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Abstract

We investigate the dependence of the hardness of materials on their elastic stiffness. This is

possible by constructing a series of model potentials of the Morse type; starting on modelling natural

Cu, the model potential exhibits an increased elastic modulus, while keeping all other potential

parameters (lattice constant, bond energy) unchanged. Using molecular-dynamics simulation, we

perform nanoindentation experiments on these model crystals. We find that the crystal hardness

scales with the elastic stiffness. Also the load drop, which is experienced when plasticity sets in,

increases in proportion to the elastic stiffness, while the yield point, i.e., the indentation at which

plasticity sets in, is independent of the elastic stiffness.

PACS numbers: 62.20.-x, 81.40.Jj

Keywords: Molecular dynamics, hardness, nanoindentation
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I. INTRODUCTION

While the elastic properties of solids are well understood, and their description in terms of

interatomic potentials is well established, plastic deformation of solids – and the concurrent

phenomena of dislocation generation and motion – are more complex and their modelling

presents greater difficulties. One reason certainly is that plasticity involves strongly non-

equilibrium states in the solid, in which the material is stressed so far that interatomic bonds

are broken and new bonds are formed.

The simplest quantitative measure of plasticity is given by the material hardness, i.e., the

pressure with which the material withstands plastic deformation. It has long been known

that the hardness of a defect-free, ideal crystal, the theoretical strength, is proportional to

the material’s shear modulus. This important result, which dates back to Frenkel,1,2 has

been derived by considering the shear stress necessary to induce slip in a perfect lattice;

modern ab initio quantum-mechanical calculations have confirmed this result.3–5 However,

the question remains how the elastic stiffness of a material influences dislocation generation

and the emergence of plasticity in a more complex and realistic situation.

We choose a nanoindentation scenario to investigate the onset of plasticity, and its depen-

dence on the material stiffness. A molecular-dynamics simulation allows to provide atomistic

insight into the reaction of a material to an applied load, to calculate the force-depth curve

and to extract the contact pressure and the material hardness. It furthermore allows to

describe in detail the induced damaged patterns, such as the formation of stacking faults

and dislocation loops.

Our study is based on the Morse interatomic potential. While it is well known that

metals cannot be described in all details by pair potentials,6 this class of potentials readily

allows to generate a series of potentials, which all describe the same material, in which,

however, exactly one property is arbitrarily changed. Since the prime aim of our study is

to inquire into the generic dependence of plasticity and hardness on the elastic stiffness of

the material, rather than to describe one particular material as accurately as possible, our

choice of a Morse potential appears appropriate. We note that the Morse potential has been

used previously to describe dislocations in metals.7–9
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II. METHOD

A. Potentials

We use the Morse potential

V (r) = D {exp [−2α(r − r0)] − 2 exp [−α(r − r0)]} (1)

to model our material. It is characterized by three parameters: the bond strength D,

the equilibrium bond distance of the dimer, r0, and the potential fall-off α. As is well

known,6,10 the Morse potential cannot describe all characteristics of bonding in metals;

however, as discussed elsewhere,11 it can give a reasonable description of the elastic12,13 and

also plastic processes occurring under indentation. We adopted this potential, since it allows

to fit in a transparent way the materials properties. Since the Morse potential contains three

parameters, it is possible to fit it to three materials properties; these are traditionally chosen

as the lattice constant a, the cohesive energy Ecoh, and the bulk modulus B.

For example, Cu with14 a = 3.615 Å, Ecoh = 3.54 eV, and B = 134.4 GPa can be

described by a Morse potential with D = 0.337 eV, r0 = 2.89 Å, and α = 1.33 Å−1. We

note that here and in the following, we cut off the potential at rcut = 2.5a = 9.0375 Å – i.e.

including 248 neighbours – , and shift the potential to zero at this distance.

We create a series of Morse potentials, in which the lattice constant and cohesive energy

are kept unchanged, but the bulk modulus is set to a preassigned value. These potentials can

hence be considered as describing a series of pseudo-Cu materials with identical cohesion,

but changed bulk moduli. Table 1 reproduces the values of the fit parameters obtained for

the potentials employed in this study. We use a Levenberg-Marquardt based optimization

for parameter fitting; the values of a (Ecoh) are reproduced within 0.1 % (1%).

Of course, by changing these parameters all other physical properties of the crystals

will also be changed; in the following, we discuss the (linear) elastic properties and the

generalized stacking fault energy, since these are of prime interest for nanoindentation. We

note that in particular the third-order elastic constants will change, and hence the nonlinear

response to indentation; however, the Morse potential is known13 not to give realistic values

for these constants, and hence we refrain from further discussion. Interestingly, when the

bulk modulus is changed by a factor of 14.7, the dimer bond strength increases by a factor
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of only 3, for fixed cohesive energy. This reflects an increased nearest-neighbor bonding, and

is accordingly accompanied by a steeper potential fall-off.

The linear elastic properties of an fcc crystal are given by 3 elastic constants, c11, c12, and

c44. However, for a pair potential, it is always c12= c44, so that only two elastic constants

describe the elastic behaviour. We chose the bulk modulus

B =
c11 + 2c12

3
(2)

and the average shear modulus

G =
c11 + 2c44 − c12

5
(3)

to describe the elastic properties. For real Cu, it is G = 39.8 GPa.14 Table 1 shows

the shear moduli obtained for pseudo-Cu, and Fig. 1 demonstrates that G increases quite

linearly with B; only for the highest moduli, G increases superlinearly with B. So in general,

we may say that the entire elastic behaviour (the elastic stiffness) of pseudo-Cu changes in

correspondence with B; we shall talk of weak and strong materials.

B. Generalized stacking fault energy

The generalized stacking fault (GSF) energy can be used to characterize the behaviour of

a material with respect to the formation of stacking faults, and hence dislocation formation

and glide.8,15–18 For its definition, we consider an fcc crystal, whose upper part has glided

along a (111) plane with respect to its lower part by a definite amount; in the present paper

we only consider glide vectors along the [112̄] direction. The GSF energy is the potential

energy per surface area of the deformed crystal; when determining this energy, relaxation of

the crystal vertical to the (111) plane, but no relaxation or reconstruction within this plane

is allowed for.8,16 In our calculation, it proved necessary to choose the crystallite rather large,

10 lattice constants in vertical direction and 25 lattice constants in both lateral directions;

we employed the conjugate-gradient technique to relax the crystal in vertical direction.

Fig. 2 displays the variation of the GSF surface, γ, along the [112̄] (111) displacement.

The minimum at 0 displacement corresponds to fcc stacking; here γ = 0 by definition.

The second minimum is found for a displacement corresponding to a partial Burgers vector

1
6
[1̄1̄2]a = a/

√
6 ∼= 1.5 Å. It describes a stacking fault with the stable stacking fault energy

4
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γs. For our potentials, extremely small values were obtained, which varied in the range

of γs = (−2 · · · + 2) mJ/m2. For comparison, the experimental value of γs for Cu is 45

mJ/m2;19,20 this value is retrieved by ab initio calculations.3,4 We note that in previous

investigations,7 a sufficiently large value of the stacking fault energy could only be obtained

by adapting the value of the cut-off radius to rcut = 2.2a; for larger rcut, γs strongly decreased.

We found that the exact determination of γs is nontrivial, since large crystallites have

to be relaxed; sometimes only a local and not the global energy minimum may have been

found. Furthermore, it is known that the stacking fault energy may depend sensitively on

the cut-off radius of the potential.7 Hence we conclude that within the Morse pair potential

approximation, the stable stacking fault energy of fcc metals (of Cu, at least) is strongly

underestimated. It does not – or only negligibly – depend on the elastic stiffness of the

material.

The energy barrier between the fcc crystal position and the stable stacking fault is called

the unstable stacking fault energy, γu. It depends strongly on the elastic stiffness. As Fig. 3

shows, it increases roughly linearly with the bulk modulus B, and hence also with the shear

modulus G, cf. Fig. 1. This may be understood since the displacement of two (111) planes

in the crystal corresponds to a gliding motion; thus the barrier to gliding, γu, is strongly

correlated with the shear modulus. The latter feature has been demonstrated explicitly

using ab initio data in Fig. 11 of Ref. 18. We demonstrate in the Appendix that γu is

directly connected to the nucleation of stacking faults.

C. Indentation

In order to model the plastic deformation of our material, we performed indentation

simulations using an appropriately adapted version of the LAMMPS molecular-dynamics

code.21 Our target consists of an fcc crystallite with a (100) surface; it has a depth of 25

nm and a square surface area of 621.2 nm2; it contains 1325598 atoms. Lateral periodic

boundary conditions have been applied. At the bottom, atoms in a layer of the width rcut

have been constrained to Fnormal = 0. Since all potentials used in the present investigation

predict the same equilibrium lattice constant, these boundary conditions can be applied

identically for all our potentials. Before starting the simulations, the substrates are relaxed

to minimum energy.

5
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The indenter is modelled as a soft sphere of radius R. We chose a non-atomistic repre-

sentation of the indenter, since we are not interested in the present study in any atomistic

displacement processes occurring in the indenter, but only in the substrate. The interaction

potential between the indenter and the substrate atoms is modelled by a repulsive potential22

V (r) =







k(R − r)3, r < R,

0, r ≥ R,
(4)

since we are in this generic study not interested in the complexities introduced by adhesion

phenomena. The indenter stiffness was set to k = 3 eV/Å3. This value was determined in

a series of simulations as a compromise such that (i) it is hard enough in comparison to

the substrate stiffness (note that a finite indenter stiffness enters into the force-displacement

curve, Eq. (5), via a modified reduced modulus), and (ii) it is soft enough to allow stable

solutions of the molecular-dynamics equations. Our indenter has a radius of R = 8 nm.

Indentation proceeds in the so-called velocity-controlled approach,22 in which the indenter

proceeds with a fixed velocity, v = 20 m/s in our case, into the substrate. As a consequence

of the energy input by the indenter, the substrate temperature increases from initially 0 K

to a maximum value of 10 K in the course of the simulation.

III. RESULTS

A. Force-displacement curves

Fig. 4 shows the basic result of the simulation, the force-displacement curves. In all

these curves it is seen that the force F increases monotonically with the displacement d into

the substrate until a depth dyield which is about 9.4 ± 0.5 Å and where the force suddenly

drops. This corresponds to the onset of plastic deformation inside the material. The first,

monotonically increasing part of the curve is due to elastic deformation of the substrate.

Hertz23 calculated that for an elastically isotropic solid it holds

F =
4

3
Erd

3/2
√

R. (5)

In this relation, a single materials parameter, the so-called reduced modulus Er describes

the materials elastic response.24,25 For a rigid indenter, it may be expressed in terms of the

6
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Young’s modulus E and the Poisson ratio ν of the substrate as

Er =
E

1 − ν2
. (6)

We test this law in Fig. 4b. To do so, we need to calculate the reduced elastic modulus

for a (100) surface. Here, Young’s modulus and the Poisson ratio have to be calculated for

deformation in (100) direction, perpendicular to the surface. The corresponding formulae are

rather complex and are provided in Ref. 26. Fig. 4b shows that in the range of G = 80−180

GPa, the elastic behaviour follows well the (generalized) Hertz law (5). Only for the extreme

cases of G = 39 and 278 GPa, the normalized forces F/Er are too small. We believe that

this deviation from the Hertz law is due to (i) a poorer quality of the potential to describe

the materials reaction, and (ii) in particular in the case of the weaker pseudo-Cu, G = 39

GPa, due to the softness of the substrate, which makes the fluctuations in the response of the

substrate to the constant-velocity indentation more sizable. We note that when normalizing

F/G, an equally satisfactory uniformity of the curves is achieved; we do not show this plot,

since the theoretical foundation appears to be missing.

It may appear astonishing that Hertz’ continuum result (5) and atomistic simulation are

in such close agreement with each other. We note that a recent study study27 investigated

the appropriateness of continuum modelling for contact problems and found close agreement

with atomistic simulation – even on the scale of a few lattice constants.

At the yield point the force drops suddenly due to the onset of plasticity; this well-known

phenomenon is called the load drop. In our series of simulations we saw that the exact

position of the yield point dyield does not show a monotonic trend with the elastic stiffness of

the substrate; rather dyield fluctuates. We believe that in this constant-velocity indentation,

the yield point may be subject to fluctuations in the simulation procedure. We therefore

conclude that within the limits of the fluctuations the position of the yield point does not

depend on the elastic stiffness of the target.

However, the load drop shows a clear increase with the elastic stiffness of the material.

This is understandable since the atomistic reason for the load drop is the nucleation of a

stacking fault in the material and the propagation of the emerging dislocation away from the

highly stressed region immediately below the indenter. Stacking-fault generation requires

an energy which scales with the unstable stacking fault energy, γu, which has been found to

scale well with the elastic stiffness. Fig. 4b then points out that stress relief (‘load drop’) is

7
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proportional to the elastic stiffness.

B. Hardness

The normal force F divided by the (projected) contact area A of the indenter, projected

onto the original surface plane, defines the contact pressure p. We calculate A from the

ensemble of contact atoms of the indenter, which are farthest away from the indentation

axis, and approximating it as an ellipse. After the onset of plasticity, it gives the hardness

of the material. Hertz also determined the contact pressure p to be proportional to the

substrate elastic modulus,

p =
4

3π
Er

√

d

R
. (7)

Fig. 5 shows the simulation results for the contact pressure. In view of the predicted

proportionality (7) and the good quality of the scaling with the material stiffness, which

we observed in Fig. 4, we present our data scaled with the shear modulus G. This is also

motivated by the consideration that the theoretical shear strength τ of the material is given

by

τ = εG, (8)

where ε is a constant, which depends on the crystal structure of the solid but is otherwise

quite material-independent. Frenkel estimated ε = 1/(2
√

2π) = 0.11 for the important 〈1̄1̄2〉
{111} glide system of fcc metals.2 Recent more refined estimates based on density functional

theory give a slightly reduced value, ε = 0.085.3–5

Tabor showed that the hardness measured as the contact pressure during nanoindentation

amounts to 3τ ,2,28 since the nanoindentation acts as a ‘lens’ focussing the stress in a small

volume beneath the contact point.29 Using Eq. (8), we hence expect

H = 3τ = 3εG. (9)

Fig. 5 shows that after the onset of plasticity, the hardness is indeed proportional to

the shear modulus and well described by Eq. (9) with a coefficient of 0.2 − 0.25, i.e., ε =

0.07 − 0.08, in satisfactory agreement with the estimates of ε given above.. The figure also

8
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appears to indicate that the pressure fluctuations in the fully plastically regime are smaller

for soft materials, which appears plausible.

Note that also in the elastic regime, the scaled contact pressure p/G lies on one single

curve, again underlining the importance of the shear modulus for the indentation behaviour.

The only exception is given by the softest material. In this case the energy difference between

the fcc and the hcp structures is rather small, and we observe instabilities at the relaxed

free surface of the crystallite, which are reflected in the hardness curve, Fig. 5.

C. Plasticity

Figs. 6 and 7 give an atomistic presentation of the dislocations which developed in the sub-

strate after the onset of plasticity. We analyzed the local atomic structures using a method

based on the angular correlation of nearest-neighbour atoms.30 We found this method to

be superior for our purposes to the more common analysis based on the centrosymmetry

parameter.22 Only atoms deviating from the fcc structure are visualized: atoms in stacking

faults (red) are surrounded by unidentifiable structures of atoms in low-symmetry structures

(grey) and a very small amount of atoms in bcc coordination (green). These grey and green

atoms mark the boundaries of the dislocation loops due to the strong lattice deformations

existing there. The free surface is also coloured grey.

A few general remarks on dislocation nucleation and activity, which were observed for all

the potentials investigated here, are in order: In all cases, dislocations nucleate below the

surface, i.e., homogeneously in the material. After nucleation, we first observe the emission

of leading Shockley partials, in other words, the 〈1̄1̄2〉 {111} glide system was activated

first. After the ensuing nucleation of the trailing Shockley partials, the full dislocation loops

activate the 〈11̄0〉 {111} glide system. These findings are in agreement with many earlier

atomistic simulations of nanoindentation of metals.22,31,32 As discussed in detail in Ref. 33,

the early emission of partial dislocations is typical of a material with a small ratio of γs/γu,

since the creation of the trailing partial costs considerable energy compared to the surface

energy of the created stacking fault. Only for ratios γs/γu
∼= 1, the immediate creation of

full dislocations would be favoured.

Fig. 6 displays the plasticity shortly after the nucleation of the first dislocations. The two

materials shown here have a similar yield point (cf. Fig. 4), so that the amount of dislocated

9
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material can be compared. For the stiffer material, the damage is more concentrated around

the indenting sphere. On the other hand, for the softer material the size of the dislocation

loops has increased. For fully developed plasticity (Fig. 7) we observe how prismatic dislo-

cation loops have formed and were driven away from the indenter. We emphasize that the

changed elastic stiffness in our model crystals does not influence the type of dislocations

nucleated nor which glide systems are activated.

Finally, we mention that for fully developed plasticity (Fig. 7) the elastic stiffness does

affect the form and size of the plastic zones. For smaller elastic stiffness, (Fig. 7a), evidently

more and smaller loops have been generated. This is in agreement with our finding that

for smaller stiffness, also the unstable stacking fault energy – and hence the barrier to

dislocation formation and slip – is smaller: hence we have more loops. In contrast, for the

stiffer material (Fig. 7b), the nucleation of loops is retarded, and fewer but larger loops are

formed.

IV. SUMMARY

We set up a series of Morse potentials, which describe pseudo-Cu materials. In these,

the lattice constant and cohesive energy coincides with that of Cu, while the bulk modulus

B is systematically changed. We find that all elastic constants, and in particular the shear

modulus, are changed roughly in proportion to the bulk modulus. Not surprisingly, the

elastic part of the indentation curve scales with the elastic stiffness, as predicted by the

Hertzian contact theory.

Also the contact pressure in the elastic regime, up to the yield point, is in good ap-

proximation proportional to the material stiffness; this is in agreement with Hertz’ contact

theory. As a consequence, the onset of plasticity and the mechanism of yield are found to

be quite independent of the elastic stiffness. In our series of materials, the material yields

after an indentation of roughly 9.2 Å with only little variation. Again this is understandable

from simple Hertz contact theory, since the contact pressure is proportional to the substrate

elastic stiffness. However, the load drop, that is the stress release due to the formation of

plasticity increases in proportion to the elastic stiffness.

The hardness of the material, i.e., the pressure with which the material withstands plastic

deformation. is found to be proportional to the elastic stiffness; this is agreement with the

10
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established ideas of Frenkel and Tabor.1,2,28

We find that for our series of potentials, also the unstable stacking fault energy γu, which

parameterizes the energy barrier to form a stacking fault and hence plasticity, changes in

proportion to the elastic stiffness. Accordingly, we observe that the plastic zones formed by

indentation depend on this parameter: many small loops are formed in soft materials (small

B and γu, while few but larger loops are formed in hard materials.
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APPENDIX A: RELATION BETWEEN γu AND THE NUCLEATION OF

STACKING FAULTS

The unstable stacking fault energy, γu, is defined as the maximum in the generalized

stacking fault energy curve. We demonstrate in this Appendix by way of an example that

γu is decisive for controlling the energetics of stacking fault nucleation in nanoindentation.

To this end we determine in a representative nanoindentation simulation the time tsf =

66.5 ps when the first stacking fault forms. This stacking fault consists of N = 159 atoms

and spans an area of Asf = 910.4 Å2. The energy barrier for forming the stacking fault then

amounts to Esf = γuAsf/N = 0.198 eV/atom for the potential employed.20 For our specific

simulation, Fig. 8, Esf and tsf have been indicated.

We analyze the simulation and study in detail the time history of these N atoms which

are eventually to form the stacking fault. Fig. 8 displays the time evolution of the potential

energy per atom in this ensemble of N atoms; kinetic energies are of the order of 1 meV/atom

in our system and hence negligible. Due to the strong fluctuations occurring, we display the

average energy 〈E〉, fluctuations σ(E) and the maximum. The important message of this

figure is that the stacking fault nucleates at exactly that time where the average potential

energy 〈E〉 stored in the substrate reaches the nucleation barrier Esf . We note that at the

time t = 52.9 ps, when the fluctuations σ(E) reach the energy barrier Esf , an amorphized

zone (visible via the centrosymmetry parameter as a region in which the fcc lattice structure

has been lost) appears, which is a precursor to stacking fault formation.

Certainly, this analysis cannot be used to predict when a stacking fault will be generated

in a simulation, since the size of the forming stacking fault must be known before the analysis

can be carried out; other studied investigated this issue.34,35 However, the analysis shows

that the unstable stacking fault energy, γu, is the decisive parameter for describing the onset

of plasticity in nanoindentation. For this reason, we took care to determine this parameter

for the potentials used in the present study, cf. Fig. 3.
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D (eV) α (Å−1) r0 (Å) B (GPa) G (GPa) γu (mJ/m2)

0.203 0.90 3.47 67.7 39.2 71.8

0.272 1.12 3.10 98.6 58.6 89.9

0.320 1.28 2.93 124.2 74.4 85.8

0.337 1.33 2.89 134.4 80.5 113.8

0.359 1.41 2.83 145.9 88.2 96.2

0.390 1.54 2.77 178.7 106.5 118.9

0.416 1.65 2.72 197.7 118.9 135.9

0.437 1.76 2.69 227.3 136.0 163.5

0.455 1.86 2.66 244.5 147.4 181.6

0.471 1.96 2.64 269.0 162.3 203.3

0.484 2.05 2.63 300.7 180.4 228.9

0.495 2.13 2.62 325.2 194.9 248.6

0.504 2.22 2.61 351.1 210.5 268.8

0.513 2.30 2.60 369.8 222.6 283.1

0.520 2.38 2.60 412.4 246.2 315.3

0.526 2.45 2.59 420.5 252.7 320.2

0.532 2.52 2.59 458.3 274.1 348.0

0.537 2.59 2.58 460.9 277.8 348.6

0.555 2.92 2.57 590.0 354.8 433.8

0.563 3.16 2.57 720.0 430.4 516.3

0.571 3.38 2.56 772.7 465.7 538.1

0.589 3.54 2.56 881.5 530.3 599.9

0.591 3.73 2.56 990.1 594.5 655.3

TABLE I: Fitted parameters of the potentials, D, α, r0, cf. Eq. (1). Materials properties determined

from these potentials, B, G, γu.
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FIG. 1: Correlation between the shear modulus G and the bulk modulus B in the series of Morse

potentials investigated.

0.0 0.5 1.0 1.5 2.0

Displacement in [112̄](111) (Å)
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FIG. 2: Generalized stacking fault energy as a function of displacement in [112̄] direction in the

series of Morse potentials investigated.
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FIG. 3: Dependence of the stable and unstable stacking fault energies, γu and γs on the shear

modulus G in the series of Morse potentials investigated.
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FIG. 4: a) Dependence of the indentation force F on the indentation depth d in the series of Morse

potentials investigated. b) Forces F normalized to the reduced elastic modulus Er.
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FIG. 5: Contact pressure p, normalized to the shear modulus G, as a function of indentation depth

d in the series of Morse potentials investigated. After the onset of plasticity, the contact pressure

defines the hardness of the material.
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