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QUANTUM REVIVALS IN TWO DEGREES OF FREEDOM INTEGRABLE SYSTEMS : THE TORUS CASE

The paper deals with the semi-classical behaviour of quantum dynamics for a semi-classical completely integrable system with two degrees of freedom near Liouville regular torus. The phenomomenon of wave packet revivals is demonstrated in this article. The framework of this paper is semi-classical analysis (limit : h → 0). For the proofs we use standard tools of real analysis, Fourier analysis and basic analytic number theory.

INTRODUCTION

1.1. Motivation. In quantum physics, on a Riemannian manifold (M, g) the evolution of an initial state ψ 0 ∈ L 2 (M) is given by the famous Schr ödinger equation :

ih ∂ψ(t) ∂t = P h ψ(t); ψ(0) = ψ 0 .
Here h > 0 is the semi-classical parameter and the operator P h : D (P h ) ⊂ L 2 (M) → L 2 (M) is h-pseudo-differential operator (for example P h = -h 2 2 ∆ g + V). In the case of dimension 1 or for completely integrable systems, we can describe the semi-classical eigenvalues of the Hamiltonian P h and by linearity we can write the solutions of the Schr ödinger equation. Nevertheless, the behaviour of the solutions when the times t evolves in larges times scales remains quite mysterious.

In dimension 1, the dynamics in the regular case and for elliptic non-degenerate singularity have been the subject of many research in physics [Av-Pe], [LAS], [START_REF] Robinnet | Quantum wave packet revivals[END_REF], [START_REF] Robinnet | Wave packets revivals and quasirevivals in one-dimesionnal power law potentials[END_REF], [BKP], [Bl-Ko] and, more recently in mathematics [Co-Ro], [Rob], [START_REF] Paul | Echelles de temps pour l'évolution quantique à petite constante de planck[END_REF], [START_REF] Paul | Reconstruction and non-reconstruction of wave packets[END_REF], [START_REF] Ée | Autour de la dynamique semiclassique de certains systèmes complètement intégrables[END_REF]. The strategy to understand the long times behaviour of dynamics is to use the spectrum of the operator P h . In the regular case, the spectrum of P h is given by the famous Bohr-Sommerfeld rules (see for example [He-Ro], [Ch-VuN], [Col]) : in first approximation, the spectrum of P h in a compact set is a sequence of real numbers with a gap of size h. The classical trajectories are periodic and supported on elliptic curves. Always in dimension 1, in the case of hyperbolic singularity we have a non-periodic trajectory. The spectrum near this singularity is more complicated than in the regular case. In [START_REF] Ée | Sur le spectre semi-classique d'un système intégrable de dimension 1 autour d'une singularité hyperbolique[END_REF] we have an explicit description of the spectrum for an one-dimesional pesudo-differential operator near a hyperbolic non-degenerate singularity. The article [Lab4] deals with the quantum dynamics for the hyperbolic case. So, in dimension 1, we get the full and fractionnals revivals phenomenon (see [Av-Pe], [LAS], [START_REF] Robinnet | Quantum wave packet revivals[END_REF], [START_REF] Robinnet | Wave packets revivals and quasirevivals in one-dimesionnal power law potentials[END_REF], [BKP], [Bl-Ko], [Co-Ro], [Rob], [START_REF] Paul | Echelles de temps pour l'évolution quantique à petite constante de planck[END_REF] for the elliptic case and see [START_REF] Ée | Semi-classical behaviour of Schrödinger's dynamics : Revivals of wave packets on hyperbolic trajectory[END_REF] or [START_REF] Paul | Reconstruction and non-reconstruction of wave packets[END_REF] for the the hyperbolic case). For an initial wave packets localized in energy, the dynamics follows the classical motion during short time, and, for large time, a new period T rev for the quantum dynamics appears : the initial wave packets form again at t = T rev .

Date: 1 September 2010.

Physicists R. Blhum, A. Kostelecky and B. Tudose are interested in the case of the dimension 2 (see [BKT]). Our paper presents some accurate results on the time evolution for a generical semi-classical completely integrable system of dimension 2 with mathematical proofs. 1.2. Results and paper organization. Here the quantum Hamiltonian is of the type P h = F (P 1 , P 2 ) where F is a real polynomial of two variables and P 1 , P 2 are semi-classical one dimensional harmonic oscillators (see section 2 for details). By a diffeomorphism this Hamiltonian is less particular than it seems to be, since it gives the spectrum of any completely integrable system with two degrees of freedom near regular torus or around elliptic singularity [VuN]. Therefore, the Hamiltonian study leads to a study more or less general but which is not obvious in dimension 2. In this paper, we consider an initial state ψ 0 localized near some regular Liouville torus of energies (E 1 , E 2 ) and we study the associated quantum dynamics. To understand the behaviour of dynamics, we interested in the evolution of the autocorrelation :

a(t) = ψ(t), ψ 0 L 2 (R 2 ) .
Due to the simple nature of the Hamiltonian operator the autocorrelation function can be write as a serie :

a(t) = +∞ ∑ n=0 +∞ ∑ m=0 |a n,m | 2 e -i t h F(τ n ,µ m) ,
where τ n = ω 1 h n + 1 2 , µ m = ω 2 h m + 1 2 are eigenvalues of the one-dimensionnal harmonic oscillators P 1 , P 2 . The sequence (a n,m ) n,m is just the decomposition of the initial vector ψ 0 on the Hermitte's eigenbasis of L 2 (R 2 ).

Most of the paper (section 3 and 4) consists in estimating and analyzing the function a(t) for large times scales (t ≤ 1/h s with various s > 0). We use Taylor's formula to expand the phase term tF (τ n , µ m ) /h in the variables (n, m); first in linear order (section 3), then to quadratic order (section 4).

In the section 3, we study the linear approximation a 1 (t) (see definition 3.6) of the autocorrelation function, valid up on a time scale [0, 1/h α ] where 0 < α < 1. The dynamics depends strongly on the diophantin properties of the classical periods T cl 1 , T cl 2 . If the fraction T cl 1 /T cl 2 is commensurate (in this case the classical Hamiltonian flow is T cl -periodic) we can describe accurately the behaviour of the dynamics on a classical period [0, T cl ] (see theorem 3.12). In opposite, if the frac- tion T cl 1 /T cl 2 is a bad approximation by rationals (we suppose T cl 1 /T cl 2 is Roth number) the autocorrelation function collapse in the set ]0, T s ] where T s is order of 1/h s (see theorem 3.24). For large time we use the continuous fraction expansion of T cl 1 /T cl 2 to analyze some possible periods for linear approximation a 1 (t) (see theorem 3.35).

In the last section, we use the quadradic approximation a 2 (t) (see definition 4.6) of the autocorrelation function, valid up on a time scale 0, 1/h β where β > 1. In this quadradic approximation appear three revivals periods T rev 1 , T rev 2 and T rev 12 of order 1/h depending on the Hessian matrix of the function F at the point (E 1 , E 2 ). If we suppose T rev 1 , T rev 2 and T rev 12 are commensurate, we can proove and analyze the revivals phenomenon (see theorem 4.16 and corollary 4.17). In the last subsection we compute the modulus of the revival coefficients (see theorem 4.19).

GENERAL POINTS

2.1. Some basic facts on semi-classical analysis. To explain quickly the philosophy of semi-classical analysis, starts by an example : for a real number E > 0; the equation

- h 2 2 ∆ g ϕ = Eϕ
(where ∆ g denotes the Laplace-Beltrami operator on a Riemaniann manifold (M, g)) admits the eigenvectors ϕ k as solution if

- h 2 2 λ k = E.
Hence if h → 0 + then λ k → +∞. So there exists a correspondence between the semi-classical limit (h → 0 + ) and large eigenvalues. The asympotic of large eigenvalues for the Laplace-Beltrami operator ∆ g on a Riemaniann manifold (M, g), or more generally for a pseudo-differential operator P h , is linked to a symplectic geometry : the phase space geometry. This is the same phenomenon between quantum mechanics (spectrum, operators algebra) and classical mechanics (length of periodic geodesics, symplectic geometry). For more details see for example the survey . Indeed, for a initial state ψ 0 ∈ H, the evolution is given by :

ψ(t) = U(t)ψ 0 ∈ H.
We now introduce a simple tool to understand the behaviour of the vector ψ(t) : this tool is a quantum analog of the Poincaré return function :

Definition. The quantum return functions of the operator P h and for an initial state ψ 0 is defined by : r(t) := ψ(t), ψ 0 H ; and the autocorrelation function is defined by :

a(t) := |r(t)| = | ψ(t), ψ 0 H | .
The previous function measures the return on the initial state ψ 0 . This function is the overlap of the time dependent quantum state ψ(t) with the initial state ψ 0 . Since the initial state ψ 0 is normalized, the autocorrelation function takes values in the compact set [0, 1].

2.3.

The Hamiltonian of our model. For our study, the quantum Hamiltonian is the operator : P h := F (P 1 , P 2 ) where F is a polynomial of R [X, Y] which does not depend on the paramater h; P 1 and P 2 are the Weyl-quantization of the classical one dimensional harmonic oscillator :

p j (x 1 , ξ 1 , x 2 , ξ 2 ) = ω j x 2 j + ξ 2 j /2
with ω 1 , ω 2 > 0. It is well know that the Hermitte functions (e n,m ) n,m := (e n ⊗ e m ) n,m∈N 2 is a Hilbert basis of the space L 2 (R 2 ). Let us consider for all integers (n, m) the eigenvalues of P 1 and P 2 :

τ n := ω 1 h n + 1 2 , µ m := ω 2 h m + 1 2 ;
so, we get immediatly that for all integers (n, m)

F (P 1 , P 2 ) (e n ⊗ e m ) = F (τ n , µ m ) (e n ⊗ e m ) .
2.4. The autocorrelation function rewritten in a eigenbasis. Now, for a initial

vector ψ 0 = ∑ n,m∈N 2
a n,m e n,m we have for all t ≥ 0

ψ(t) = e -i t h F(P 1 ,P 2 ) ∑ n,m∈N 2 a n,m e n,m = ∑ n,m∈N 2 a n,m e -i t h F(τ n ,µ m ) e n,m
so, for all t ≥ 0 we obtain

r(t) = +∞ ∑ n=0 +∞ ∑ m=0 |a n,m | 2 e -i t h F(τ n ,µ m)
and

a(t) = +∞ ∑ n=0 +∞ ∑ m=0 |a n,m | 2 e -i t h F(τ n ,µ m) .
The aim of this paper is to study this sum, but unfortunately this function is too difficult to be understood immediatly. (1) we define a initial vector

ψ 0 = ∑ n,m∈N 2
a n,m e n,m localized near some regular Liouville torus of energies (E 1 , E 2 ) : consequently the sequence (a n,m ) n,m∈N 2 is localized close to a pair of quantum numbers n 0 , m 0 (depends on h and on the Liouville torus (E 1 , E 2 ).

(2) Next, the idea is to expand by a Taylor formula's the eigenvalues F (τ n , µ m )

around the Liouville torus (E 1 , E 2 ) :

F (τ n , µ m ) = F (τ n 0 , µ m 0 ) + hω 1 (n -n 0 ) ∂F ∂X (τ n 0 , µ m 0 ) + hω 2 (m -m 0 ) ∂F ∂Y (τ n 0 , µ m 0 ) + 1 2 ω 2 1 h 2 (n -n 0 ) 2 ∂ 2 F ∂X 2 (τ n 0 , µ m 0 ) + 1 2 ω 2 2 h 2 (m -m 0 ) 2 ∂ 2 F ∂Y 2 (τ n 0 , µ m 0 ) +ω 1 ω 2 h 2 (n -n 0 ) (m -m 0 ) ∂ 2 F ∂X∂Y (τ n 0 , µ m 0 ) + • • •
(here τ n 0 , µ m 0 is the closest pair of eigenvalue to the pair E 1 , E 2 ). As a consequence we get for all t ≥ 0

a(t) = ∑ n,m∈N 2 |a n,m | 2 e -it ω 1 (n-n 0 ) ∂F ∂X (τn 0 ,µ m 0 )+•••+ω1ω2h(n-n0)(m-m0) ∂ 2 F ∂X∂Y (τn 0 ,µ m 0 )+••• .
(3) And, for small values of t, the first approximation of the autocorrelation function a(t) is the function

a 1 (t) := ∑ n,m∈N 2 |a n,m | 2 e -it[ω 1 (n-n 0 ) ∂F ∂X (τn 0 ,µ m 0 )+ω2(m-m0) ∂F ∂Y (τn 0 ,µ m 0 )] ;
and for larger values of t, the order 2-approximation is given by

a 2 (t) := ∑ n,m∈N 2 |a n,m | 2 e -it ω 1 (n-n 0 ) ∂F ∂X (τn 0 ,µ m 0 )+•••+ω1ω2h(n-n0)(m-m0) ∂ 2 F ∂X∂Y (τn 0 ,µ m 0 ) .
In section 3, we study in details the function t → a 1 (t) and t → a 2 (t) in section 4.

2.6. Choice of an initial state. Let us define an initial vector

ψ 0 = ∑ n,m∈N 2 a n,m e n,m
localized near a regular Liouville torus of energies

E := (E 1 , E 2 ) where E 1 ∈ [0, 1] and E 2 ∈ [0, 1].
Definition 2.1. Let us consider the quantum integers n 0 = n 0 (h, E 1 ) and m 0 = m 0 (h, E 2 ) defined by

n 0 := arg min n |τ n -E 1 | ; m 0 := arg min m |µ m -E 2 | .
Remark 2.2. Without loss of generality, we may suppose that the integers n 0 and m 0 are unique.

The integer n 0 (resp. m 0 ) is the eigenvalues index of the operator from the family P 1 (resp. P 2 ) the closest to the real number E 1 (resp. E 2 ). Since the spectral gap of P 1 (resp. P 2 ) is equal to ω 1 h (resp. ω 2 h ) we have, for h → 0 :

n 0 ∼ E 1 ω 1 h ; m 0 ∼ E 2 ω 2 h
. Now, we can give definition of our initial state : Definition 2.3. Let us consider the sequence (a n,m ) n,m∈Z 2 = (a n,m (h)) n,m∈Z 2 de- fined by :

a n,m := K h χ τ n -τ n 0 h δ ′ 1 , µ m -µ m 0 h δ ′ 2 = K h χ ω 1 n -n 0 h δ ′ 1 -1 , ω 2 m -m 0 h δ ′ 2 -1 ;
where the function χ is non null, non-negative and belong ot the space S(R 2 ). The parameters δ ′ 1 , δ ′ 2 ∈]0, 1[ 2 . We also denote

K h := χ τ n -τ n 0 h δ ′ 1 , µ m -µ m 0 h δ ′ 2 ℓ 2 (N 2 )
.

Let us detail this choice :

(1) the term χ

τ n -τ n 0 h δ ′ 1 , µ m -µ m 0 h δ ′ 2
localize around the torus (E 1 , E 2 ) (for techni- cal reason we localize around the closest eigenvalues to (E 1 , E 2 ).

(2) Constants δ ′ 1 and δ ′ 2 are coefficients for dilate the function χ (the reason to take 0 < δ ′ j < 1 is the following : it is the unique way to have a non-trivial localization (not tend to {0}) and a localization larger the spectral h δ ′ j ≫ h). So, clearly the sequence (a n,m ) n,m ∈ ℓ 2 (Z 2 ). Now, let us evaluate the constant of normalization K h ; start by the :

Lemma 2.4. For a function ϕ ∈ S(R 2 ) and (ε 1 , ε 2 ) ∈ ]0, 1] 2 then we have uniformly for (u 1 , u 2 ) ∈ R 2 : ∑ ℓ,s∈Z 2 , |ℓ+u 1 |≥ 1 2 , |s+u 2 |≥ 1 2 ϕ ℓ + u 1 ε 1 , s + u 2 ε 2 = O(ε ∞ 1 + ε ∞ 2 ).
Proof. We see easily that, uniformly for (u 1 , u 2 ) ∈ R 2 we have

∑ ℓ,s∈Z 2 , |ℓ+u 1 |≥ 1 2 , |s+u 2 |≥ 1 2 ϕ ℓ + u 1 ε 1 , s + u 2 ε 2 = O(1). Next ∑ ℓ,s∈Z 2 , |ℓ+u 1 |≥ 1 2 , |s+u 2 |≥ 1 2 ϕ ℓ + u 1 ε 1 , s + u 2 ε 2 ≤ ∑ ℓ,s∈Z 2 , |ℓ+u 1 |≥ 1 2 , |s+u 2 |≥ 1 2 ℓ + u 1 ε 1 2N ϕ ℓ + u 1 ε 1 , s + u 2 ε 2 ε 2N 1 (ℓ + u 1 ) 2N ≤ ε 2N 1 4 N ∑ ℓ,s∈Z 2 ℓ + u 1 ε 1 2N ϕ ℓ + u 1 ε 1 , s + u 2 ε 2 .
And, similary we have

∑ ℓ,s∈Z 2 , |ℓ+u 1 |≥ 1 2 , |s+u 2 |≥ 1 2 ϕ ℓ + u 1 ε 1 , s + u 2 ε 2 ≤ ε 2N 2 4 N ∑ ℓ,s∈Z 2 s + u 2 ε 2 2N ϕ ℓ + u 1 ε 1 , s + u 2 ε 2 .
To conclude the proof, we apply that to the functions ψ(x, y) := x 2N ϕ(x, y) and ψ(x, y) := y 2N ϕ(x, y).

An obvious consequence of this lemma is the following result :

Proposition 2.5. We get

K h = 1 F (χ 2 ) (0, 0)h δ ′ 1 +δ ′ 2 -2 2 + O (h ∞ ) ; hence a n,m ℓ 2 (N 2 ) = 1 + O(h ∞ ).
Proof. By the Poisson formula and the lemma above we get the equality :

∑ n,m∈Z 2 χ 2 ω 1 n -n 0 h δ ′ 1 -1 , ω 2 m -m 0 h δ ′ 2 -1 = h δ ′ 1 +δ ′ 2 -2 ∑ ℓ,s∈Z 2 F χ 2 -ℓ h δ ′ 1 -1 ω 1 , -s h δ ′ 2 -1 ω 2 = h δ ′ 1 +δ ′ 2 -2   F χ 2 (0, 0) + ∑ ℓ,s∈Z 2 , |ℓ|+|s|≥1 F χ 2 -ℓ h δ ′ 1 -1 ω 1 , -s h δ ′ 2 -1 ω 2   = h δ ′ 1 +δ ′ 2 -2 F χ 2 (0, 0) + O (h ∞ ) .
Now, with the basic equality

∑ n,m∈N 2 χ 2 n -n 0 h δ ′ 1 -1 , m -m 0 h δ ′ 2 -1 = h δ ′ 1 +δ ′ 2 -2 F χ 2 (0, 0) + O (h ∞ ) - -1 ∑ n=-∞ +∞ ∑ m=-∞ χ 2 n -n 0 h δ ′ 1 -1 , m -m 0 h δ ′ 2 -1 - +∞ ∑ n=0 -1 ∑ m=-∞ χ 2 n -n 0 h δ ′ 1 -1 , m -m 0 h δ ′ 2 -1
.

and with the lemma above we see easily that

-1 ∑ n=-∞ +∞ ∑ m=-∞ χ 2 n -n 0 h δ ′ 1 -1 , m -m 0 h δ ′ 2 -1 = O(h ∞ ), +∞ ∑ n=0 -1 ∑ m=-∞ χ 2 n -n 0 h δ ′ 1 -1 , m -m 0 h δ ′ 2 -1 = O(h ∞ ).
Finally we get :

χ n -n 0 h δ ′ 1 -1 , m -m 0 h δ ′ 2 -1 2 ℓ 2 (N 2 ) = F χ 2 (0, 0)h δ ′ 1 +δ ′ 2 -2 + O (h ∞ ) ; hence K h = 1 F (χ 2 ) (0, 0)h δ ′ 1 +δ ′ 2 -2 2 + O (h ∞ ) .
For finish, we write 

a n,m 2 ℓ 2 (N 2 ) = K 2 h ∑ n,m∈Z 2 χ ω 1 n -n 0 h δ ′ 1 -1 , ω 2 m -m 0 h δ ′ 2 -1 2 = K 2 h h δ ′ 1 +δ ′ 2 -2 F χ 2 (0, 0) + O(h ∞ ) = 1 + O(h ∞ ).
∆ := (n, m) ∈ N 2 ; |τ n -τ n 0 | ≤ ω 1 h δ 1 and |µ m -µ m 0 | ≤ ω 2 h δ 2 = (n, m) ∈ N 2 ; |n -n 0 | ≤ h δ 1 -1 and |m -m 0 | ≤ h δ 2 -1
where 0 < δ i < 1; and we define the set Γ = Γ(h, E 1 , E 2 ) by :

Γ := N 2 -∆.
We have the following usefull lemma :

Lemma 2.7. If we suppose for all i ∈ {1, 2}, δ ′ i > δ i then we have

∑ n,m∈Γ |a n,m | 2 = O(h ∞ ).
Proof. The starting point is the following inequality :

∑ n,m∈Γ |a n,m | 2 ≤ ∑ n,m∈Z 2 , |n-n 0 |>h δ 1 -1 |a n,m | 2 + ∑ n,m∈Z 2 , |m-m 0 |>h δ 2 -1 |a n,m | 2 .
Since the function χ 2 is in the space S(R 2 ), for all integer N ≥ 1 we have

∑ n,m∈Z 2 n -n 0 h δ ′ 1 -1 2N |a n,m | 2 + ∑ n,m∈Z 2 m -m 0 h δ ′ 2 -1 2N |a n,m | 2 = O(1).
Without loss generality, we may suppose that n 0 = m 0 = 0. Next we write

∑ n,m∈Z 2 , |n|>h δ 1 -1 |a n,m | 2 = h 2N(δ ′ 1 -1) ∑ n,m∈Z 2 , |n|>h δ 1 -1 |a n,m | 2 n h δ ′ 1 -1 2N 1 n 2N = O h 2N(δ ′ 1 -δ 1 ) .
In a similar way, we get 

∑ n,m∈Z 2 , |m|>h δ 2 -1 |a n,m | 2 = O h 2N(δ ′ 2 -δ 2 ) ; because δ ′ i > δ i , this implies ∑ n,m∈Γ |a n,m | 2 = O(h ∞ ),
(E 1 , E 2 ) = 0, ∂F ∂Y (E 1 , E 2 ) = 0.
3.2.1. Semi-classical and classical periods.

Definition 3.2. We define semi-classical periods T scl 1 and T scl 2 by :

T scl 1 := 2π ∂F ∂X (τ n 0 , µ m 0 ) ω 1 and T scl 2 := 2π ∂F ∂Y (τ n 0 , µ m 0 ) ω 2 .
So, in linear order approximation, we have :

Proposition 3.3. Let α a real number such that α > 1 -2 min δ i .
Then, uniformly for all t ∈ [0, h α ]:

r(t) = e -itF(τ n 0 ,µ m 0 )/h ∑ n,m∈N 2 |a n,m | 2 e -2iπt n-n 0 T scl 1 + m-m 0 T scl 2 + O h α+2 min δ i -1 .
Proof. Let us introduce the difference ε(t) := ε(t, h) defined by

ε(t) := ∑ n,m∈N 2 |a n,m | 2 e -i t h F(τ n ,µ m) -e -itF(τ n 0 ,µ m 0 )/h ∑ n,m∈N 2 |a n,m | 2 e -2iπt n-n 0 T scl 1 + m-m 0 T scl 2 .
For all integers (n, m) ∈ N 2 the Taylor-Lagrange's formula (at order 2) around (τ n 0 , µ m 0 ) on the function F gives the existence of a real number

θ = θ (n, m, n 0 , m 0 ) ∈ ]0, 1[ such that F (τ n , µ m ) = F (τ n 0 , µ m 0 ) + 2πh (n -n 0 ) T scl 1 + 2πh (m -m 0 ) T scl 2 + 1 2 ∂ 2 F (ρ n,m ) ∂X 2 ω 2 1 h 2 (n -n 0 ) 2 + 1 2 ∂ 2 F (ρ n,m ) ∂Y 2 ω 2 2 h 2 (m -m 0 ) 2 + ∂ 2 F ∂X∂Y (ρ n,m ) ω 1 ω 2 h 2 (n -n 0 ) (m -m 0 ) , with ρ n,m = ρ(n, m, n 0 , m 0 , h) := (τ n 0 + θ(τ n -τ n 0 ), µ m 0 + θ(µ m -µ m 0 )) . So, we get ε(t) = ∑ n,m∈N 2 |a n,m | 2 e -2iπt n-n 0 T scl 1 + m-m 0 T scl 2 e -i2πtR n,m (h) -1
where we have used the notation

R n,m (h) := hω 2 1 (n -n 0 ) 2 4π ∂ 2 F (ρ n,m ) ∂X 2 + hω 2 2 (m -m 0 ) 2 4π ∂ 2 F (ρ n,m ) ∂Y 2 + hω 1 ω 2 (n -n 0 )(m -m 0 ) 2π ∂ 2 F (ρ n,m ) ∂X∂Y .
With the sets Γ,∆ and by triangular inequality, we obtain for all t ≥ 0

ε(t) ≤ ∑ n,m∈∆ |a n,m | 2 e -2iπt n-n 0 T scl 1 + m-m 0 T scl 2 e -i2πtR n,m (h) -1 + 2 ∑ n,m∈Γ |a n,m | 2 .
For all t ≥ 0, for h small enough and for all integers (n, m) ∈ ∆, we observe that

thω 2 1 (n -n 0 ) 2 4π ∂ 2 F (ρ n,m ) ∂X 2 ≤ tK 1 h 2δ 1 -1 ; thω 2 2 (m -m 0 ) 2 4π ∂ 2 F (ρ n,m ) ∂Y 2 ≤ tK 2 h 2δ 2 -1 ; thω 1 ω 2 (n -n 0 )(m -m 0 ) 2π ∂ 2 F (ρ n,m ) ∂X∂Y ≤ tK 12 h δ 1 +δ 2 -1 ;
where K 1 , K 2 , K 12 > 0 are constants which does not depend on h. Indeed : let us denotes by B ((E 1 , E 2 ), r) the Euclidian ball of dimension 2 with center (E 1 , E 2 ) and radius r; since lim h→0 (τ n 0 ,

µ m 0 ) = (E 1 , E 2 ) we obtain that ∀ε > 0, ∃h 0 > 0, such that for all h ≤ h 0 , (τ n 0 , µ m 0 ) ∈ B ((E 1 , E 2 ), ε); next for all integers (n, m) ∈ ∆, we have |θ(τ n -τ n 0 )| = hω 1 θ |n -n 0 | ≤ ω 1 h δ 1 and |θ(µ m -µ n 0 )| = hω 2 θ |m -m 0 | ≤ ω 2 h δ 2 , this means that for h small enough (h ≤ h 0 ) we have ρ n,m ∈ B ((E 1 , E 2 ), ε) ;
therefore we obtain for all h ≤ h 0 ,

∂ 2 F ∂X 2 (ρ n,m ) ≤ sup (x,y)∈B((E 1 ,E 2 ),ε) ∂ 2 F ∂X 2 (x, y)
and this quantity is > 0 and does not depend on h. Next we have for all t ∈ [0,

h α ] t |R n,m (h)| ≤ K 1 h α+2δ 1 -1 + K 2 h α+2δ 2 -1 + K 1,2 h α+δ 1 +δ 2 -1 ≤ Mh α-1 h 2δ 1 + h 2δ 2 + h δ 1 +δ 2 = 3Mh 2 min δ i +α-1 ;
where M := max (K 1 , K 2 , K 12 ) ; with (by hypothesis) 2 min δ i + α -1 > 0. This implies that for all t ∈ [0, h α ] and for all integers (n, m) ∈ ∆ we get

e -i2πtR n,m (h) -1 = O h 2 min δ i +α-1 ;
and consequently we have for all t ∈ [0,

h α ] ∑ n,m∈∆ |a n,m | 2 e -2iπt n-n 0 T scl 1 + m-m 0 T scl 2 e -i2πtR n,m (h) -1 = O h 2 min δ i +α-1 ∑ n,m∈N 2 |a n,m | 2 = O h 2 min δ i +α-1 .
Finally, for all t ∈ [0,

h α ] we have ε(t) = O h 2 min δ i +α-1 .
The semi-classical periods T scl i depend on the parameter h. Later we consider two cases : T scl 1 /T scl 2 ∈ Q or not. Consequently we don't make commensurability hypothesis on the number T scl 1 /T scl 2 valid up for all h > 0, so we prefer introduce two quantities which does not depend on h to make latter commensurability hypothesis. So we replace semi-classical periods T scl i by semi-classical periods T cl i . Definition 3.4. We define classical periods T cl 1 and T cl 2 by :

T cl 1 := 2π ∂F ∂X (E 1 , E 2 ) ω 1 and T cl 2 := 2π ∂F ∂Y (E 1 , E 2 ) ω 2 .
An obvious remark is that for all j ∈ {1, 2} we have lim h→0 T scl j = T cl j .

Proposition 3.5. Let τ be a real number such that τ >min δ i . Then, uniformly for all t ∈ [0, h τ ]:

∑ n,m∈N 2 |a n,m | 2 e -2iπt n-n 0 T scl 1 + m-m 0 T scl 2 = ∑ n,m∈N 2 |a n,m | 2 e -2iπt n-n 0 T cl 1 + m-m 0 T cl 2 + O h τ+min δ i .
Proof. We observe that

∑ n,m∈N 2 |a n,m | 2   e -2iπt n-n 0 T scl 1 + m-m 0 T scl 2 -e -2iπt n-n 0 T cl 1 + m-m 0 T cl 2   ≤ ∑ n,m∈Γ 2 |a n,m | 2 +2 ∑ n,m∈∆ |a n,m | 2 2πt(n -n 0 ) 1 T scl 1 - 1 T cl 1 + 2πt(m -m 0 ) 1 T scl 2 - 1 T cl 2 , because e iX 1 e iX 2 -e iY 1 e iY 2 ≤ 2 |X 1 -Y 1 | + 2 |X 2 -Y 2 | . Next for all t ≥ 0 we have 2πt(n -n 0 ) 1 T scl 1 - 1 T cl 1 = 2πt(n -n 0 ) T cl 1 -T scl 1 T scl 1 T cl 1 ,
and we know that

T cl 1 -T scl 1 = 2π ω 1 ∂F ∂X (τ n 0 , µ m 0 ) -∂F ∂X (E 1 , E 2 ) ∂F ∂X (E 1 , E 2 ) ∂F ∂X (τ n 0 , µ m 0 )
: first, applying the inequality of Lagrange we obtain :

∂F ∂X (τ n 0 , µ m 0 ) - ∂F ∂X (E 1 , E 2 ) ≤ sup x,y∈B((E 1 ,E 2 ),1) ∇ ∂F ∂X (x, y) R 2 (τ n 0 , µ m 0 ) -(E 1 , E 2 ) R 2 ≤ M (τ n 0 -E 1 ) 2 + (µ m 0 -E 2 ) 2 ≤ Mh √ 2 2 .
where M > 0 and does not depend on h.

On the other hand, since we suppose ∂F ∂X (E 1 , E 2 ) = 0, there exists ε 1 > 0 and

r 1 > 0 such that for all (x, y) ∈ B ((E 1 , E 2 ), r 1 ) we get ∂F ∂X (x, y) ≥ ε 1 .
We have seen that hence that there exists

h 1 > 0 such that for all h ∈ ]0, h 1 [ (τ n 0 , µ m 0 ) ∈ B ((E 1 , E 2 ), r 1 ) ; as a consequence the application h → 1 ∂F ∂X (E 1 ,E 2 ) ∂F ∂X (τn 0 ,µ m 0 ) is bounded on the open set ]0, h 1 [; indeed for all h ∈ ]0, h 1 [ 1 ∂F ∂X (E 1 , E 2 ) ∂F ∂X (τ n 0 , µ m 0 ) ≤ 1 ε 2 1 < +∞ hence, with M ′ := 2π ω 1 Mh √ 2 2 1 ε 2 1 , for all h ∈ ]0, h 1 [ we have T cl 1 -T scl 1 ≤ hM ′ . Next, since 1 T scl 1 T cl 1 ≤ ω 1 ω 2 4π 2 ∂F ∂X (E 1 , E 2 ) ∂F ∂X (τ n 0 , µ m 0 ) ≤ ω 1 ω 2 4π 2 sup x,y∈B((E 1 ,E 2 ),1) ∂F ∂X (x, y) 2 < ∞ there exists a constant C 1 > 0 which does not depend on h such that for all h ∈ ]0, h 1 [ we get 1/T scl 1 -1/T cl 1 ≤ C 1 h. In a similar way there exists C 2 > 0 and h 2 > 0 such that for all h ∈ ]0, h 2 [ we get 1/T scl 2 -1/T cl 2 ≤ C 2 h.
As a consequence, for all h ∈ ]0, h * [ where h * := min h i , for all t ∈ [0, h τ ] with τ ∈ R, and for all integers (n, m) ∈ △ we have :

t(n -n 0 ) 1 T scl 1 - 1 T cl 1 ≤ C 1 h υ+δ 1 , t(m -m 0 ) 1 T scl 2 - 1 T cl 2 ≤ C 2 h υ+δ 2 ;
we thus obtain for all t, (n,

m) ∈ [0, h υ ] × ∆ t(n -n 0 ) 1 T scl 1 - 1 T cl 1 + t(m -m 0 ) 1 T scl 2 - 1 T cl 2 ≤ Mh τ+min δ i . Therefore ∑ n,m∈N 2 |a n,m | 2   e -2iπt n-n 0 T scl 1 + m-m 0 T scl 2 -e -2iπt n-n 0 T cl 1 + m-m 0 T cl 2   ≤ 4πMh τ+min δ i ∑ n,m∈∆ |a n,m | 2 + O (h ∞ ) = O h τ+min δ i .
3.2.2. Comparison between classical periods and the time scale [0, h α ]. In proposition 3.3 the hypothesis on α is that α > 1 -2 min δ i ; therefore with δ i ∈] 1 2 , 1[ we can make a "good choice" for α; i.e. to have α < 0. Hence for h small enough we obtain :

0, T cl i ⊂ [0, h α ] . Next, since -min δ i -(1 -2 min δ i ) = -1 + min δ i ≤ 0 we get h -min δ i ≫ h 1-2 min δ i ;
this means that we can choose to take τ = α.

3.2.3.

The linear approximation a 1 . In conclusion, the linear approximation of the autocorrelation function on the time scale [0, h α ] is : Definition 3.6. The linear approximation of the autocorrelation function is

a 1 : t → ∑ n,m∈N 2 |a n,m | 2 e -2iπt n-n 0 T cl 1 + m-m 0 T cl 2 .

Geometrical interpretation of classical periods. The periods T cl

i have geo- metrical interpretation. For E 1 , E 2 > 0 consider the energy level set M E 1 ,E 2 := p -1 1 (E 1 ) ∩ p -1 2 (E 2 ) ⊂ R 4 , this manifold is isomorphic to the torus 2E 1 ω 1 S 1 × 2E 2
ω 2 S 1 , here S 1 is the one-dimension circle. Start with the calculus of the Hamiltonian flow of p = F(p 1 , p 2 ) with an initial point m 0 ∈ M E 1 ,E 2 . So the Hamilton's equations are

    ẋ1 (t) ẋ2 (t) ξ1 (t) ξ2 (t)     =     aξ 1 (t) bξ 2 (t) -ax 1 (t) -bx 2 (t)    
where we have used the notation a :

= ∂F ∂X (E 1 , E 2 ) ω 1 , b := ∂F ∂Y (E 1 , E 2 ) ω 2 .
For all j ∈ {1, 2}, let us consider the complex number Z j (t) := x j (t) + iξ j (t); from the Hamilton equations we obtain the equalities Ż1

(t) = -iaZ 1 (t), Ż2 (t) = -ibZ 2 (t). Therefore we get Z 1 (t) = Z 1 (0)e -iat , Z 2 (t) = Z 2 (0)e -ibt and |Z 1 (0)| 2 = x 2 1 (0) + ξ 2 1 (0) = 2E 1 a , |Z 2 (0)| 2 = x 2 2 (0) + ξ 2 2 (0) = 2E 2 b ;
this means that the Hamiltonian's flow in complex coordinate is given by

ϕ t : Z 1 (0) Z 2 (0) → Z 1 (t) Z 2 (t) .
In angular coordinate the flow is given by

ϕ t : θ 1,0 θ 2,0 → θ 1,0 -t a 2π θ 2,0 -t b 2π with θ j,0 ≡ arg Z j (0) 2π
[1] . So we have exactly the classical periods of the Hamilton- ian's flow :

2π a = 2π ∂F ∂X (E 1 , E 2 ) ω 1 = T cl 1 , 2π b = 2π ∂F ∂Y (E 1 , E 2 ) ω 2 = T cl 2 .
It's well know that if the periods are commensurate the flow is periodic on the torus. In opposite the flow is quasi-periodic on the torus.

3.4. The principal part of the function a 1 . Now, let us study in details the function a 1 (t) on the time scale 0, max T cl i . Start by a technical proposition :

Proposition 3.7. For all t ≥ 0 we have

∑ n,m∈Z 2 |a n,m | 2 e -2iπt n-n 0 T cl 1 + m-m 0 T cl 2 = 1 F (χ 2 ) (0, 0) ∑ ℓ,s∈Z 2 F χ 2 - h δ ′ 1 -1 ω 1 ℓ + t T cl 1 , - h δ ′ 2 -1 ω 2 s + t T cl 2 .
Proof. The trick here is just to use the Poisson formula, so let us consider the function Ω t defined by

Ω t :      R 2 → C (x 1 , x 2 ) → |a x 1 ,x 2 | 2 e -2iπt (x 1 -n 0 ) T cl 1 e -2iπt (x 2 -m 0 ) T cl 2
where t ∈ R is a parameter. For all integers (n, m) ∈ Z 2 we have

|a n,m | 2 e -2iπt n-n 0 T cl 1 + m-m 0 T cl 2 = Ω t (n, m).
So clearly, the function

Ω t ∈ S(R 2 ), then the Fourier transform F (Ω t ) is equal, for all ζ 1 , ζ 2 ∈ R 2 F (Ω t ) (ζ 1 , ζ 2 ) = +∞ -∞ +∞ -∞ Ω t (x 1 , x 2 ) e -2iπx 1 ζ 1 e -2iπx 2 ζ 2 dx 1 dx 2 ; therefore for all ζ 1 , ζ 2 ∈ R 2 we get F (Ω t ) (ζ 1 , ζ 2 ) = e -2iπ(n 0 ζ 1 +m 0 ζ 2 ) F (χ 2 ) (0, 0) F χ 2 - h δ ′ 1 -1 ω 1 ζ 1 + t T cl 1 , - h δ ′ 2 -1 ω 2 ζ 2 + t T cl 2 .
It comes from the Poisson formula the equality

∑ n,m∈Z 2 Ω t (n, m) = ∑ ℓ,s∈Z 2 F (Ω t ) (ℓ, s) = 1 F (χ 2 ) (0, 0) ∑ ℓ,s∈Z 2 F χ 2 - h δ ′ 1 -1 ω 1 ℓ + t T cl 1 , - h δ ′ 2 -1 ω 2 s + t T cl 2
which gives the proposition.

Since the function

F χ 2 ∈ S(R 2 ), we observe that only index ℓ, s ∈ Z 2 such that ℓ + t T cl 1 or s + t T cl 2
are close to zero are important in the sum. More precisely : Definition 3.8. For all t ≥ 0, let us define the integers ℓ i (t) = ℓ i (t, h, E) as the closest integers to the real numbers -t/T cl i ; i.e :

ℓ i (t) + t T cl i = d t, T cl i Z ;
where d(., .) denote the Euclidiean distance on R.

Remark 3.9. Without loss of generality, we may suppose the integers ℓ i (t) are unique. On the other hand, for all integer ℓ ∈ Z such that ℓ = ℓ i (t) we get :

ℓ + t T cl i ≥ 1 2 .
Lemma 3.10. Uniformly for t ≥ 0 we have :

a 1 (t) = 1 F (χ 2 ) (0, 0) F χ 2 - h δ ′ 1 -1 ω 1 d T cl 1 Z, t , - h δ ′ 2 -1 ω 2 d T cl 2 Z, t + O (h ∞ ) . Proof. Since F χ 2 ∈ S(R 2 ) we have ∀k, d ∈ N * 2 , ∃B k,d > 0, ∀ζ 1 , ζ 2 ∈ R 2 , F χ 2 (ζ 1 , ζ 2 ) ≤ B k,d (1 + |ζ 1 |) k (1 + |ζ 2 |) d .
Next, it then follow from the proposition above and from the lemma 2.4 that for all t ≥ 0

a 1 (t) = 1 F (χ 2 ) (0) ∑ ℓ,s∈Z 2 F χ 2 - h δ ′ 1 -1 ω 1 ℓ + t T cl 1 , - h δ ′ 2 -1 ω 2 s + t T cl 2 = 1 F (χ 2 ) (0, 0) F χ 2 - h δ ′ 1 -1 ω 1 d t, T cl 1 Z , - h δ ′ 2 -1 ω 2 d t, T cl 2 Z + O (h ∞ ) .
Next, for all t ≥ 0

a 1 (t) = ∑ n,m∈Z 2 |a n,m | 2 e -2iπt n-n 0 T cl 1 + m-m 0 T cl 2 - ∑ n,m∈Z 2 -N 2 |a n,m | 2 e -2iπt n-n 0 T cl 1 + m-m 0 T cl 2 ; thus a 1 (t) - 1 F (χ 2 ) (0, 0) F χ 2 - h δ ′ 1 -1 ω 1 d T cl 1 Z, t , - h δ ′ 2 -1 ω 2 d T cl 2 Z, t ≤ ∑ n,m∈Z 2 -N 2 |a n,m | 2 + O (h ∞ ) .
For finish, we observe

∑ n,m∈Z 2 -N 2 |a n,m | 2 = +∞ ∑ n=0 -1 ∑ m=-∞ |a n,m | 2 + -1 ∑ n=-∞ -1 ∑ m=-∞ |a n,m | 2 + -1 ∑ n=-∞ +∞ ∑ m=0 |a n,m | 2 ;
and an obvious consequence of the lemma 2.4 is that

∑ n,m∈Z 2 -N 2 |a n,m | 2 = O (h ∞ ) .
3.5. Behaviour of the function a 1 : case

T cl 1 T cl 2 ∈ Q.
In this subsection we suppose

T cl 1 T cl 2 = b a ∈ Q; hence aT cl 1 = bT cl 2 .
Definition 3.11. If the classical periods T cl 1 , T cl 2 are commensurate the classical period of the global system is defined by T cl := aT cl 1 = bT cl 2 . Now, we can formulate an important result of this section :

Theorem 3.12. We have : (i) for t real such that t ∈ T cl Z we get (i.e. for all i ∈ {1, 2}, d t, T cl i Z = 0)

a 1 (t) = 1. (ii) If there exists i ∈ {1, 2} such that d T cl i Z, t > h 1-δ ′ i then : a 1 (t) = O(h ∞ ).
Proof. The first point (i) is clear. For the second : it follows from the lemma 3.10 that

a 1 (t) = 1 F (χ 2 ) (0, 0) F χ 2 - h δ ′ 1 -1 ω 1 d T cl 1 Z, t , - h δ ′ 2 -1 ω 2 d T cl 2 Z, t + O (h ∞ ) ; since the function F χ 2 ∈ S(R 2 ) we have ∀q ∈ N, ∃D q > 0, ∀ζ 1 , ζ 2 ∈ R 2 , F χ 2 (ζ 1 , ζ 2 ) ≤ D q (1 + |ζ 1 | + |ζ 2 |) q and therefore F χ 2 - h δ ′ 1 -1 ω 1 d T cl 1 Z, t , - h δ ′ 2 -1 ω 2 d T cl 2 Z, t ≤ D q 1 + h δ ′ 1 -1 ω 1 d T cl 1 Z, t + h δ ′ 2 -1 ω 2 d T cl 2 Z, t q . Thus, if there exists i ∈ {1, 2} such that d T cl i Z, t > ω i h 1-δ ′ i then there exists ε > 0 such that d T cl i Z, t ≥ ω i h 1-δ ′ i -ε
and thus for all q ∈ N we obtain

F χ 2 - h δ ′ 1 -1 ω 1 d T cl 1 Z, t , - h δ ′ 2 -1 ω 2 d T cl 2 Z, t ≤ D q h εq ;
hence we get

F χ 2 - h δ ′ 1 -1 ω 1 d T cl 1 Z, t , - h δ ′ 2 -1 ω 2 d T cl 2 Z, t = O(h ∞ ).
3.6. Behaviour of the function a 1 : case

T cl 1 T cl 2 / ∈ Q. Let us now tackle an important case : the case b a = T cl 1 T cl 2
is not a fraction of Q. Here, there not exists classical common period, the Hamiltonian flow is not periodic on the torus. First, we note that, in view of lemma 3.10, the behaviour of the function a 1 is given by the function :

t → 1 F (χ 2 ) (0, 0) F χ 2 - h δ ′ 1 -1 ω 1 d T cl 1 Z, t , - h δ ′ 2 -1 ω 2 d T cl 2 Z, t .
Therefore, since the function F χ 2 belongs to the space S(R 2 ), we need to explain simultaneously the evolutions of the distances d T cl j Z, t depending on time. In another formulation, we want to analyze the behaviour of the Euclidian distance between the segment line (OM t ) where O := (0, 0), M t := (t, t) and the lattice T cl 1 Z × T cl 2 Z depending on the time t and the number

T cl 1 T cl 2 = b a .
Precisely, we want to compare the distance d (OM t ) , T cl 1 Z × T cl 2 Z with the real number h δ ′ j -1 . For example, if for a time t * the distance is larger than h

1-δ ′ j we get a 1 (t * ) = O(h ∞ ).
Start this new subsection by some geometrical results and latter we explain the study of the autocorrelation function a 1 (t).

3.6.1. Some general points. In angular coordinates the Hamiltonian flow is :

ϕ t :        [0, 1] 2 → [0, 1] 2 θ 1,0 θ 2,0 → -at 2π + θ 1,0 -bt 2π + θ 2,0
.

Without loss of generality we may suppose that the initial data is θ 1,0 θ 2,0 = 0 0 and that a, b < 0. Therefore the Hamiltonian flow is given by ϕ t = at bt , where we have used the notation a := -a 2π > 0 and b := -b 2π > 0. Recall that

T cl 1 = 2π a = 1 a and T cl 2 = 2π b = 1 b . So, to understand the behaviour of the function t → 1 F (χ 2 ) (0, 0) F χ 2 - h δ ′ 1 -1 ω 1 d T cl 1 Z, t , - h δ ′ 2 -1 ω 2 d T cl 2 Z, t
we need to explain the evolution of the Euclidian distance d ϕ t , Z 2 * depending on time t and on the real number b a .

3.6.2. Suppose b a verify diophantin condition. J. Liouville proved in 1884 the following theorem : Theorem 3.13. (Liouville). For all algebraic irrational number θ with degree d ≥ 2 there exists a constant C = C(θ) > 0 such that the inequality

θ - p q ≥ C q d
holds for all rationals p q .

In other words, algebraic numbers are bad approximation by rationals. Finally, in 1955 K. F. Roth has considerably improved this result (he was awarded the Field medal in 1958).

Definition 3.14. We say an irrational number θ satisfy a ε-diophantin condition (ε ≥ 0) if and only if there exists a constant

C ε > 0 such that θ - p q ≥ C ε q 2+ε .
holds for all (p, q) ∈ Z × N * . We denote by C ε the set of irrationals θ that holds ε-diophantin condition. We say that an θ irrational θ is a Roth number if and only

if θ ∈ ε>0 C ε ; i.e ∀ε > 0, ∃C ε > 0; ∀(p, q) ∈ Z × N * ; θ - p q ≥ C ε q 2+ε .
There is a lot of Roth numbers examples :

Theorem 3.15. (Thue-Siegel-Roth). Every real algebraic irrational number of degree d ≥ 2 is a Roth number.

We have also the (see for example [Cas]) :

Theorem 3.16. The Lebesgue measure of Roth's numbers is infinite.

Remark 3.17. Let θ a ε-diophantin number. Since for all p we have θ -

p 1 ≥ C ε and |θ -p| ≤ 1 2 ≤ √ 2 
2 ; thus we obtain that 0 < C ε ≤ 1 2 holds for all ε > 0 Now, we estimate the Euclidian distance between the set {ϕ t } t∈[0,T] and Z 2 * := Z 2 -{(0, 0)} . Notation 3.18. Let us denote by ∆ and Γ the following orthogonal lines

∆ := Vect(ae 1 + be 2 ), Γ := Vect(-be 1 + ae 2 )
where (e 1 , e 2 ) is the canonical basis of the vector space R 2 . Let us also considers π ∆ the orthogonal projector on the line ∆ and π Γ the orthogonal projector on the line Γ.

Here we suppose θ = b a is a Roth number. Lemma 3.19. For all ε > 0 there exists 0

< K ε ≤ C ε , here C ε denotes the Roth constant of θ = b a , such that π ∆ (ne 1 + me 2 ) R 2 ≥ K ε ne 1 + me 2 1+ε R 2 ; π Γ (ne 1 + me 2 ) R 2 ≥ K ε ne 1 + me 2 1+ε R 2
holds for all (n, m) ∈ Z 2 * .

Proof. Let us denotes by u =

u 1 u 2 := 1 √ a 2 +b 2 a b
the unitary vector of the line ∆, so we have

π ∆ (ne 1 + me 2 ) R 2 = | u, ne 1 + me 2 R 2 | = |nu 1 + mu 2 | = |u 1 | |n + mθ| ; since θ is a Roth number, for all ε > 0 there exist C ε > 0 such that π ∆ (ne 1 + me 2 ) R 2 ≥ |u 1 | C ε |m| 1+ε ≥ |u 1 | C ε ne 1 + me 2 1+ε R 2 .
In a similar way we ge

π Γ (ne 1 + me 2 ) R 2 ≥ |u 2 | C ε |n| 1+ε ≥ |u 2 | C ε ne 1 + me 2 1+ε R 2 ; therefore with K ε := min (|u 1 | C ε , |u 2 | C ε ) ≤ C ε we obtain the lemma.
A consequence of this lemma is :

Theorem 3.20. For all ε > 0 there

K ε ≤ C ε , here C ε denotes the Roth constant of θ = b a , such that for all t ≥ 0 d ϕ t , Z 2 * ≥ K ε √ 2 2 + t √ a 2 + b 2 1+ε .
Proof. We observe that for all t ≥ 0 the point ϕ t belongs to the line ∆, thus there exists a pair (n t , m t ) ∈ Z 2 * such that

d ϕ t , Z 2 * = --→ Oϕ t -(n t e 1 + m t e 2 ) R 2
≥ π Γ (n t e 1 + m t e 2 ) R 2 ; applying the lemma above we get

d ϕ t , Z 2 * ≥ K ε n t e 1 + m t e 2 1+ε R 2 .
On the other hand we have the majorization

--→ Oϕ t -(n t e 1 + m t e 2 ) R 2 ≤ √ 2 2 ,
and, by triangular inequality we obtain

n t e 1 + m t e 2 R 2 ≤ --→ Oϕ t R 2 + √ 2 2 . Therefore, since --→ Oϕ t R 2 = t √ a 2 + b 2 , we get for all t ≥ 0, ε > 0 d ϕ t , Z 2 * ≥ K ε t √ a 2 + b 2 + √ 2 2 1+ε .
Corollary 3.21. For all ε > 0 and for every η ∈ 0,

√ 2 1+ε 2 ⊂ 0, √ 2 2
we have :

d ϕ t , Z 2 * < η ⇒ t > 1 √ a 2 + b 2 K ε η 1 1+ε - √ 2 2 .
Proof. Suppose d ϕ t (0), Z 2 * < η, it then follows from the theorem above that for all ε > 0 there exists a constant

K ε ∈ 0, 1 2 such that K ε √ 2 2 + t √ a 2 + b 2 1+ε < η
holds for all t ≥ 0; i.e.

K ε η 1 1+ε < √ 2 2 + t a 2 + b 2 . Remark 3.22. Since η ∈ 0, √ 2 1+ε 2 ⊂ 0, √ 2 2 we have K ε η 1 1+ε ≥ √ 2 2 .
Notation 3.23. For ε > 0 and η > 0, let us denote :

t η (ε) := 1 √ a 2 + b 2 K ε η 1 1+ε - √ 2 2 .
Theorem 3.24. For all ε > 0, for every η ∈ 0,

√ 2 1+ε 2
with η small enough such that t η (ε) ≥ max T cl i and for all k ≥ 1; there exists a constant D k > 0 which does not depend on h such that the inequality

|a 1 (t)| ≤ D k h k(1-max δ ′ i ) η -k holds for all t ∈[max T cl i , t η (ε)].
Proof. Our starting point is that for all t ≥ max T cl i we have

d t, T cl i Z = d t, T cl i N * . Next, since T cl 1 = 2π a = 1 a and T cl 2 = 2π b = 1 b we get d t, T cl 1 Z = d (at, N * ) , d t, T cl 2 Z = d (bt, N * ) .
Therefore, from the corrolary above (by contraposed) we obtain for all t ∈[max

T cl i , t η (ε)] d (at, bt), Z 2 * ≥ η;
and since the norms (x, y) R 2 and |x| + |y| are equivalent on R 2 , there exists a constant C > 0 such that

d t, T cl 1 Z + d t, T cl 2 Z ≥ Cη holds for all t ∈[max T cl i , t η (ε)].
Next, since the function F χ 2 belongs to the space S(R 2 ) we have

∀k ∈ N 2 , ∃M k > 0, ∀ζ 1 , ζ 2 ∈ R 2 , F χ 2 (ζ 1 , ζ 2 ) ≤ M k (|ζ 1 | + |ζ 2 |) k ;
thus we obtain for all t ∈[max

T cl i , t η (ε)] F χ 2 - h δ ′ 1 -1 ω 1 d t, T cl 1 Z , - h δ ′ 2 -1 ω 2 d t, T cl 2 Z ≤ M k h δ ′ 1 -1 ω 1 d t, T cl 1 Z + h δ ′ 2 -1 ω 2 d t, T cl 2 Z k ≤ max(ω i ) k M k h k max(δ ′ i )-k d t, T cl 1 Z + d t, T cl 2 Z k ≤ max(ω i ) k M k h k max(δ ′ i )-k 1 C k η k = max(ω i ) k M k C k h k(1-max(δ ′ i )) η -k .
Applying this theorem with η = h s where the real number s belongs to 0, 1max δ ′ i , we have : Corollary 3.25. For all ε > 0, s ∈ 0, 1max δ ′ i and for h small enough such that t h s (ε) ≥ max T cl i ; the following equality

a 1 (t) = O(h ∞ ) holds uniformly for all t ∈ [max T cl i , t h s (ε)].
Notes on time scales. From a pratical point of view, we must verify that for all ε ≥ 0 t h s (ε) ≤ h α where α > 1 -2 min (δ i ) . Indeed we have :

Proposition 3.26. Suppose min δ i > 2 3 , for all ε > 0 and for all s ∈ 0, 1max δ ′ i we have

t h s (ε) ≤ 1 2 √ a 2 + b 2 h 1-2min δ i - √ 2 .
Proof. For all s > 0 and for all ε > 0 , since

t h S (ε) = 1 √ a 2 + b 2 (K ε ) 1 1+ε h -s 1+ε - √ 2 2
for h → 0 we have the equivalence

t h s ∼ D ε h -s 1+ε
where

D ε := 1 √ a 2 +b 2 (K ε ) 1 1+ε > 0.
On the other hand, we see that for all ε > 0 we have 1 -

2min δ i ≤ max δ ′ i -1 1+ε . Hence h max δ ′ i -1 1+ε ≤ h 1-2min δ i .
Therefore, we obtain

t h S (ε) ≤ 1 √ a 2 + b 2 (K ε ) 1 1+ε h max δ ′ i -1 1+ε - √ 2 2 ≤ 1 √ a 2 + b 2 (K ε ) 1 1+ε h 1-2min δ i - √ 2 2 ≤ 1 √ a 2 + b 2 1 2 h 1-2min δ i - √ 2 2 .
Use of continued fractions. Now, we can wonder what are the accurate times when d ϕ t , Z 2 * < η ? To solve this problem we will use the continued fraction theory. Some useful theorems. The continued fractions are essentially used for the approximation of real numbers. There exists two types of continued fractions: the finite continued fractions representing rational numbers and the infinite continued fractions representing irrational numbers. For all irrational number θ, there exists a pair sequence (q n , p n ) ∈N 2 such that θ -p n q n ≤ 1 q 2 n holds for all n ≥ 0. This sequence is given by the continued fractions algorithm (see [Ro-Sz], [Khi]). Geometrically speaking, the construction principle for this sequence is as follows (see [Arn2]) : consider v 0 := (0, 1) and v -1 := (1, 0). It is obvious that these points lie on different sides of the line y = θx. By induction : let the vectors v k-1 and v k be constructed whereas to construct the new vector v k+1 , we add to the vector v k-1 the vector v k as many times as we can in such a way the new vector v k+1 lies on the same side of the line y = θx as the vector v k-1 :

v k+1 = a k v k + v k-1 i.e    q k+1 = a k q k + q k-1 p k+1 = a k p k + p k-1 where (a k ) k≥0 is a sequence of integers strictly > 0.
We note that the sequence (q n ) n is strictly increasing. With the standard nota- tion continued fractions we have [a 0 , a 1 , . . . , a n , . . .] := a 0 + 1 a 1 + 1 a 2 + 1 a 3 +... end we have (see for example [Khi]) the relation [a 0 , a 1 , . . . , a n ] = p n q n . Example 3.27. The number π is given by : π = [3, 7, 15, 1, 292, 1 . . .] .

Approach time. Let us denote by D the line y = b a x = θx. Hence, for all t ≥ 0 we have :

[Oϕ t ] ⊂ D. For a fixed n ≥ 0 we wish to find the point M n of D such that d (M n , (q n , p n )) = d (D, (q n , p n )) . In other words, we wish to find the time τ n such that d (ϕ τ n , (q n , p n )) = d (D, (q n , p n )) .

Proposition 3.28. For all n ≥ 1 the unique

τ n ≥ 0 such that d (ϕ τ n , (q n , p n )) = d (D, (q n , p n )) is given by τ n = aq n + bp n a 2 + b 2 . Moreover we have d ϕ τ n , Z 2 * ≤ a √ a 2 + b 2 1 q n < 1 q n .
Proof. For n = 0 fixed, we want to find t ≥ 0 such that d (ϕ t , (q n , p n )) = d (D, (q n , p n )) . This means that we want to find t ≥ 0 such that --→ Oϕ t ⊥ (q n e 1 + p n e 2 ) ---→ Oϕ t

i.e. : to find t ≥ 0 such that --→ Oϕ t , (q n e 1 + p n e 2 ) ---→ Oϕ t R 2 = 0.

Consequently we solve the equation at(q nat) + bt(p nbt) = 0 and we find for non-null solution : t = aq n +bp n a 2 +b 2 . Therefore, at time t = τ n := aq n +bp n a 2 +b 2 we obtain

d (ϕ τ n , (q n , p n )) = d a 2 q n + abp n a 2 + b 2 , abq n + b 2 p n a 2 + b 2 , (q n , p n ) = 1 a 2 + b 2 b 2 (ap n -bq n ) 2 + a 2 (bq n -ap n ) 2 .
Since for all integer n we know that θ -p n q n ≤ 1 q 2 n , i.e. |q n bp n a| ≤ a q n holds for all integer n, so we deduce that

d (ϕ τ n , (q n , p n )) ≤ 1 a 2 + b 2 b 2 a 2 q 2 n + a 2 a 2 q 2 n ≤ a √ a 2 + b 2 1 q n < 1 q n .
For conclude, we note that

d (ϕ τ n , (q n , p n )) ≥ d ϕ τ n , Z 2 *
holds for all integer n.

We wish to generalize this result : we wish to analyze the behaviour of the distance between the set Z 2 * and the flow ϕ t when t is in a neighbourhood of the time τ n . Notation 3.29. For r > 0 let us denotes by B(τ n , r) the closed ball of center τ n and radius r > 0 :

B(τ n , r) := aq n + bp n a 2 + b 2 -r, aq n + bp n a 2 + b 2 + r .
Proposition 3.30. For all r > 0

d ϕ t , Z 2 * ≤ 1 a 2 + b 2 ab q n + ra(a 2 + b 2 ) 2 + a 2 q n + rb(a 2 + b 2 )
2 holds for all t ∈ B(τ n , r).

Proof. We begin with the following inequality : for all t ≥ 0 and for all n

d ϕ t , Z 2 * ≤ d (ϕ t , (q n , p n )) .
Next, it's clear that for all t ∈ B(τ n , r) we have

ϕ t ∈ B a 2 q n + abp n a 2 + b 2 , ra × B abq n + b 2 p n a 2 + b 2 , rb .
Therefore, for all t ∈ B(τ n , r) we have

d (ϕ t , (q n , p n )) ≤ a 2 q n + abp n a 2 + b 2 + ra -q n 2 + abq n + b 2 p n a 2 + b 2 + rb -p n 2 = 1 a 2 + b 2 (abp n -b 2 q n + ra(a 2 + b 2 )) 2 + (abq n -a 2 p n + rb(a 2 + b 2 )) 2 ≤ 1 a 2 + b 2 ab q n + ra(a 2 + b 2 ) 2 + a 2 q n + rb(a 2 + b 2 ) 2 .
Remark 3.31. For r = 0 we obtain

d ϕ t , Z 2 * ≤ 1 a 2 + b 2 ab q n 2 + a 2 q n 2 ≤ a √ a 2 + b 2 1 q n .
and we obtain again the result of the proposition 3.28. Now, let us give an asymptotic equivalent (for n → ∞) of the real number τ n :

Proposition 3.32. For n → ∞ we have τ n ∼ Ωq n ; where Ω := a+bθ a 2 +b 2 > 0. Proof. We just write the fraction τ n /Ωq n :

τ n Ωq n = aq n + bp n a 2 + b 2 a 2 + b 2 q n (a + bθ)
= a a + bθ + bp n q n (a + bθ) and since lim n→∞ p n /q n = θ we obtain that lim n→∞ τ n /Ωq n = 1. Now, let us come back to the autocorrelation function approximation a 1 . Start by a notation and a remark : Notation 3.33. For µ > 0 let us denotes by A h = A h (θ, µ) the following set :

A h := q n ∈ N, q n ∈ h min δ ′ i -1+µ , h 1-2 min δ i -µ . Remark 3.34. For µ > 0, we have of course h min δ ′ i -1-µ , h 1-2 min δ i +µ ⊂ h min δ ′ i -1 , h 1-2 min δ i .
If we suppose that the set A h is non empty, we have some periods for the function a 1 , indeed we have :

Theorem 3.35. Suppose A h = ∅, then sup n∈{m∈N, q m (θ)∈A h } |a 1 (τ n ) -1| = O(h µ ).
Proof. Applying the Taylor-Lagrange formula on the function (x, y) → F χ 2 (x, y) near the origin : for all t ≥ 0 there exists θ = θ t, h, T cl 1 ,

T cl 2 ∈ ]0, 1[ such that F χ 2 - h δ ′ 1 -1 ω 1 d T cl 1 Z, t , - h δ ′ 2 -1 ω 2 d T cl 2 Z, t = F χ 2 (0, 0) - h δ ′ 1 -1 ω 1 d T cl 1 Z, t ∂F χ 2 ∂x θ h δ ′ 1 -1 ω 1 d T cl 1 Z, t , θ h δ ′ 2 -1 ω 2 d T cl 2 Z, t - h δ ′ 2 -1 ω 2 d T cl 2 Z, t ∂F χ 2 ∂y θ h δ ′ 1 -1 ω 1 d T cl 1 Z, t , θ h δ ′ 2 -1 ω 2 d T cl 2 Z, t .
We know that for all n ≥ 1 the distance between the part of the flow ϕ τ n and the set Z 2 * is strictly lower than 1 q n . Hence, if we suppose that from a certain point, like n ≥ N , the sequence 1 q n n is strictly lower than h s (with s > 0), then we obtain the majorization d ϕ τ n , Z 2 * ≤ h s . Therefore, for all i ∈ {1, 2} we have also

d τ n , T cl i Z ≤ h s . Consequently for all i ∈ {1, 2} we get h δ ′ i -1 d τ n , T cl i Z ≤ h δ ′ i -1+s
. Since we suppose s ≥min δ ′ i + 1 + µ with µ > 0 we deduce that :

h δ ′ i -1 d τ n , T cl i Z ≤ h µ ;
and, for h small enough, we obtain

h δ ′ 1 -1 ω 1 d T cl 1 Z, τ n ∂F χ 2 ∂x θ h δ ′ 1 -1 ω 1 d T cl 1 Z, τ n , θ h δ ′ 2 -1 ω 2 d T cl 2 Z, tτ n ≤ Mh µ , h δ ′ 2 -1 ω 2 d T cl 2 Z, τ n ∂F χ 2 ∂y θ h δ ′ 1 -1 ω 1 d T cl 1 Z, τ n , θ h δ ′ 2 -1 ω 2 d T cl 2 Z, tτ n ≤ Nh µ ;
where M, M ′ > 0 are constant which does not depend on h. Next, it comes from the Taylor formula written above that

sup n∈{m∈N, q m (θ)∈A h } |a 1 (τ n ) -1| = 1 F (χ 2 ) (0, 0) sup n∈{m∈N, q m (θ)∈A h } h δ ′ 1 -1 ω 1 d T cl 1 Z, τ n ∂F χ 2 ∂x θ h δ ′ 1 -1 ω 1 d T cl 1 Z, τ n , θ h δ ′ 2 -1 ω 2 d T cl 2 Z, τ n h δ ′ 2 -1 ω 2 d T cl 2 Z, τ n ∂F χ 2 ∂y θ h δ ′ 1 -1 ω 1 d T cl 1 Z, τ n , θ h δ ′ 2 -1 ω 2 d T cl 2 Z, τ n ≤ h µ M.
Counting of the sequence q n . In view of the theorem above, let us now tackle an important problem : what is the cardinality of the set A h ? Note that since the sequence (q n (θ)) n∈N is strictly increasing we have

# {A h } = # {n ∈ N, q n (θ) ∈ A h } .
Start by a simple majorization of the integer # {A h } :

# {A h } ≤ # N ∩ h min δ ′ i -1-µ , h 1-2 min δ i +µ ≤ E [δ(h)] + 1 where δ(h) := h 1-2 min δ i +µ -h min δ ′ i -1-µ and E[x]
denotes the integer part of x. Then, for h → 0 we have the equivalence δ(h) ∼ h 1-2 min δ i +µ . So we get a majorization of the integer # {A h } in order h 1-2 min δ i +µ .

Nevertheless, find a minoration of the integer # {A h } is more difficult; but it's cleat that for all n * > 1 there exists h * ∈ ]0, 1[ such that :

h * min δ ′ i -1-µ , h * 1-2 min δ i +µ +∞ n=0 q n (θ) = {q n * (θ)} .
In order to estimate the integer # {A h } , we must know the distribution of the se- quence (q n (θ)) n∈N on the real axis (in particular on the compact set h min δ ′ i -1-µ , h 1-2 min δ i +µ ) depending on the number θ. Let's try to give some distribution examples of the sequance (q n (θ)) n∈N .

An exemple : the golden ratio. The golden ratio ϕ is the unique real roots of X 2 -X -1 = 0, i.e. ϕ = (1 + √ 5)/2. The continued fraction of the golden ration is :

ϕ = [1, 1, . . . , 1, . . .] = 1 + 1 1 + 1 1+ 1 1+... .
Consequently the golden ratio is that one of the most difficult real number to approximate with rationals numbers. An another particularity of the golden ratio is that the sequence of the denominators (q n ) n from the continued fraction algorithm is equal to the Fibonacci sequence (F n ) n :

F n := 1 √ 5 1 + √ 5 2 n - 1 √ 5 1 - √ 5 2 n . We note that lim n→+∞ F n+1 F n = ϕ.
Next for n → +∞ we have also :

F n ∼ 1 √ 5 1 + √ 5 2 n .
We have also the following property : Proposition 3.36. Denote by q n (x) the sequence of denominators from the continued fraction algorithm of the number x; for all θ ∈ R, n ≥ 0 we have

q n (θ) ≥ F n .
In the general case for any θ irrational number, we have the following theorem (see for example [Khi]) : Theorem 3.37. (Khintchine-Lévy, 1952). Almost surely for θ ∈ R we have lim n→+∞ q n (θ)

1 n = K;
where K denotes the Khintchine-Lévy constant K := e π 12 ln(2) > 1.

Thus for instance from a certain point we obtain :

1 2 K n ≤ q n (θ) ≤ 3 2 K n .
The study of the distribution of the geometrical sequences

1 2 K n n∈N and 3 2 K n n∈N on the compact set h min δ ′ i -1-µ , h 1-2 min δ i +µ
is easy; unfortunately it does not provide accurate informations on the distribution of the sequence (q n (θ)) n∈N .

Open question. Do we know the denominator distribution of (q n (θ)) n∈N with the real axis depending on θ? More specifically, for a non-empty compact set of diameter δ > 0 includes in R * + is it possible to estimate the number of elements of the sequence (q n (θ)) n∈N in this compact set depending on the numbers θ and δ ? 4. SECOND ORDER APPROXIMATION : REVIVAL PERIODS 4.1. Introduction. Our next aim is to use a more accurate approximation of the function t → a(t). In this section, we use the quadradic approximation a 2 (t) of the autocorrelation function, valid up on a time scale 0, 1/h β where β > 1. This approximation is a consequence of a Taylor formula on the the term tF (τ n , µ m ) /h in order 2. In this quadradic approximation appear three revivals periods T rev 1 , T rev 2 and T rev 12 (of order 1/h).

Assumption 4.1. In this section, we suppose

∂ 2 F ∂X 2 (E 1 , E 2 ) = 0, ∂ 2 F ∂X∂Y (E 1 , E 2 ) = 0, ∂ 2 F ∂Y 2 (E 1 , E 2 ) = 0.
4.2. Quadradic approximation andc revival periods.

Semi-classical revival and revival periods.

Definition 4.2. Let us define the semi-classical revival periods T srev 1 , T srev 2 and T srev 12 by :

T srev 1 := 4π h ∂ 2 F ∂X 2 (τ n 0 , µ m 0 ) ω 2 1 ; T srev 2 := 4π h ∂ 2 F ∂Y 2 (τ n 0 , µ m 0 ) ω 2 2 ; T srev 12 := 4π h ∂ 2 F ∂X∂Y (τ n 0 , µ m 0 ) ω 1 ω 2 .
So we get the approximation :

Proposition 4.3. Let β a real number such that β > 1 -3 min δ i . Then we have uniformly for t ∈ 0, h β :

e +itF(τ n 0 ,µ m 0 )/h r(t) = ∑ n,m∈N 2 |a n,m | 2 e -2iπt n-n 0 T scl 1 + m-m 0 T scl 2 + (n-n 0 ) 2 Tsrev 1 + (m-m 0 ) 2 Tsrev 2 + (n-n 0 )(m-m 0) Tsrev 12 +O h β+3 min δ i -1 .
Proof. The principle is the same as in the proof of proposition 3.3. Here we use the Taylor-Lagrange formula at order 3 : for all pair (n, m)

∈ N 2 there exists θ = θ (n, m, n 0 , m 0 ) ∈ ]0, 1[ such that F (τ n , µ m ) = F (τ n 0 , µ m 0 ) + ∂F (τ n 0 , µ m 0 ) ∂X ω 1 h (n -n 0 ) + ∂F (τ n 0 , µ m 0 ) ∂y ω 2 h (m -m 0 ) + 1 2 ∂ 2 F (τ n 0 , µ m 0 ) ∂X 2 ω 2 1 h 2 (n -n 0 ) 2 + 1 2 ∂ 2 F (τ n 0 , µ m 0 ) ∂Y 2 ω 2 2 h 2 (m -m 0 ) 2 + 1 2 ∂ 2 F ∂X∂Y (τ n 0 , µ m 0 ) ω 1 ω 2 h 2 (n -n 0 ) (m -m 0 ) + 1 6 ∂ 3 F (ρ n,m ) ∂X 3 ω 3 1 h 3 (n -n 0 ) 3 + 1 2 ∂ 3 F (ρ n,m ) ∂X 2 ∂Y ω 2 1 ω 2 h 3 (n -n 0 ) 2 (m -m 0 ) + 1 2 ∂ 3 F (ρ n,m ) ∂X∂Y 2 ω 1 ω 2 2 h 3 (n -n 0 ) (m -m 0 ) 2 + 1 6 ∂ 3 F (ρ n,m ) ∂X 3 ω 3 2 h 3 (m -m 0 ) 3 , with ρ n,m = ρ(n, m, n 0 , m 0 , h) := (τ n 0 + θ(τ n -τ n 0 ), µ m 0 + θ(µ m -µ m 0 )) .
Next, we observe that for all pair (n, m) ∈ ∆ and for all t ∈ [0,

h β ] t (n -n 0 ) 3 h 2 ≤ h β+3δ 1 -1 ; t (n -n 0 ) 2 (m -m 0 ) h 2 ≤ h β+2δ 1 +δ 2 -1 ; t (n -n 0 ) (m -m 0 ) 2 h 2 ≤ h β+δ 1 +2δ 2 -1 ; t (m -m 0 ) 3 h 2 ≤ h β+3δ 2 -1 ; hence, since β > 1 -min (3δ 1 , 2δ 1 + δ 2 , δ 1 + 2δ 2 , 3δ 2 ) = 1 -3 min δ i ,
for all t ∈ 0, h β and for all pair (n, m) ∈ N 2 we get

e -2iπt((n-n 0 ) 3 h 2 +(n-n 0 ) 2 (m-m 0 )h 2 +(n-n 0 )(m-m 0 ) 2 h 2 +(m-m 0 ) 3 h 2 ) = 1 + O h β-1+3 min δ i .
And the statement of the proposition is established.

For the same reason as in definition 3.4 we introduce the revival periods :

Definition 4.4. Let us defines the revival periods T rev 1 , T rev 2 and T rev 12 by :

T rev 1 := 4π h ∂ 2 F ∂X 2 (E 1 , E 2 ) ω 2 1 ; T rev 2 := 4π h ∂ 2 F ∂Y 2 (E 1 , E 2 ) ω 2 2 ;
T rev 12 := 4π

h ∂ 2 F ∂X∂Y (E 1 , E 2 ) ω 1 ω 2 .
Clearly for all j ∈ {1, 2, 12} we have lim h→0 T srev j /T rev j = 1. The three semiclassical periods T srev j depend on h as well as their quotients. Since we will consider period quotients afterwards, is it preferably to study revival periods than semi-classical revival periods;for that we use indeed : Proposition 4.5. Let υ a real number such that υ > -2 min δ i . Then we have uniformly for t ∈ [0, h υ ]:

∑ n,m∈N 2 |a n,m | 2 e -2iπt n-n 0 T scl 1 + m-m 0 T scl 2 + (n-n 0 ) 2 Tsrev 1 + (m-m 0 ) 2 Tsrev 2 + (n-n 0 )(m-m 0) Tsrev 12 = ∑ n,m∈N 2 |a n,m | 2 e -2iπt n-n 0 T scl 1 + m-m 0 T scl 2 + (n-n 0 ) 2 Trev 1 + (m-m 0 ) 2 Trev 2 + (n-n 0 )(m-m 0) Trev 12 + O h υ+min(δ 1 ,δ 2 ) .
Proof. The principle is the same as in the proof of proposition 3.5. With the partition N 2 = ∆ ∐ Γ and by triangular inequality we have

∑ n,m∈N 2 |a n,m | 2   e -2iπt n-n 0 T scl 1 + m-m 0 T scl 2 + (n-n 0 ) 2 Tsrev 1 + (m-m 0 ) 2 Tsrev 2 + (n-n 0 )(m-m 0) Tsrev 12 e -2iπt n-n 0 T scl 1 + m-m 0 T scl 2 + (n-n 0 ) 2 Trev 1 + (m-m 0 ) 2 Trev 2 + (n-n 0 )(m-m 0) T rev12   ≤ ∑ n,m∈Γ 2 |a n,m | 2 +2 ∑ n,m∈∆ |a n,m | 2 2πt(n -n 0 ) 2 1 T srev 1 - 1 T rev 1 + 2πt(m -m 0 ) 2 1 T srev 2 - 1 T rev 2 + 2πt(n -n 0 )(m -m 0 ) 1 T srev 12 - 1 T rev 12 ;
because e iXe iY ≤ 2 |X -Y| .

Next we observe that

T srev 1 -T rev 1 = 4π ω 2 1 h   ∂ 2 F ∂X 2 (E 1 , E 2 ) -∂ 2 F ∂X 2 (τ n 0 , µ m 0 ) ∂ 2 F ∂X 2 (τ n 0 , µ m 0 ) ∂ 2 F ∂X 2 (E 1 , E 2 )   .
First we have

∂ 2 F ∂X 2 (E 1 , E 2 ) - ∂ 2 F ∂X 2 (τ n 0 , µ m 0 ) ≤ sup (x,y)∈B((E 1 ,E 2 ),1) ∇ ∂ 2 F ∂X 2 (x, y) R 2 (E 1 , E 2 ) -(τ n 0 , µ m 0 ) R 2 ≤ M (E 1 -τ n 0 ) 2 + (E 2 -µ m 0 ) 2 ≤ Mh √ 2 2 ;
where M > 0 is a constant which does not depend on h. On the other hand, since we suppose ∂ 2 F ∂X 2 (E 1 , E 2 ) = 0; there exists ε 1 > 0 and r 1 > 0 such that for all(x, y) ∈ B ((E 1 , E 2 ), r 1 ) we get

∂ 2 F ∂X 2 (x, y) ≥ ε 1 ;
and we have seen that there exists h 1 > 0 such that for all h ∈ ]0, h 1 [ we have

(τ n 0 , µ m 0 ) ∈ B ((E 1 , E 2 ), r 1 ) ; therefore the application h → 1 ∂ 2 F ∂X 2 (E 1 , E 2 ) ∂ 2 F ∂X 2 (τ n 0 , µ m 0 ) is bounded on the open set ]0, h 1 [, indeed for all h ∈ ]0, h 1 [ we have 1 ∂ 2 F ∂X 2 (E 1 , E 2 ) ∂ 2 F ∂X 2 (τ n 0 , µ m 0 ) ≤ 1 ε 2 1 < +∞;
and with

M ′ := 2π M √ 2 ε 2 1 for all h ∈ ]0, h 1 [ we obtain |T srev 1 -T rev 1 | ≤ M ′ . Next, since 1 T srev 1 T rev 1 ≤ h 2 ∂ 2 F ∂X 2 (E 1 , E 2 ) ∂ 2 F ∂X 2 (τ n 0 , µ m 0 ) 16π 2 ≤ Kh 2
where K := 1 16π 2 sup (x,y)∈B((E 1 ,E 2 ),1)

∂ 2 F ∂X 2 (x, y) 2
, there exists a constant C 1 > 0 (which does not depend on h ) such that for all h ∈ ]0, h 1 [ we have |1/T sren 1 -1/T ren 1 | ≤ C 1 h 2 (eg. take C 1 := KM). In a similary way : there exists C 2 , C 12 > 0 such that for all h ∈ ]0, h 2 [ we get |1/T sren 2 -1/T ren 2 | ≤ C 2 h 2 and for all h ∈ ]0, h 12 [ we get also |1/T sren 12 -1/T ren 12 | ≤ C 12 h 2 .

Next, for all t ≥ 0, for all pair (n, m) ∈ ∆ and for all h < min (h 1 , h 2 , h 12 ) we have

t (n -n 0 ) 2 1 T srev 1 - 1 T rev 1 ≤ C 1 |t|h 2δ 1 ; t (n -n 0 ) (m -m 0 ) 1 T srev 12 - 1 T rev 12 ≤ C 12 |t|h δ 1 +δ 2 ; t (m -m 0 ) 2 1 T srev 2 - 1 T rev 2 ≤ C 2 |t|h 2δ 2 ;
hence for all t ∈ [0, h υ ] where υ is a real number such that υ > -2 min δ i we obtain

t (n -n 0 ) 2 1 T srev 1 - 1 T rev 1 + t (m -m 0 ) 2 1 T srev 2 - 1 T rev 2 + t (n -n 0 ) (m -m 0 ) 1 T srev 12 - 1 T rev 12 ≤ Mh υ+2 min δ i
where M := 3 max (C 1 , C 2 , C 12 ) . So we proove that : there exists a constant M > 0 such that for all h < min (h 1 , h 2 , h 12 ) and for all υ > -2 min δ i we get

∑ n,m∈N 2 |a n,m | 2   e -2iπt n-n 0 T scl 1 + m-m 0 T scl 2 + (n-n 0 ) 2 Tsrev 1 + (m-m 0 ) 2 Tsrev 2 + (n-n 0 )(m-m 0) Tsrev 12 e -2iπt n-n 0 T scl 1 + m-m 0 T scl 2 + (n-n 0 ) 2 Trev 1 + (m-m 0 ) 2 Trev 2 + (n-n 0 )(m-m 0) Trev 12   ≤ 2 ∑ n,m∈Γ |a n,m | 2 + Mh υ+2 min δ i ∑ n,m∈∆ |a n,m | 2 .
It follows from the lemma 2.5 (the lemma 2.5 says

∑ n,m∈Γ |a n,m | 2 = O (h ∞ )) and from ∑ n,m∈∆ |a n,m | 2 ≤ ∑ n,m∈N 2 |a n,m | 2 = 1 + O (h ∞ ) that ∑ n,m∈N 2 |a n,m | 2   e -2iπt n-n 0 T scl 1 + m-m 0 T scl 2 + (n-n 0 ) 2 Tsrev 1 + (m-m 0 ) 2 Tsrev 2 + (n-n 0 )(m-m 0) Tsrev 12 e -2iπt n-n 0 T scl 1 + m-m 0 T scl 2 + (n-n 0 ) 2 Trev 1 + (m-m 0 ) 2 Trev 2 + (n-n 0 )(m-m 0) Trev 12   = O h υ+2 min δ i .
4.2.2. Comparison between revivals periods an the time scale [0, h α ]. Recall here that the parameters δ

′ i , δ i ∈] 1 2 , 1[ 2 with δ ′ i > δ i ;
recall also that the real coefficients α,β would require α > 1 -2 min δ i and β > 1 -3 min δ i . Next we observe that 1 -

3 min δ i -(1 -2 min δ i ) = -min δ i < 0 and -2 min δ i -(1 -3 min δ i ) = min δ i - 1 < 0; hence for h small enough we obtain h 1-2 min δ i < h 1-3 min δ i < h -2 min δ i .
So we can make a "good choice" for parameters α, β and υ : indeed we can choose α, β and υ such that : υ ≤ β < -1 < α < 0, therefore (for h small enough) we have : 0,

T cl i ⊂ [0, h α ] ⊂ [0, T rev i ] ⊂ 0, h β ⊆ [0, h υ ] .
4.2.3. The quadradic approximation a 2 . So, the quadradic approximation of the autocorrelation function on the time scale 0, h β is :

Definition 4.6. The quadradic approximation of the autocorrelation function is

a 2 : t → ∑ n,m∈N 2 |a n,m | 2 e -2iπt n-n 0 T scl 1 + m-m 0 T scl 2 + (n-n 0 ) 2 Trev 1 + (m-m 0 ) 2 Trev 2 + (n-n 0 )(m-m 0)
Trev 12 . 4.3. Revival theorems.

Preliminaries.

Resonance hypothesis.

Definition 4.7. We say that the revival periods T rev 1 , T rev 2 , T rev 12 are in resonance if an only if there exists

p 1 q 1 , p 2 q 2 , p 12 q 12 ∈ Q 3 such that p 1 q 1 T rev 1 = p 2 q 2 T rev 2 = p 12 q 12 T rev 12 .
Notation 4.8. In this case, we introduce the notation T f rac :=

p 1 q 1 T rev 1 = p 2 q 2 T rev 2 = p 12 q 12
T rev 12 . And for all j ∈ {1, 2} let us also consider the numbers r j := p 12 q j , s j := q 12 p j , and clearly for all j ∈ {1, 2} we have T rev j = r j s j T rev 12 .

Preliminaries. To make progress in our study we need to introduce a new function ψ cl with two artificial variables t 1 , t 2 .

Definition 4.9. Let us define the pseudo-classical function ψ cl :

ψ cl (t 1 , t 2 ) := ∑ n,m∈N 2 |a n,m | 2 e -2iπt 1 n-n 0 T scl 1 -2iπt 2 m-m 0 T scl 2 .
So we get the obvious following property; first the function ψ cl is doubly-periodic :

(i) for all pair t 1 , t 2 ≥ 0 we have (iii) for all t ≥ 0 we have ψ cl (t, t) = a 1 (t).

ψ cl t 1 + T scl 1 , t 2 = ψ cl (t 1 , t 2 ) ; ( 

Some lemmas.

Notation 4.10. Let us consider the sequence (θ n,m ) n,m = (θ n,m (p 1 , q 1 , p 2 , q 2 , p 12 , q 12 , h)) n,m with (n, m) ∈ Z 2 defined by :

θ n,m := e -2iπ p 1 q 1 (n-n 0 ) 2 + p 12 q 12 (n-n 0 )(m-m 0 )+ p 2 q 2 (m-m 0 ) 2 .
The periodicity of this sequence is caracterised by the following easy proposition.

Proposition 4.11. For all p 1 , q 1 , p 2 , q 2 , p 12 , q 12 ∈ Z, the sequence

(θ n,m ) n,m verify    θ n+ℓ 1 ,m = θ n,m θ n,m+ℓ 2 = θ n,m
if and only if the integers ℓ 1 and ℓ 2 satisfy the following equations :

∀(n, m) ∈ Z 2 , ℓ 2 1 p 1 q 1 + 2p 1 ℓ 1 q 1 n + p 1 r 1 ℓ 1 s 1 q 1 m ≡ 0 [1] ∀(n, m) ∈ Z 2 , ℓ 2 2 p 2 q 2 + 2p 2 ℓ 2 q 2 m + p 2 r 2 ℓ 2 s 2 q 2 n ≡ 0 [1].
Example 4.12. An obvious solution is ℓ 1 = q 1 s 1 and ℓ 2 = q 2 s 2 .

For two periods ℓ 1 , ℓ 2 ∈ Z 2 let us consider the set of sequences ℓ 1 , ℓ 2 -periodic with his natural scalar product. Definition 4.13. For a fixed pair ℓ 1 , ℓ 2 ∈ (Z * ) 2 we define S ℓ 1 ,ℓ 2 (Z) the set of sequences ℓ 1 , ℓ 2 -periodic in the following sense :

S ℓ 1 ,ℓ 2 (Z) := u n,m ∈ C Z 2 ; ∀n, m ∈ Z 2 , u n+ℓ 1 ,m = u n,m and u n,m+ℓ 2 = u n,m .
So we have the elementary : Proposition 4.14. The application

, S ℓ 1 ,ℓ 2 :          S ℓ 1 ,ℓ 2 (Z) 2 → C (u, v) → u, v S ℓ 1 ,ℓ 2 := 1 |ℓ 1 ℓ 2 | |ℓ 1 |-1 ∑ n=0 |ℓ 2 |-1 ∑ m=0 u n,m v n,m .
is a Hermitean product on the space S ℓ 1 ,ℓ 2 (Z) .

We have also the obvious following remark : where (k, p) ∈ Z 2 ; then the

family φ k,p n,m n,m∈Z 2 k=0...ℓ 1 -1,p=0...ℓ 2 -1
is an orthonormal basis of the space vector S ℓ 1 ,ℓ 2 (Z).

4.3.2. The main theorem. In the following theorem we show that the function t → a 2 (t) near the period T f rac can be written as a finite sum of ψ cl with arguments shifted. Indeed we have :

Theorem 4.16. Suppose resonance hypothesis holds; then there exists a family of ℓ 1 + ℓ 2 complex numbers (depends on h

) : c k 1 ,k 2 k 1 ∈{0...ℓ 1 -1},k 2 ∈{0...ℓ 2 -1}
where the integers ℓ 1 , ℓ 2 ∈ Z 2 are solutions of equations from proposition 4.11; such that

a 2 t + T f rac = ℓ 1 -1 ∑ k 1 =0 ℓ 2 -1 ∑ k 2 =0 c k 1 ,k 2 ψ cl t + T f rac + k 1 ℓ 1 T scl 1 , t + T f rac + k 2 ℓ 2 T scl 2 +O h α+2 min δ i -1 .
holds for all t ∈ [0, h α ]. The numbers c k 1 ,k 2 are called fractionnals coefficients; and for all k

1 ∈ {0...ℓ 1 -1} , k 2 ∈ {0...ℓ 2 -1} c k 1 ,k 2 = e - 2iπk 1 n 0 ℓ 1 e - 2iπk 2 m 0 ℓ 2 b k 1 ,k 2 with b k 1 ,k 2 = b k 1 ,k 2 (h) = σ h , φ k 1 ,k 2 S ℓ 1 ,ℓ 2 .
Proof. Let us denote the integers n := nn 0 , m := mm 0 and consider the function ε(t) :

ε(t) := a 2 t + T f rac - ℓ 1 -1 ∑ k 1 =0 ℓ 2 -1 ∑ k 2 =0 c k 1 ,k 2 ψ cl t + T f rac + k 1 ℓ 1 T scl 1 , t + T f rac + k 2 ℓ 2 T scl 2 = ∑ n,m∈N 2 |a n,m | 2 e -2iπt n T scl 1 e -2iπT f rac n T scl 1 e -2iπt m T scl 2 e -2iπT f rac m T scl 2 e -2iπt n 2 Trev 1 e -2iπ p 1 n 2 q 1 e -2iπt m 2 Trev 2 e -2iπ p 2 m 2 q 2 e -2iπt n m Trev 12 e -2iπ p 12 n m q 12 - ℓ 1 -1 ∑ k 1 =0 ℓ 2 -1 ∑ k 2 =0 c k 1 ,k 2 ψ cl t + T f rac + k 1 ℓ 1 T cl 1 , t + T f rac + k 2 ℓ 2 T cl 2 = ∑ n,m∈N 2 |a n,m | 2 θ n,m e -2iπt n T scl 1 e -2iπT f rac n T scl 1 e -2iπt m T scl 2 e -2iπT f rac m T scl 2 e -2iπt n 2 Trev 1 e -2iπt m 2 Trev 2 e -2iπt n m Trev 12 - ℓ 1 -1 ∑ k 1 =0 ℓ 2 -1 ∑ k 2 =0 c k 1 ,k 2 ψ cl t + T f rac + k 1 ℓ 1 T scl 1 , t + T f rac + k 2 ℓ 2 T scl 2 .
Since the sequence (θ n,m ) n,m ∈ S ℓ 1 ,ℓ 2 (Z) with ℓ 1 = q 1 s 1 and ℓ 2 = q 2 s 2 there exists a unique decomposition of the sequence (θ n,m ) n,m on the basis φ k,p n,m n,m∈Z 2 k=0...ℓ 1 -1,p=0...ℓ 2 -1

; indeed we have :

θ n,m = ℓ 1 -1 ∑ k 1 =0 ℓ 2 -1 ∑ k 2 =0 b k 1 ,k 2 φ k 1 ,k 2 n,m . where b k 1 ,k 2 = θ, φ k 1 ,k 2 S ℓ 1 ,ℓ 2
. Therefore we get we deduce that .

ε(t) = ∑ n,m∈N 2 ℓ 1 -1 ∑ k 1 =0 ℓ 2 -1 ∑ k 2 =0 |a n,m | 2 b k 1 ,k 2 e -2iπt n
k 1 ,k 2 n,m - ℓ 1 -1 ∑ k 1 =0 ℓ 2 -1 ∑ k 2 =0 c k 1 ,k 2 ψ cl t + T f rac + k 1 ℓ 1 T scl 1 , t + T f rac + k 2 ℓ 2 T scl 2 = ∑ n,m∈N 2 ℓ 1 -1 ∑ k 1 =0 ℓ 2 -1 ∑ k 2 =0 |a n,m | 2 b k 1 ,k 2 e
ε(t) = ∑ n,m∈N 2 ℓ 1 -1 ∑ k 1 =0 ℓ 2 -1 ∑ k 2 =0 |a n,m | 2 b k 1 ,k 2 e -2iπt n
To finish, we use the partition N 2 = ∆ ∐ Γ and we just consider indices in the set ∆ for the sum. Hence there exists constants C 1 , C 2 , C 12 > 0 which does not depend on h, such that

t (n -n 0 ) 2 T rev 1 ≤ C 1 h α+2δ 1 -1 ; t (m -m 0 ) 2 T rev 2 ≤ C 2 h α+2δ 2 -1 ; t (n -n 0 )(m -m 0 ) T rev 12 ≤ C 12 h α+δ 1 +δ 2 -1
holds for all pair (n, m) ∈ ∆ and for all t ∈ [0, h α ].

As a consequence for all t ∈ [0, h α ] and for all pair (n, m) ∈ ∆ we get :

e -2iπt n 2
Trev 1 e -2iπt m 2

Trev 2 e -2iπt n m Trev 12 -1 = O h α+2 min δ i -1 .

If we take t = 0 we obtain :

Corollary 4.17. Under the same hypothesis we have

a 2 T f rac = ℓ 1 -1 ∑ k 1 =0 ℓ 2 -1 ∑ k 2 =0 c k 1 ,k 2 ψ cl T f rac + k 1 ℓ 1 T scl 1 , T f rac + k 2 ℓ 2 T scl 2 .
4.4. Explicit values of modulus for revival coefficients. Our final aim is to compute the modulus of revival coefficients. The idea is to split the sum c k 1 ,k 2 in two simple parts. These parts look like that Gauss sums, but in fact with a little difference. Here we propose a simple way to compute this sums and we don't use sophisticated theory. Start with a notation and a remark :

Notation 4.18. For ℓ ≥ 1 and for integers p et q such that p ∧ q = 1, let us consider for all integer k ∈ {0...ℓ -1} the following sum q 12 ∈ Z; then we obtain :

b k 1 ,k 2 2 = d k 1 (ℓ 1 , p 1 s 1 , ℓ 1 ) 2 d k 2 (ℓ 2 , p 2 s 2 , ℓ 2 ) 2 .
Proof. For all k 1 ∈ {0... ℓ 1 m and since ℓ 1 = q 1 s 1 = q 1 q 12 p 1 we obtain (k 1 -p 12 q 1 s 1 m) .

For j ∈ {1, 2}, let us consider χ j the following characters :

χ j :      Z/ℓ j Z ֒→ C * a → e -2iπ a ℓ j ;
as a consequence we get

b k 1 ,k 2 2 = 1 ℓ 2 1 ℓ 2 2 ∑ (x,y)∈Z/ℓ 1 Z×Z/ℓ 2 Z χ 1 p 1 s 1 x 2 -x(k 1 -p 12 q 1 p 1 y χ 2 p 2 s 2 y 2 -k 2 y ∑ (z,t)∈Z/ℓ 1 Z×Z/ℓ 2 Z χ 1 -p 1 s 1 z 2 + z(k 1 -p 12 q 1 p 1 t χ 2 -p 2 s 2 t 2 + k 2 t = 1 ℓ 2 1 ℓ 2 2 ∑
((x,z),(y,t))∈(Z/ℓ 1 Z) 2 ×(Z/ℓ 2 Z) 2 χ 1 p 1 s 1 x 2z 2k 1 (xz) + p 12 q 1 p 1 (xyzt) χ 2 p 2 s 2 y 2t 2k 2 (yt) .

Now, because

p 12 q 12 ∈ Z then ℓ 1 = q 1 q 12 p 1 |q 1 p 1 p 12 hence for all x, y, z, t we have p 12 q 1 p 1 (xyzt) ∈ ℓ 1 Z . Therefore for all x, y, z, t we have χ 1 (p 12 q 1 p 1 (xy

-zt)) = 1. Hence b k 1 ,k 2 2 = 1 ℓ 2 1 ℓ 2 2 ∑ ((x,z),(y,t))∈(Z/ℓ 1 Z) 2 ×(Z/ℓ 2 Z) 2 χ 1 p 1 s 1 x 2 -z 2 -k 1 (x -z) χ 2 p 2 s 2 y 2 -t 2 -k 2 (y -t) = 1 ℓ 2 1 ℓ 2 2 ∑ (x,z)∈(Z/ℓ 1 Z) 2 χ 1 p 1 s 1 x 2 -z 2 -k 1 (x -z) ∑ (y,t)∈(Z/ℓ 2 Z) 2 χ 2 p 2 s 2 y 2 -t 2 -k 2 (y -t) = 1 ℓ 2 1 ∑ x∈Z/ℓ 1 Z e -2iπ
p 1 s 1 ℓ 1

x 2 To finish we can compute

d k 1 (ℓ 1 , p 1 s 1 , ℓ 1 ) 2 d k 2 (ℓ 2 , p 2 s 2 , ℓ 2 ) 2 .
with the following results (see for example [Lab2]) :

Proposition 4.20. For all pair p, q with p ∧ q = 1 and q odd, then for all k ∈ {0...q -1} we get :

|d k (q, p, q)| 2 = 1 q .

And Proposition 4.21. For all pair p, q with p ∧ q = 1 and q even, then for all k ∈ {0...q -1} we get : i f q 2 is even then |d k (q, p, q)| 2 =    2 q i f k is even 0 else; i f q 2 is odd then |d k (q, p, q)| 2 =    0 i f k is pair 2 q else.

2. 5 .

 5 Strategy to study the autocorrelation function. The strategy for simplify the sum function t → a(t), performed by the physicists ([Av-Pe],

  Suppose resonance hypothesis holds and suppose also p 12

  ℓ 1 -1} , k 2 ∈ {0...ℓ 2 -

[Lab1].

  

2.2. Quantum dynamics and autocorrelation function. For a quantum Hamiltonian P h : D (P h ) ⊂ H → H, where H is a Hilbert space, the Schr ödinger dynamics is governed by the Schr ödinger equation : ih ∂ψ(t) ∂t = P h ψ(t). With the functional calculus, we can reformulate this equation with the unitary group U(t) = e -i t h P h t∈R

  Let us define the set of integers ∆ = ∆(h, E 1 , E 2 ) by :

	2.7. Technical interlude : the set ∆. In this subsection, we introduce the set ∆ ⊂ N 2 , this set is useful for making approximation for autocorrelation function. Start
	by the definition :
	Definition 2.6.

Linear approximation and classical periods. Assumption 3.1. Here, we suppose that ∂F ∂X

  In this section, we use a Taylor's formula to expand the phase term tF (τ n , µ m ) /h in the variables (n, m) in linear order. In this approximation appear two periods T cl 1 and T cl 2 of order O(1) depending on the gradient of the function F at the point (E 1 , E 2 ).

	so we prove the lemma.
	3. ORDER 1 APPROXIMATION : CLASSICAL PERIODS
	3.1. Introduction. 3.2.

  ii) and for all pair t 1 , t 2 ≥ 0 we have also ψ cl t 1 , t 2 + T scl 2 = ψ cl (t 1 , t 2 ) . This function have no immediate physical significance, but if the time t 1 and t 2 are equal :