S(t) _ 2 ‘an . 2(3 217'cf<T5cll + Tscly ) |:e—127rtRn,m(h) B 1:|
n,meN2

where we have used the notation

Rym(h) = hw? (n — ng)? 9*F (onm) N hw3 (m — mg)? 02F (onm)

47 0X? 47 9Y?
8




| hwrwa(n = o) (m — mo) O*F (on,m)
27 0X9Y
With the sets I',A and by triangular inequality, we obtain for all f > 0

—2int<’}‘”0+"}‘m0> .
S(t) < Z ‘ﬂn,m|2€ scly - Tselp [6_12mR"'”’(h) — 1} +2 Z |ﬂn,m‘2.

nmen nmel

For all t > 0, for h small enough and for all integers (n,m) € A, we observe that

thw%(n — n0)2 92F (Pn,m) < tK1h2{5171,'

47t 0Xx2
thw%(m —my)? 9*F (Pnm) 28,1
, < 2] .
Am vz = HKhT
thawywy(n — ng) (m — mg) P*F (0n,m) 514671
/ < 1102 .
27 axay = [Kih ’

where K1, Ky, Ki» > 0 are constants which does not depend on h. Indeed : let us
denotes by B ((Ej, Ez), r) the Euclidian ball of dimension 2 with center (E;, E;) and
radius r; since limy,_,o (Tuy, #my) = (E1, E2) we obtain that Ve > 0, 3y > 0, such
that for all i < hyg, (Tuy, ftm,) € B ((E1, Ez), €); next for all integers (n,m) € A, we
have |0(Ty — Tu,)| = hw10 |n —ng| < wih® and [0(pm — pny )| = hewad [m —mg| <
w,h?2, this means that for / small enough (i < hy) we have

pnm € B((E1, E2),€);
therefore we obtain for all i < hy),

9*F

3xz (Pnm)| = sup

 (xy)eB((EvE)e)

and this quantity is > 0 and does not depend on 1. Next we have for all t € [0, h*]
¢ |Rn,m<h)| S thﬂt+2(51—1 + thﬂé+252—1 + K1,2h0é+51+52—1

9%F
m(x,y)‘

< MhDé—] (h251 +h2(52 +h(51+52) — 3Mh2min5,'+0é—1l.
where M := max (Kj, Ky, Kq3) ; with (by hypothesis) 2mind; +a« —1 > 0. This
implies that for all t € [0, h%] and for all integers (1, m) € A we get

e~ 27tRum(h) _ 1 — O (thin(S,--i-a—l)

and consequently we have for all t € [0, h"]

—2irmt n_n0+m_m0> )
T e (R ) [ )

n,men

:O(hzmméﬁtaq) Z |G m

n,mcIN2

Finally, for all t € [0, %] we have g(t) = O (h?mindita=1) O

2_ o (h2min(5i+o¢71) )

The semi-classical periods Ty, depend on the parameter /. Later we consider
two cases : Ty, /Tse, € Q or not. Consequently we don’t make commensurability
hypothesis on the number Ty, / Ty, valid up for all 1 > 0, so we prefer introduce
two quantities which does not depend on /1 to make latter commensurability hy-
pothesis. So we replace semi-classical periods T, by semi-classical periods T,

9



Definition 3.4. We define classical periods T,;,and T, by :

27T 27

T = and T =
S (B, By @ (B E)w,

An obvious remark is that for all j € {1,2} we have lim;,_, Tset; = Tar-
Proposition 3.5. Let T be a real number such that T > — min é;. Then, uniformly for all
te[0,hT]:

n—np m—mgp

Z |anm‘2e—2int(m+ Tscly Z |anm‘26—2int(m+ T, ) L0 (hT+min5i) '

n,meN2 n,meN2

Proof. We observe that

n—np m—mg )

; n—nOer—nzO) 72int<nT—n0+mT—m0
—e cly

Z |an,m|2 e e <Tsc11 Tsclz cly > S Z 2 |an,m‘2

n,meN2 n,merl
1 1 1 1
+2 ap, 2H27Tf”—”0 ( ——)‘+‘27rtm—m0 ( ——)H,
n,mZeA | " M| ( ) Tscll Tcll ( ) Tsclz Tc12

because |e/X1¢/X2 — ¢M1e2| < 2|X; — Y[ +2[Xp — V2.
Next for all + > 0 we have

1 1 Ter, — Tsar
27t(n — —— )| = 2rt(n— —h sch
& (7’1 ”0) (Tscll Tcll)‘ ’ § (” ”0) ( Tsclchll

and we know that

4

27t 35 (T o) — 3 (Ev B2)

CL)l aa_)l; (Ell EZ) aa_)lz (Ti’lor ,umo)

first, applying the inequality of Lagrange we obtain :
‘ oF oF

Tcll - Tscll =

ﬁ (THO/ Vmo) - ﬁ (E1/E2)

< sup
xy€B((E1,E2),1)

¥ (5%) )|, 10 1m) = (B Bl

S

< My (tay — E0)? + (g — E2)? < M

where M > 0 and does not depend on /.
On the other hand, since we suppose g—f( (Eq1,Ep) # 0, there exists ¢1 > 0 and
r1 > O such that for all (x,y) € B ((Ey, Ep), 1) we get

oF

S (e 2

We have seen that hence that there exists 1; > 0 such that for all 1 € |0, h4[
(Tug, pimo) € B ((Ev, E2),m1);
as a consequence the application i +— ¢ .

X (E1,E2) X (Tn()']'{mo
set |0, 11 [; indeed for all i € 0, 111

2

) is bounded on the open

1
9% (Ev E2) 5% (Tugs pimy)
10



hence, with M’ := %Mh@l , for all b € ]0,1[ we have | Ty, — Ty, | < hM'.

£2
1
Next, since

oF oF

w1y
ﬁ (E1/ E2) ﬁ (Tn()f ]/‘mo)

~ 4mr?

‘ 1
Tsc11 Tc11

w1y
< 5 sup
47
xy€B((EyE2),1)

oF ’

o () D <o

there exists a constant C; > 0 which does not depend on & such that for all
h € 10,h1[ we get |1/ Ty, —1/Ty,| < Cih. In a similar way there exists C; > 0
and f; > 0 such that for all 1 € ]0, [ we get |1/ Tye, — 1/ Ty, | < Coh. As a conse-
quence, for all h € 0, h*[ where h* := minh;, forall t € [0,h7] with T € R, and for
all integers (n,m) € A\ we have :

1 1 1 1
tHn — o <C hv-l-(Sl, ¢ _ - <C hv-l-(Sz;
‘ (n ”0) (Tscll Tc )‘ = ’ (m MO) (Tsc12 Tc )‘ =7

I I

we thus obtain for all £, (n,m) € [0,h"] x A

1 1 1 1 .
t(n —ng ( ——)+tm—m0 ( ——)’<Mh”mm‘)f.
‘ ( ) Tscll Tcll ( ) Tsclz T612

Therefore

. n—ng , m—mg . n—ng | m—mg
2 —2imt < ) * ) ) —2imt < To * cl )
Z lanm|” |e sy lscy ) o 1 2

n,mcIN2

§47TMhT+min(5,- Z |an,m

nmen

210(h®) =0 (h”mi”f) .
O

3.2.2. Comparison between classical periods and the time scale [0, h*]. In proposition

3.3 the hypothesis on « is that « > 1 — 2min;; therefore with ¢; €] %, 1] we can
make a “good choice” for «; i.e. to have « < 0. Hence for i small enough we
obtain :

0,Ty,] € [0,h%].
Next, since —mind; — (1 —2mind;) = —1 +mind; < 0 we get
h—min&,- > h1—2min5,-.

this means that we can choose to take T = a.

3.2.3. The linear approximation a;. In conclusion, the linear approximation of the
autocorrelation function on the time scale [0, h*] is :

Definition 3.6. The linear approximation of the autocorrelation function is

) -zfm(L;”O ’";'"0>
ap it — Y agm| e o er /)
n,meN2
1



3.3. Geometrical interpretation of classical periods. The periods T, have geo-
metrical interpretation. For Eq,E; > 0 consider the energy level set Mg p, :=
p ' (E1) Npy ' (E2) € R*, this manifold is isomorphic to the torus %Sl X

%Sl, here S! is the one-dimension circle. Start with the calculus of the Hamil-

tonian flow of p = F(p1, p2) with an initial point my € Mg, g,. So the Hamilton’s
equations are

% (t) agy(t)
Xz(f) _ | béa(t)
ai(t) | | —an(t)
&a(t) —bxy(t)
where we have used the notation a4 := aX F(E1,Ey)wy, b= af/ (E1, E2) wy. For all
j € {1,2}, let us consider the complex number Z;(t) := x;(t) + zgf](t) from the

Hamilton equations we obtain the equalities Z (t) = —iaZy(t), Zo(t) = —ibZy(t).
Therefore we get

Zy(t) = Z1(0)e ™™™, Zy(t) = Z5(0)e ™
and

Z1(0)P = 3(0) + 8(0) = 224, | 2:(0) = 3(0) + B (0) = 2%

this means that the Hamiltonian’s ﬂow in complex coordinate is given by
. Z1(0) Zy(t)
v (20 )~ (20 ):
In angular coordinate the flow is given by
010 ) ( b0 — taz )
: P e ’
Pt ( 62,0 tho — ffi

arg Z;(0) [1]. So we have exactly the classical periods of the Hamilton-

21

Wlth 0]‘,0 =
ian’s flow :
27 27T 27T 27T

i =T,, ===
a 9 (E,E)w Vb (B, E)w,

It's well know that if the periods are commensurate the flow is periodic on the
torus. In opposite the flow is quasi-periodic on the torus.

= Te,-

3.4. The principal part of the function a;. Now, let us study in details the func-
tion aj(f) on the time scale [0, max T, |. Start by a technical proposition :

Proposition 3.7. Forall t > 0 we have

)3

—2imt( S04 0
cll clz
n,meZ?

héifl t h&é—l t
- - ¢ . ).
Jve ( ()gzzg( ) < wy ( " Tcll) W (S+ Tc12)>

Proof. The trick here is just to use the Poisson formula, so let us consider the func-
tion (); defined by

R? - C
Qti

it 710 iy o)
2 Te )
(x1/x2) = ‘axl,xz| e 1e

12




where t € R is a parameter. For all integers (1, m) € Z? we have

Yl*no m*mo

—2imt
|ty m|* e (Tf’l el ) = O(n, m).

So clearly, the function () € S (IRZ), then the Fourier transform § () is equal, for
all {1, € R?

oo oo . .
() (C1,02) = / O (x1,x7) e~ 2701610~ 270282 e s

therefore for all {1,{, € R?> we get

e—Ziﬂ(n0C1+mO§2) 0y h5£*1 t h(Sé—] t
§ () (1, 02) = W% (X ) <— o (€1 + ftl) s (§2+ T

It comes from the Poisson formula the equality

Z Q(n,m) = Z F () (4,9)

I

n,meZ? lseZ?
1 Bo1-1 ¢ Bos—1 ¢
s, B30 (5 ) - )
§ (x?) (0,0 g,gzz (X ) < w1 T, Wy T,
which gives the proposition. 0

Since the function § (XZ) eS (IRZ), we observe that only index /,s € Z? such
that £ + -1 or s + - are close to zero are important in the sum. More precisely :
cly cly

Definition 3.8. For all + > 0, let us define the integers ¢;(t) = ¢;(t,h,E) as the
closest integers to the real numbers —t/T; i.e:

t
gi(t) + fl‘ =d (i’, TCZiZ) ;

where d(.,.) denote the Euclidiean distance on R.

Remark 3.9. Without loss of generality, we may suppose the integers /;(t) are
unique. On the other hand, for all integer ¢ € Z such that ¢ # /;(t) we get :

t 1
C+—|>=.
’ + Tcl; -2
Lemma 3.10. Uniformly for t > 0 we have :
-1 pos—1

d (lez’ t) I wo d (TCZZZ/ t)) + O (hoo) .

1 h1
ai(t) = 5x2) (0,0 o) (0,0)3 (XZ) <— o]
Proof. Since § (x?) € S(R?) we have

Vk,d € N*2, 3B, ; > 0, V{1, {2 € R?,

B
S 5 , < k,d .
(¥) @) A+ 12)F (1 + (%)

Next, it then follow from the proposition above and from the lemma 2.4 that for

allt >0
(o)~ (o)
,— s
Ty, wy T,

1 noi-t
0= 5w, 2,5 () <_ o
-1 &1

LseZ?
-1 2\ [ _h _h -
B § (Xz) (O, O)S’ (X ) ( w1 d (t’ TCZIZ) ’ wy d (t/ Tclzz)> +0 (l’l ) .

13
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Next, forallt > 0

it "m0 m*»«o)
a(t) = Z 2,7 (TCll * Ty ) Z

n,meZ? n,meZ?—IN?

—2ipt( 04 Mo
2 (Tcll + Tclz .
4

thus
hé’ -1 6h—1

al(t)—ms (XZ) (— ;l d(leZ,t),—hwz d(TdZZ,t)>’

< Y a0 (R®).

n,mecZ?—IN2
For finish, we observe
n,meZ2—IN?
400 —1 —1 —1 400
=2 X g
n=0m=—oo N=—00 M=—00 n=—00 m=|
and an obvious consequence of the lemma 2.4is that ), ,,c 72 N2 \an,m > =0 (™).

O

T
3.5. Behaviour of the function a; : case -1 € Q. In this subsection we suppose

1
Tcll = b € Q; hence aT,, = bT,.

Definition 3.11. If the classical periods T, T, are commensurate the classical
period of the global system is defined by T; := aT,;, = bT,.
Now, we can formulate an important result of this section :

Theorem 3.12. We have:
(i) for t real such that t € T;Z we get (i.e. foralli € {1,2},d (t, T, Z) = 0)

al(t) =1.
(i) If there exists i € {1,2} such thatd (T, Z,t) > > 1'% then :
a(t) = O(h%).

Proof. The first point (i) is clear. For the second : it follows from the lemma 3.10
that

B 1 ) po1-1 Boa—1 or
() = =03 007 () <— o (TaZ,1), == —d (T, Z,1) | + 0 (),

since the function § (x*) € S(R?) we have

D
3 () @8 < ey

Vg €N, 3D, >0, V{1, € R?,

and therefore
h 61—1 6h—1

h
|S (XZ) <_ w1 d (TCllz't) ’ W, d (Tclzz' t)) ‘

<

Dy

Wi 7
1+ 5—d (T, Z,t) + 1 d( T, Z,t)

14




Thus, if there exists i € {1,2} such that d (T, Z,t) > w;h'~% then there exists
¢ > Osuch thatd (T, Z,t) > w;h'~%~¢ and thus for all g € N we obtain

h‘si_l h&é—l
hence we get
por—1 51

) d (Tcllz, i’) ,—

() (5

hwz d(T.2, t)) — o).

O
T, .
3.6. Behaviour of the function a; : case T—il ¢ Q. Let us now tackle an important
¢
T,
case : the case % = %1 is not a fraction of Q. Here, there not exists classical

common period, the Hamiltonian flow is not periodic on the torus.
First, we note that, in view of lemma 3.10, the behaviour of the function a; is
given by the function :

1 2 h(si_l h5£*l

Therefore, since the function § (x?) belongs to the space S(IR?), we need to explain

simultaneously the evolutions of the distances d ( TaZ, t) depending on time. In

another formulation, we want to analyze the behaviour of the Euclidian distance
between the segment line (OM;) where O := (0,0), M; := (t,t) and the lattice

T. .
Te,Z X T.;,Z depending on the time t and the number + il = % Precisely, we want
el

to compare the distance d ((OM;), T, Z x Ty,Z) with the real number 1. For
example, if for a time +* the distance is larger than 1% we getag (t*) = O(h®).

Start this new subsection by some geometrical results and latter we explain the
study of the autocorrelation function aj (t).

3.6.1. Some general points. In angular coordinates the Hamiltonian flow is :

[0,1)* = [0,1]?

S (R
t
62,0 —5z 020
Without loss of generality we may suppose that the initial data is ( gl,o ) =

2,0

( 8 ) and thata, b < 0. Therefore the Hamiltonian flow is given by ¢; = ( ;i ) ,

where we have used the notation a := —zin >0and b := —% > 0. Recall that
T, = || = |} and T, = |3F| = ‘%‘ . So, to understand the behaviour of the
function

1 9 po1—1 o1
t— WS (X ) <_ o d (Tcllz, t) ; o d (TCZ2Z, t)

we need to explain the evolution of the Euclidian distance 4 ((pt,Zi) depending

on time t and on the real number %.
15



3.6.2. Suppose % verify diophantin condition. J. Liouville proved in 1884 the follow-
ing theorem :

Theorem 3.13. (Liouville). For all algebraic irrational number 6 with degree d > 2

there exists a constant C = C(6) > 0 such that the inequality
e
al 4
holds for all rationals %

In other words, algebraic numbers are bad approximation by rationals. Finally,
in 1955 K. E. Roth has considerably improved this result (he was awarded the Field
medal in 1958).

Definition 3.14. We say an irrational number 6 satisfy a e-diophantin condition
(e > 0) if and only if there exists a constant C; > 0 such that

‘9 B g’ - qzci‘“*
holds for all (p,q) € Z x IN*. We denote by C; the set of irrationals 6 that holds
e-diophantin condition. We say that an 0 irrational ¢ is a Roth number if and only

if € (Ceie

e>0

Ve >0,3C, > 0; V¥(p,q) € Z x N¥;

P
0_5‘ = q2+£'

There is a lot of Roth numbers examples :

Theorem 3.15. (Thue-Siegel-Roth). Every real algebraic irrational number of de-
gree d > 2 is a Roth number.

We have also the (see for example [Cas]) :
Theorem 3.16. The Lebesgue measure of Roth’s numbers is infinite.

Remark 3.17. Let 0 a e-diophantin number. Since for all p we have ] 0 — ? ‘ > Ceand
|6 —p| < % < #; thus we obtain that 0 < C, < % holds foralle > 0

Now, we estimate the Euclidian distance between the set {(Pt}te[o,T] and 72 :=
72 —{(0,0)} .
Notation 3.18. Let us denote by A and I the following orthogonal lines
A := Vect(aey + bey), T := Vect(—be; + aey)

where (ey, ) is the canonical basis of the vector space R?. Let us also considers
7tp the orthogonal projector on the line A and 7t the orthogonal projector on the
line I'.

Here we suppose 0 = % is a Roth number.

Lemma 3.19. For all ¢ > 0 there exists 0 < K. < Cg, here C, denotes the Roth constant
of 0 = %, such that

Ke

| 7ta (ney + mep)||g2 > m,‘ | 7tr (ney + mep)||g2 >
1 21l R2

holds for all (n,m) € Z2.

K.
ey + mea || b

16



(M) . _1 a :
Proof. Let us denotes by u = ( 0 ) = Tae ( b ) the unitary vector of the

line A, so we have
| 7ta (ney + mey)||ge = | (1, ney + mez) g2 |
= |nuy + muy| = |ug| [n +mb|;
since 0 is a Roth number, for all € > 0 there exist C. > 0 such that

C
[7ta (ney +mea)|lga > [u1] ‘m|—f+€

|u1| Ce
= ey + mezH]}g‘g
In a similar way we ge

1+¢”

C u C
HTEF (71(31 +m€2)HR2 > |u2| £ > ‘ 2‘ €
| [neq 4 mes|| >

- n|1+s -
therefore with K, := min (|u1]| Ce, |u2]| Ce) < C¢ we obtain the lemma. O

A consequence of this lemma is :

Theorem 3.20. For all ¢ > 0 there K. < C¢, here C, denotes the Roth constant of
0= %, such that forallt > 0
K
2 3
d (fPt,Z*) > 7 T
(2 + Va2 +b?)

Proof. We observe that for all t > 0 the point ¢; belongs to the line A, thus there
exists a pair (1, my) € Z2 such that

d ((pt,Zi) = H(ﬂ — (nteq + mt@)’

R2
> ||7tr (neeg +myez) |2
applying the lemma above we get

K
d (q)t,Zz) > £ .
' [nier + mtezﬂ]};zrs

On the other hand we have the majorization

— V2
HOq’t — (me1 + mtez)’ S5
and, by triangular inequality we obtain
— V2
< —_.
[nter + meer || e < HO@‘ et
Therefore, since HO—go:’ o =tV a?+ b2, wegetforallt >0,e>0
K
2 e
d(91,22) = s
(Va2 + b2+ ¥2)
O
1+e
Corollary 3.21. For all e > 0 and for every n € ]0, ﬁ; { C }O, ‘/TE { we have :
1
1 K\ V2
d Ve t> —= | [ — -— .
() <n= >\/a2+b2<<’7> 2)

17



Proof. Suppose d (¢¢(0), Z%) < 7, it then follows from the theorem above that for

all ¢ > 0 there exists a constant K, € } 0, % [ such that

Ke
<7
1+
(‘/TE +t\/a2—|—b2) )

holds for all t > 0;i.e.

1
T
(5) B N

U

1+¢ L
Remark 3.22. Since 17 € }O, \/i; { C }0,% [we have (%) e > ﬁ.

Notation 3.23. For e > 0 and 1 > 0, let us denote :

1+e
Theorem 3.24. For all ¢ > 0, for every 7 € }0 f . [ with # small enough such

that t (¢) > max T, and for all k > 1; there exists a constant Dy > 0 which does
not depend on & such that the inequality

|a1(t)\ < thk(l—maxéz’-)n—k
holds for all t €[max Ty, t,(e)].
Proof. Our starting point is that for all { > max T,;, we have
d (i’, TCZ[Z) =d (t, Tcl,-N*) .

==z

Next, since Ty, = and T, = || = ‘%‘ we get
d(t,Ty,Z) =d(at,N¥), d (t, T.,Z) = d (bt,N*).

Therefore, from the corrolary above (by contraposed) we obtain for all t €[max T, t;(e)]
d ((at,bt),Zi) >1;
and since the norms ||(x,y)| g2 and |x| + |y| are equivalent on IR?, there exists a
constant C > 0 such that
d(t, Ty, Z) +d (t, T.,Z) > Cy

holds for all t €[max T, t;(e)].
Next, since the function § ( ) belongs to the space S(R (R ) we have

Vk € N?, M > 0, V1, € R?, ‘5( ) gl,gz\ m

thus we obtain for all t €[max T, t;(¢)]
o—1 Bo5—1

h°1
S(XZ) <_ o d(t, T,Z), - ; d(t,TCZZZ)>|

<

M

h&i—l h&é—l k
( o d(t, T, Z) + - d(t, Td2z)>

18




_ max(w; ) M;
= pkmax@) K (4 (1, Ty Z) +d (1, T, Z))

k

max(w;)*M; 1
Jkmax(s;)—k Ckﬂk

k
_ max(wi)k &khk(l—max(cslf))n—k.

O

Applying this theorem with 17 = h® where the real number s belongs to |0, 1 — max d/ |,
we have :

Corollary 3.25. Foralle > 0, s € |0,1— maxd![ and for h small enough such that
tps(e) > max Ty; the following equality

ay(t) = O(h%)
holds uniformly for all t € [max Ty, tys (e)].

Notes on time scales. From a pratical point of view, we must verify that for all
e>0

ths (S) S I’la

where & > 1 — 2min (J;) . Indeed we have :

Proposition 3.26. Suppose mind; > 3, for all & > 0 and for all s € ]0,1 — max ! | we
have

(h1—2rnin(51' _ \/E) ‘

tys (€)

1
< -
T 2v/a? +b?

Proof. For all s > 0 and forall e > 0, since

e©) =~ ((Kaﬁe h T - ?)

for h — 0 we have the equivalence

tys ~ Dgl’l_l%rf

1
where D, := ﬁ (Ke) ™% > 0. On the other hand, we see that for all ¢ > 0 we
g
have 1 —2miné; < mafﬁ; ! Hence
maxé/—1

h T < h1—2min(51-'

Therefore, we obtain

maxd/—1
s (€) < _ ((Kg)l}rs T — ?)

VaZ +b?
< 1 (Kg)l%e pl-2mind; Q < 1 lhl—zminéi _ \/_E ‘
~ VaZ+ b2 2 )~ Va2+p2\2 2

O

Use of continued fractions. Now, we can wonder what are the accurate times
when d (¢, Z2) < 1 ? To solve this problem we will use the continued fraction
theory.

19



Some useful theorems. The continued fractions are essentially used for the approx-
imation of real numbers. There exists two types of continued fractions: the finite
continued fractions representing rational numbers and the infinite continued frac-
tions representing irrational numbers. For all irrational number 6, there exists a
pair sequence (g,, p») €IN? such that

)

an| = 47
holds for all n > 0. This sequence is given by the continued fractions algorithm
(see [Ro-Sz], [Khi]). Geometrically speaking, the construction principle for this
sequence is as follows (see [Arn2]) : consider vy := (0,1) and v_1 := (1,0). Itis
obvious that these points lie on different sides of the line y = 6x. By induction : let
the vectors vx_1 and vy be constructed whereas to construct the new vector v 4,
we add to the vector vj_1 the vector v as many times as we can in such a way the
new vector vy lies on the same side of the line y = 6x as the vector vy_1 :

1

V41 = kU + U1
ie
{ Tk+1 = Ak + k-1

Pk+1 = akPk + Pk—1
where (ay);~ is a sequence of integers strictly > 0.

We note that the sequence (g,),, is strictly increasing. With the standard nota-
tion continued fractions we have
1
[a0,a1,...,a4,...] :=a9+ —

a; +
! ”2+a31+,..

end we have (see for example [Khi]) the relation [ag, a1, ..., a,] =

&S

Example 3.27. The number 7 is given by : 7 = [3,7,15,1,292,1.. ].

Approach time. Let us denote by D the line y = %x = 0x. Hence, forall t > 0 we
have:
[O(pt] C D.
For a fixed n > 0 we wish to find the point M,, of D such that d (M, (qu, pn)) =
d (D, (qn, pn)) - In other words, we wish to find the time 7, such thatd (¢<,, (qn, pn)) =

(D, (qn, pn)) -
Proposition 3.28. For all n > 1 the unique t, > 0 such that d (¢<,, (G, pn)) =

d (D, (qn, pn)) is given by
- _ +bpy
! a?+b?

Moreover we have
a 1 1

d 72 < e < —.

<¢Tn ) T VaZ+b2qn qn

Proof. Forn # 0 fixed, we want to find ¢ > 0such thatd (¢t, (gn, pn)) = d (D, (Gu, pn)) -
This means that we want to find t > 0 such that

— —
Ogr L ((%61 + pue2) —Oq?t)
i.e.: to find t > 0 such that

> >
<O§0t/ (qne1 + pne2) _O§0t>]R2 =0.
20



Consequently we solve the equation at(g, — at) + bt(p, — bt) = 0 and we find for
agu+bpn agn+bpn

non-null solution : = =5 B Therefore, at time t = 7, := =5 Hr We obtain
a’g, +abp, abg, + b?
d((Pan(qn/pn)) :d << qa?‘;—’_b2pn, Zg+b2pn) /(qi’l/pn))

1
T aZ+p2 \/b2 (apn — bqn)2 + a2 (bg, — apn)2.

Since for all integer n we know that ‘0 - %

< qlz,i.e. |gnb — pnal < qin holds for

all integer 1, so we deduce that

a? a 1 1

1 a
d ,(an, < ——— /P24l < —— <
(97 (Gn, pn)) < a2 + b2 73 2~ VaZib2q9:  4n
For conclude, we note that

A (@5, (qnpn) 2 d (95, 22)
holds for all integer 7. O

We wish to generalize this result : we wish to analyze the behaviour of the
distance between the set Z2 and the flow ¢; when ¢ is in a neighbourhood of the
time T,.

Notation 3.29. For r > 0 let us denotes by B(1y, ) the closed ball of center 7, and
radiusr > 0:
ag, +bpy, agy +bp,

B(Ti’l/r) ::|: a2+b2 -7, a2+b2 +7’:|

Proposition 3.30. Forallr > 0

1 ab 2 a2 2
2 - st 2 2 bl 2 2
d((pt,Z*)§a2+b2\/((qn)+ra(a +b)) —i—(qn—i—rb(a —l—b))
holds for all t € B(Ty, ).

Proof. We begin with the following inequality : for all t > 0 and for all n

d ((Pt/ Zi) < d (91, (gn, pn)) -

Next, it’s clear that for all t € B(ty,r) we have

2 2
o1 B <M ra) < B (M,rb)

a2+ b2’ a2 4 b?
Therefore, for all t € B(Tt,,7) we have
d (@1, (qn, pn))
a%q, + ab 2 abg, + b? 2
<\/(%+m—qn) +(—Z;+bzpn _|_rb—pn)
_ 1 \/ b b2 2 1 p2))? b 2 b(a2 + b2))>
= 2 rp2 V (@bpn — b +ra(a? +b2))" + (abgu — apy + rb(a +b?))

1 ab 2 a2 2
< m ((q_n) +ra(a2+b2)) + (q_n +rb(a2+b2)) .
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Remark 3.31. For r = 0 we obtain

i(022) < g (2)) + (2) < o
Ptr Co ~ a2+ b? In In - az—l—bZQn.

and we obtain again the result of the proposition 3.28.

Now, let us give an asymptotic equivalent (for n — o) of the real number T, :

e . . bo
Proposition 3.32. For n — oo we have 1, ~ Qgy; where () := ;i’-tbz > 0.

Proof. We just write the fraction 7,/ Qgy, :

Ty agn +bpy a’ 4+ b? _a n bp,
Qg,  a2+b? gy(a+bf) a+bd gu(a+bo)
and since limy o0 pr/qn = 6 we obtain that lim, o T,/ Qg = 1. O

Now, let us come back to the autocorrelation function approximation a;. Start
by a notation and a remark :

Notation 3.33. For pu > 0 let us denotes by A, = A, (6, u) the following set :
Ah = {qn € NN, qn € |:hmin5f*1+]1, h1*2m'm5i*14:| } )

Remark 3.34. For u > 0, we have of course {hmin‘sz{_l_",hl_zmir‘&fﬂ‘} - {hmin‘sz{_l,hl_zmin‘sf’ .

If we suppose that the set .4, is non empty, we have some periods for the func-
tion ag, indeed we have :

Theorem 3.35. Suppose A;, # @, then

sup la1(tn) — 1| = O(K").
ne{meN, gu(0)€A,}

Proof. Applying the Taylor-Lagrange formula on the function (x,y) — § (x?) (x,y)
near the origin : for all t > 0 there exists 6 = 6 (t, h, T, sz) € 10,1 such that

() (-5

h&i—l oF (XZ) h(S{—l h&éfl
— ) d (leZ, i’) o 0 o d (leZ, t) ,Gw—zd (TCIZZ/ i’)

51

hwz d (T2, t)) -3 (XZ) (0,0)

d (TCZIZ/ t) ,—

pos—1 0F (Xz) Ko1—1 poa—1
o d (To,Z, t) 3y 0 o d (T, Z,t) ,6w—2d (T2, t) | -
We know that for all n > 1 the distance between the part of the flow ¢+, and the
set Z2 is strictly lower than qln Hence, if we suppose that from a certain point,

like n > N, the sequence (ql) is strictly lower than h® (with s > 0), then we
"/n

obtain the majorization d (q)Tn,Zi) < h®. Therefore, for all i € {1,2} we have
also d (y, Ty, Z) < h°. Consequently for alli € {1,2} we get ni—1g (tn, Ta,Z) <

hoi=145 | Since we suppose s > —mind! + 1 + p with 1 > 0 we deduce that :

Wi ld (o, Ty, Z) < h¥;

and, for & small enough, we obtain

héifl oF X2 héifl hééfl
w1 d(TCllz,Tn) a(x ) 9 wl d(TCllz,Tn),e wz d(TCZZZ,tTn)

< Mh#,

22



< Nh#;

poa—1 0F (Xz) po1—1 K1
Wy d (TCZZZ/ Tn) ay 0 w1 d (TCZIZ/ Tn) ,Bw—Zd (TCZZZ, tTn)

where M, M’ > 0 are constant which does not depend on h. Next, it comes from
the Taylor formula written above that

sup la1(t) — 1| = 7oy
ne{meN, gu(0) €Ay} ! §(x?) (0,0)

K1 9% (x%)

-1
w1 d (leZ, ’Z.'n) ox

h
Wy d (TCIZZ/ Tn)>

sup
ne{meN, gu(0) €Ay}

hé—1 3§ (x?)
wz d (TCZZZ/ Tn) ay

héifl
0 o d(TCllz,Tn),G

h&éfl

w—2d (T, Z, Tn)> ’

héifl
9 wl d (Tcllz,Tn) ,9

< h*M.
O
Counting of the sequence g,,. In view of the theorem above, let us now tackle an

important problem : what is the cardinality of the set Aj, ? Note that since the
sequence (4,(0)),,cp is strictly increasing we have

#{A} =#{neN, q,(0) € Ay }.
Start by a simple majorization of the integer # { A, } :

#{A) <# {JN n [hmiﬂfsf—l—ﬂ,hl—zmm‘sfﬂ } < E[6(h)]+1

where §(h) := pl-2minditp _ pmindi—1- and E[x] denotes the integer part of x.
Then, for h — 0 we have the equivalence §(h) ~ hl1=2Mind%+1 So we get a ma-
jorization of the integer # { A}, } in order i1 =2minditn,

Nevertheless, find a minoration of the integer # {.A;, } is more difficult; but it’s
cleat that for all n* > 1 there exists 1* € ]0, 1] such that :

N s S e
[ mindi=1m, el —2mindcey ] <U qn(9)> = {4n:(0)}.
n=0

In order to estimate the integer # { A}, } , we must know the distribution of the se-
quence (4, (0)),cp on the real axis (in particular on the compact set [hmi“ 0j=1=p pl-2min 5:’+V} )
depending on the number 6. Let’s try to give some distribution examples of the se-
quance (qu(6)) e -
An exemple : the golden ratio. The golden ratio ¢ is the unique real roots of X? —
X —1=0,ie. ¢ = (1++/5)/2. The continued fraction of the golden ration is :
1

—M1,1,...1,..]=1+
¢ = ] =

1+

Consequently the golden ratio is that one of the most difficult real number to ap-
proximate with rationals numbers. An another particularity of the golden ratio is
that the sequence of the denominators (g, ),, from the continued fraction algorithm
is equal to the Fibonacci sequence (IF;),, :

o L (16vB)" 1 (1-45)"
5 2 V5 2 ‘

We note that




Next for n — +o00 we have also :

1 (1+v5)"
o115

We have also the following property :

Proposition 3.36. Denote by q,(x) the sequence of denominators from the continued
fraction algorithm of the number x; for all € R, n > 0 we have

qn(0) > Fy.

In the general case for any 6 irrational number, we have the following theorem
(see for example [Khil) :

Theorem 3.37. (Khintchine-Lévy, 1952). Almost surely for § € R we have
lim qn(G)% =K;

n— 400
T
where K denotes the Khintchine-Lévy constant K := e2n(2) > 1.

Thus for instance from a certain point we obtain :

1 \" 3 \"
- < <|= .
The study of the distribution of the geometrical sequences ( (%K ) n) N and ( (%K ) n)
ne

nelN
on the compact set {hmin O min5i+y] is easy; unfortunately it does not

provide accurate informations on the distribution of the sequence (4,(8)),cn -

Open question. Do we know the denominator distribution of (g,(f)),cn With the
real axis depending on 08? More specifically, for a non-empty compact set of diam-
eter 6 > 0 includes in RY, is it possible to estimate the number of elements of the
sequence (4,(0)),,cpy in this compact set depending on the numbers 6 and & ?

4. SECOND ORDER APPROXIMATION : REVIVAL PERIODS

4.1. Introduction. Our next aim is to use a more accurate approximation of the
function t — a(t). In this section, we use the quadradic approximation a;(t) of the
autocorrelation function, valid up on a time scale [0,1/h#] where B > 1. This ap-
proximation is a consequence of a Taylor formula on the the term tF (7, pi) /h in

order 2. In this quadradic approximation appear three revivals periods Tieo,, Trev,
and Tyeo,, (of order 1/h).

Assumption 4.1. In this section, we suppose % (E1,Ez) # 0, &Z—BFY (E1,Ez) #
2
0, 3% (E1, Ep) #0.

4.2. Quadradic approximation andc revival periods.
4.2.1. Semi-classical revival and revival periods.

Definition 4.2. Let us define the semi-classical revival periods Tev,, Tsreo, and
Tsrevu by :

T o 47t T o 47T )
srevy ‘= Toop 57 Lsrevs *= Tpp 57
hm (Tngs imy) W7 hm (Tngs Hmg) w5

47

Tsrevlz = 9°F .
h axay (Tngl VWIO) C()l(UQ
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So we get the approximation :

Proposition 4.3. Let B a real number such that > 1 — 3mind;. Then we have uni-
formly for t € [0, hF]:
e+itp(rn0,y,,,0)/hr(t)

it (1= g | (mng)? | (momg)? | (7o) im )
2 Tsel Tsel Tsrevg Tsrev, Tsrevqy
= Z |anm|” e 1 2

n,meN2

+0 (hﬁ+3 min(S,-—l) ‘

Proof. The principle is the same as in the proof of proposition 3.3. Here we use
the Taylor-Lagrange formula at order 3 : for all pair (1, m) € IN? there exists § =
6 (n,m,ng, my) € |0, 1] such that

IF (Tuy, pimy)
0X

JF (Ty,,
F (T, pm) = F (Tug, pimo) + wih (n —ng) + szh (m — mg)

2 2
LOF (T o) 212 1y o2 LEE (Trorbme) 22y 12

2 0X? 2 Y2
1 9°F 19°%F
EMQY“%Wmﬁﬂwﬂ%”—%ﬂm—mw+8_7§?ﬁw%%ﬂ—mf
19°F 1 PF
by ) ol (= )? (= o)+ 3 ) B (= ) (o — o)

19°F (pn,m)
T axe
with pu,m = p(1n,m,ng, mo, h) := (Tug + 0(Ta = Tug), Py + 0 (s — Hmg)) -
Next, we observe that for all pair (1,m) € A and for all t € [0, hP]

‘t (n —no)° hz‘ < ppH3a-1, ‘t (n — 19)? (m — mo) hz‘ < pPt2oto-1,

w§h3 (m — m0)3 ,

‘f (n—mng) (m — mo)ZhZ‘ < pProrta-l; ‘t (m —mq)° hz‘ < pPr3e-l

hence, since B > 1 — min (361,281 + 3,81 +26,,30,) = 1 —3mind;, for all t €
0, hﬁ} and for all pair (1, m) € IN? we get

o207t ((n=n0)* W2+ (n—nq)? (m—mo)h?+(n—n) (m—mo)*h?+(m—mq)°h?)
=140 (ppi+3ming)
And the statement of the proposition is established. 0
For the same reason as in definition 3.4 we introduce the revival periods :

Definition 4.4. Let us defines the revival periods Tyev,, Trev, and Tyep,, by :

T . 47 T 47
rev| T Toor o < 5 drevy T T o - - 57
h% (E],Ez) w% h% (El,E2)w%
47
Trevlz =

h %k (E1, Ep) wnws

Clearly for all j € {1,2,12} we have limj_.g Tsreo; / Treo; = 1. The three semi-
classical periods Tsrev ; depend on & as well as their quotients. Since we will con-
sider period quotients afterwards, is it preferably to study revival periods than
semi-classical revival periods;for that we use indeed :
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Proposition 4.5. Let v a real number such that v > —2min 6;. Then we have uniformly
fort € [0, h"]:

2 2
o t<n ng m '”0 (n—ng) (m—mg)
T Tsrev
}: | ) ‘ S,;] cly srevq srevy

n,mcIN2

+

(nfno)(mfm()) >

Tsreviy

m—nig (n—no)z (m,mo)Z (n—no)(m—mo)

- T

n,meN2

Proof. The principle is the same as in the proof of proposition 3.5. With the parti-
tion N2 = AIIT and by triangular inequality we have

)3

n,meN2

n—ng | m—mq (n—n0)2 (m—mo)z ("*"0)(”‘*'"0)
2 —2int T, Tsrev Tsrev Tsrev
e I scly srevy srevp 12

— —nn)2 —mn)2 (n—no)(m—mO)
it ( 1t momg y (nong)T (i)
e ( ccll + Tsc12 + Trevq + Trevy Tropl2

< Z 2|an,m‘2

nmel

1 1

1 1

+2 Z |an,m|2 Hme(n—no)2(

n,men

)

TS?’&‘U] TT’EU] TST’EUZ Ti’é‘?}z

—|—‘27rt(n—n0)(m—m0)( L )

7
TS?’é‘U]z T76012

because | — Y| <2|X - Y.
Next we observe that

47 aX2 (E1/E2) BXZ (Tn()/ )

W2h 2
cdlh SX}; (T”O/ Vmo) 8X7— (Ele2)

Tsrevl - Trevl =

First we have

9’F 0’F
S (B Ex) = 55 (i)

< sup
(xy)€B((E1,E2) 1)

0’F
Visxz ) () - 1(E1, E2) = (Tug, pimg )| 2
2
< My/(E1 = )2 + (B2 — pomy)* < th;

where M > 0 is a constant which does not depend on h.
On the other hand, since we suppose ax2 E (E1, Ey) # 0; there exists e; > 0 and
r1 > O such that for all(x,y) € B((Ey, Ez),r1) we get

0*F
‘ > €1,

m(x,y) Z

and we have seen that there exists /11 > 0 such that for all i € ]0, ;[ we have

(Tugs Himo) € B((Ex, E2),11);
therefore the application

h—

l
2
aaxi (ElrEZ) BXZ (THO/ Vmo)

26
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is bounded on the open set |0, 111 [, indeed for all i1 € ]0, ;[ we have
1

1
9%F 9%F s
X2 (El/ E2) X2 (T”O/ Vmo)

2
€

< +o0;

and with M’ := 27r%E forall i € |0, hy[ we obtain |Tsreo, — Treo,| < M.

Next, since

2 2
% (ElrEZ) % (THO/ Vmo)

1
s < Ki?
‘ Tsrevl Trevl o 1672 -
2
where K := 1617 SUP () e B((Ey Ea) 1) ‘%(x,y) , there exists a constant C; > 0

(which does not depend on /1) such that for all i € |0, hi[ wehave |1/ Tsren, — 1/ Tren, | <
C1h? (eg. take C; := KM). In a similary way : there exists C;, C1; > 0 such that for
all h € 10, hy[ we get |1/ Tsreny, — 1/ Treny| < Coh? and for all it € |0, hyp[ we get also
‘1/Tsren12 - 1/Tren12| < C12h2~

Next, for all + > 0, for all pair (n,m) € A and for all h < min (hy,hy, h1p) we

have
’t(n—no)z( ! ! )’<c1th2‘51;

Ts revy Trevl

1 1

T576012 T76012

2 1 1 )
t(m—m -
‘ ( 0) (Tsrevz Trevz

hence for all t € [0, h"] where v is a real number such that v > —2 min §; we obtain

1 1 1 1

2 2

t(n—n — + [t(m—m —

( 0) ( Tsrevl Trevl ) ’ ’ ( 0) ( Tsrevz Trevz ) ‘

o= 0) om = mo) (72— - 7

where M := 3max (Cy,Cy, C12) .
So we proove that : there exists a constant M > 0 such that forall 1 < min (hy, hy, h13)
and for all v > —2min é; we get

Z |an,m

n,mcIN2

km—mwm—mw( )\<QﬂhM@;

< Golt|H*2;

)‘ < th+2m'1n(5i

TSYelilz Trevlz

it =0 g (n—no)2 (m—mo)z (”’_”’O)(W’—”’g)
2 e TSCI] Tsclz T57‘8211 Tsrezzz Tsrgvlz

_ _ RV _mm2  (n—ng)(m—m,
Y n—ng  m—mqy  (n—ng) (m—mg) 0 0)
e 217Tt< Tscll + Tscl2 + Trevy Trevy Trevy,

<2 ) | m|* 4 MAYH2ming ) | @ m|”

nmel n,men

It follows from the lemma 2.5 (the lemma 2.5 says Y, ,cr [@n,m 2 = 0(r™)) and

from
2 2 o
Yo lanml” < ), lanml” =140 (h%)
n,meA n,meN2
that
it "= m=mg (n—no)2 (m—mo)z (”’_”’O)(W’_”’())
Z |an " 2 e_ i Tscll TSE]Z Tsrevq Tsrevy Tsrevqy

n,mcIN2
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oint n—n0+m—m0+(n—no)2 (m—mg)? ("*"0)("'7'”0)
e TSC’] Tscl2 Trevq Trevy Trevqy

-0 (hv+2m'1n5,») )
0
4.2.2. Comparison between revivals periods an the time scale [0, h"]. Recall here that

the parameters ((5;, (51-) €] %, 1 [2 with (5; > ¢;; recall also that the real coefficients «,5
would require x > 1 —2minJ; and f > 1 — 3mind;. Next we observe that 1 —
3mind; — (1 —2mind;) = —mind; < 0and —2miné; — (1 —3mind;) = minJ; —
1 < 0; hence for i small enough we obtain

h172min(5i < hlf3m'1n5,» < h72min(5i.
So we can make a “good choice” for parameters «, 5 and v : indeed we can choose
«, Band vsuch that: v < B < —1 < a < 0, therefore (for /1 small enough) we have
[0, Te] € [0,h%] C [0, Trew,] C [0, hﬁ} C [0,1"].

4.2.3. The quadradic approximation ay. So, the quadradic approximation of the au-
tocorrelation function on the time scale [0, hﬂ is:

Definition 4.6. The quadradic approximation of the autocorrelation function is

_ _ _nn)2 —mn)2 (nfno)(mfm())
it ( "=ra 4 m—mg (n—ng) (m—mg)
a 1t Z |an m‘ze l <T5dl - Tscly Trevy Trevy Trevyy
n,mcIN2
4.3. Revival theorems.

4.3.1. Preliminaries.

Resonance hypothesis.
Definition 4.7. We say that the revival periods Tyev,, Trev,, Treo;, are in resonance

if an only if there exists ( 0 o ) € Q° such that

ﬂTrem = &Trevz = mTrevu-
q1 iy q12

Notation 4.8. In this case, we introduce the notation Tfrac = %Tm)l = %vaz =
%Tf’é‘v]z' And for all j € {1,2} let us also consider ’;he numbers 7; 1= p1agj, §j =
q12p;j , and clearly for all j € {1,2} we have Trev]- = S_;Trevu-

Preliminaries. To make progress in our study we need to introduce a new func-
tion ., with two artificial variables t1, f5.
Definition 4.9. Let us define the pseudo-classical function ¢; :
—2irmtty i —21'7'ct2u(1
Yo (i t) = ) |anm)* e el oy

n,meN?
So we get the obvious following property; first the function 1, is doubly-periodic

(i) for all pair t1,t, > 0 we have ¢ (t1 + Tserp, t2) = o (t1,12) 5
(ii) and for all pair t1, £, > 0 we have also 9 (t1,t2 + Teer,) = P (t1,£2) -
This function have no immediate physical significance, but if the time ¢; and ¢,
are equal :
(iii) for all t > 0 we have ¢ (t,t) = ay(t).
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Some lemmas.
Notation 4.10. Let us consider the sequence (0, )
with (n,m) € Z? defined by :

i PL(n—n)2 P12 (4 _ P2 ()2
Gn,m — 217‘[<q1 (n—ng) +‘712 (n—ng)(m m0)+q2(m my) )

The periodicity of this sequence is caracterised by the following easy proposi-
tion.

Proposition 4.11. For all py,q1, p2, 2, p12, 912 € Z, the sequence (6n,m),, ,, verify

0n+81,m = Bn,m

0n,m+€2 = Bn,m
if and only if the integers {1 and {; satisfy the following equations :

£2
V(n,m) 622, 1P1 +2P1€1n+ Plrlglmzo[”
7 q1 5141

£2
Y(n,m) € Z2, 2b2 | 2p2£2m + Pz”ﬂzn =0/[1].
q2 q2 5202

Example 4.12. An obvious solution is {1 = g151 and ¢ = g»55.

For two periods /1, (, € Z? let us consider the set of sequences /1, {, —periodic
with his natural scalar product.

Definition 4.13. For a fixed pair (1, {,€ (Z*)? we define &, ;,(Z) the set of se-
quences {1, {,—periodic in the following sense :

. 72, 2 _ _
&y, 0,(Z) = {un,m €C™;Vn,m € Z5, upypym = tnm and Uy o, = un,m}.

So we have the elementary :

Proposition 4.14. The application

(e, 1] =1 €] ~1

is a Hermitean product on the space Gy, ¢,(Z) .

We have also the obvious following remark :

_ 2igkn _ 2impm

Proposition 4.15. Let us consider 47’,‘1’,’,7” i=e¢ e T where (k p) € Z? then the

. k . .
family { ( n%) } is an orthonormal basis of the space vector
’ 2
NMEZE ) k=0...4y —1,p=0...6,—1

S,,0,(2).

4.3.2. The main theorem. In the following theorem we show that the function ¢ —
az(t) near the period Ty, can be written as a finite sum of ¢ with arguments
shifted. Indeed we have :

Theorem 4.16. Suppose resonance hypothesis holds; then there exists a family of
{1 + 05 complex numbers (depends on h) : (ckl,kz)kl6{0‘”[1_1},](26{0%2_1} where the
integers ¢1,(, € Z? are solutions of equations from proposition 4.11; such that

l1—16—1

ky ky
az (t + Tfruc) = Z Z Ckl,kzlpcl <t + Tfrac + K_Tscllr t+ Tfrac + E_Tsch)
k1=0ky=0 1 2
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+0 (humLZm'm&,»fl) .
holds for all t € [0, h*]. The numbers cy, , are called fractionnals coefficients; and
forallk; € {0...0; — 1}, kp € {0..0p — 1}

2irrk1n0 kazmo
., 0 T
Ckik, =€ Toe 2 by,

with bk1,k2 = bk1,k2 (h) = <0’h, (Pkl’k2>

Sy
Proof. Let us denote the integers 1 := n —ng, m := m — mg and consider the
function &(f) :

6—106,-1

k1 ko
£<t) = a2 (t + Tfrac) - Z Z Cky, kzlpcl (t + Tfrac + Tscllr t+ Tfrac + - TSCZ2)
k1=0ko=0

ZianracTL 721‘7‘(an] 72i7TT]rracﬁ

— Z ‘an m |2 e_Zth%cll 6_ scly o scly o

n,meN2

—2irtt 2i7-[ﬁili — it i zlnpzm it B oo P12M
e e 2 e

72

Trevy o™ Trevy o Trevy; o q12
l1—10,—1 k k

- Z Z Cky, kzlpcl <t + Tfrac + 5 Tcllr t+ Tfrac + Tc )
k1=0ko=0

—2imtt e —2in Tyt —2imt e 20T

T, T, T, T,
= Z |a7’l,H1‘2 6n,me scly frae scly scly o frac scly

n,meN2

2 a2 o,
=2imtt— it~ = 2imt
e ”3771 e 7‘802 e 1’(:"012
0H—10,-1

kq ko

- Z Z Cky, kzlpcl <t + Tfruc + - Tscly t+ Tfruc + - Tsclz>
k1=0ky =0

Since the sequence (6,m),, ,, € &¢,¢,(Z) with {1 = g151 and {5 = gps; there exists

a unique decomposition of the sequence (6,,,),, ,, on the basis { ( lf,’/ 51) s }

’ NMEZE ) k0.4, —1,p=0...L,—1

;indeed we have :

01101 k B
Onm = Z Z bk1/k2 i
k1=0 k=0
where by, i, = <6, 4>k1'k2> . Therefore we get
Sy,
l1-106,—1 it 2Ty A it _0ipT, i
e(t) = Z Z Z |an, m\ bi,, k2 fscly ¢ T ety ¢ Iscly ¢ Jrac T,
n,meN2 k1=0k,=0
2
,2zntwal 2t T”’”lz ¢kl’k2
G161 K ky
- Z Z Cky, kzwcl (t + Tfrac + - Tscllf t+ Tfrac + - TSCZ2)
k1=0 k=0

l—10,—1

it
-l Y ¥ Z\anm\ bee e

n,meN2 k1=0ko=0

—2in Tyl —2i7rtL
frac Tscll e Tsclz e

—ziﬂTfrﬂc%clz

52 )
—27 n —
217TtTrev —2int Trevz RRES ey Trw k1,k2

4’
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fl—lfz 1 ittt 2i n . P

- T —2inTfrae T —2irmtky -
} : Chy } : |ﬂn,m|2€ scly o scly o 17
kl Okz n,mG]NZ

— it
Tscl2 e

T2 0imky i
e e 20

l1—10p—1 o i . i ) - ‘ .
it~ =2in T — —2imt —2intTrper—
T, fracT, T, fracT,
= Z Z Z ‘a” m‘ bkl,kz schy e scly e scly o scly
n,meIN2 k1=0ky=0
it i 9 i 2irtkyn 2irtkym
P T i T e e
Zlil [2_1 by P . 7 ) ~
2 = mt_Tscl —217'chm—Tscl —2imtky &£
Z Chy ey Z |an,m| e le 1e 1
kl =0 k2:0 n,me]]\]2
e 1 Tsclz b e 217Tk2 [2
i 11 ; it 2inkyn  2imtkom
: —2imtky - —2imky 2 _ 2inkyn - 2iky
And since cg, i, e 177, 20, _ by, T e & we deduce that

e(t) =

l1—10,—-1 ; il ; it i 2inkin  2imk
t— =2irtT —2irtt —2inT UL 17Tkt
T racT T V‘LZCT —
} : E : E : ‘anm| bkl,kz sy o fracTeey o sy o T, om0 o 0
n,meN2 k1=0k,=0

L2 L s
—2imt i —2irrt
751}2 e YL"I)]Z

. ~2
=it
—1+4e L e

To finish, we use the partition N2 = AIIT and we just consider indices in the set
A for the sum. Hence there exists constants Cy, Cp, C1» > 0 which does not depend
on h, such that

(m— mp)?

7

‘t (n— no)2‘ < Clha+2(sl—1.

‘ < Czha+2(52—1 .

Trevl Trev2

‘t (7’1 - 1’10)(7’}’1 — mo) < Clzhﬂé+51+(52—1

Trevlz

holds for all pair (n,m) € A and for all t € [0, h*].
As a consequence for all t € [0, 4%] and for all pair (n,m) € A we get:

27t I

. 72
e—szm - Trevy; _ 1 — 0O (ha+2min§i—l) )

-2
Tt —
YL"U2 e

If we take t = 0 we obtain :

Corollary 4.17. Under the same hypothesis we have

01101

kq ko
az (Tfmc) = Z Z Chky, ko Pel (Tfmc + - Tscllf Tfrac+ Tsclz)
k=0ky—
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4.4. Explicit values of modulus for revival coefficients. Our final aim is to com-
pute the modulus of revival coefficients. The idea is to split the sum ‘Ckl,kz‘ in two
simple parts. These parts look like that Gauss sums, but in fact with a little dif-
ference. Here we propose a simple way to compute this sums and we don’t use
sophisticated theory. Start with a notation and a remark :

Notation 4.18. For £ > 1 and for integers p et g such that p A g = 1, let us consider
for all integer k € {0.../ — 1} the following sum

A i irtkn
n=0

Therefore for all k € {0..0 — 1}
dbpa) = 5| ¥ e Hm
meZ/lZ

Theorem 4.19. Suppose resonance hypothesis holds and suppose also % € Z

then we obtain :
bk, 1 |* = |di, (41, 151, €0) [ |dx, (2, pasa, £2)].
Proof. For allk; € {0...¢1 — 1}, kp € {0.../, — 1} we have

1 - 1.2, P12 2,2 2i7-{k1n 2in{c2n1
’bk L ‘ _ Z 217‘[( n +q127’lWl+ >E 0 ¢ 0 ;
1.k2 010,
VY2 \m)ez/0:2x2/ 0,7
ZZ 1 2inkym
Zitigm P2 2 _]_ 2 Zmn P12
Z e & Zzﬂqzm 26 2171' (k1 i Zlm>
5152
and since ¢1 = g151 = q1412p1 We obtain
l—1 2imtkym p
P = " ~2intkln? 2”m(kl —Pp124151mM)
7
bkl =7 [ L " Z e "o :

For j € {1,2}, let us consider y; the following characters :

Xj : —21'7'(%
ar—e 1,
as a consequence we get
1
‘bkl,kz‘ 6262 Z X1 (P151x2 — x(k1 — puqlply) X2 (pgSgyz — k2y)
( ,y)eZ/lexZ/ZZZ
2 2
Z X1 (—Plslz +z(ky — Plqumt) X2 (—p252t + kzt)
(z,t)eZ/lexZ/ZZZ
1
v )3 (x1 (prs1 (2 = 22) = ki (x = 2) + paqupa (xy — 21) )
172 ((x2),(y,1)E(Z/ 4 Z)2 % (Z/ 12 Z)*

X2 (stz (y2 - tz) —ko(y — t))) )

Now, because % € Z then {1 = q1q12p1|91p1p12 hence for all x,y,z,t we have
p12q1p1(xy —zt) € {1Z . Therefore forall x, v, z, t we have x1 (p12g1p1(xy — zt)) =
1. Hence

bty 1|
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1
242 )y X1 (Plsl (xz - 22) — ki (x - Z)) X2 (stz (yz - t2) —ka(y — t))
172 ((x,2),(yt)€(Z/ 0. Z)* < (Z/ ,Z)?
1
L E el heon) T () -ho)
172 (xz)e(Z/0,Z)? (yt)e(Z/t,Z)?
. 2 .
_ 12 e—ZiN%xze%x 12 6721‘7(%%6%
G \xezinz G yezitz
U

To finish we can compute

|d, (51/17151,51)’2 |dk, (€2, P25, fz)fz'
with the following results (see for example [Lab2]) :

Proposition 4.20. For all pair p, q with p A q = 1 and q odd, then for all k € {0...q — 1}
we get :

1
(9, p, )] = e

And

Proposition 4.21. For all pair p, q with p Aq = 1and q even, then forallk € {0..g — 1}
we get :
% if kis even
if 9 is even then |dk(q, p,q)\z =
2
0 else;

0 if kis pair
if 9 is odd then |dx(q, P/q)|2 =
2 2 el

= else.
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