
HAL Id: hal-00514026
https://hal.science/hal-00514026

Submitted on 1 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of non-steady-state distribution functions for
grain growth and coarsening

Franz Dieter Fischer, Jiri Svoboda, Ernst Gamsjäger

To cite this version:
Franz Dieter Fischer, Jiri Svoboda, Ernst Gamsjäger. Analysis of non-steady-state distribution
functions for grain growth and coarsening. Philosophical Magazine, 2009, 89 (17), pp.1425-1438.
�10.1080/14786430902988757�. �hal-00514026�

https://hal.science/hal-00514026
https://hal.archives-ouvertes.fr


For Peer Review
 O

nly
 

 
 

 
 

 
 

Analysis of non-steady-state distribution functions for grain 
growth and coarsening 

 
 

Journal: Philosophical Magazine & Philosophical Magazine Letters 

Manuscript ID: TPHM-09-Jan-0041.R1 

Journal Selection: Philosophical Magazine 

Date Submitted by the 
Author: 

22-Apr-2009 

Complete List of Authors: Fischer, Franz Dieter; Montanuniversität Leoben, Institute of 
Mechanics 

Svoboda, Jiri; Academy of Sciences of the Czech Republic, Institute 
of Physics of Materials 
Gamsjäger, Ernst; Montanuniversität Leoben, Institute of Mechanics 

Keywords: coarsening, grain growth, thermodynamics 

Keywords (user supplied): modeling, distribution concept  

  
 
 

 

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters



For Peer Review
 O

nly

 1 

Analysis of non-steady-state distribution functions for grain growth and coarsening  

F.D. Fischer1*, J. Svoboda2, E. Gamsjäger1,  

 

1Institute of Mechanics, Montanuniversität Leoben, 

Franz-Josef-Straße 18, A-8700 Leoben, Austria 

2Institute of Physics of Materials, Academy of Sciences of the Czech Republic, 

Žižkova 22, CZ-616 62, Brno, Czech Republic 

 

Abstract 

The description of non-steady-state grain growth or precipitate coarsening by means of object 

radius distribution functions with multiple time dependent parameters (distribution concept) 

seems to be promising.  The present paper deals with the simplest case of non-steady-state 

distribution functions with two parameters – the first one scaling the object radius, the second 

one determining the shape of the distribution function. The main question concerns the 

physical basis behind the evolution of these two parameters. The principle of maximum 

dissipation has proven to be a proper tool to derive the evolution equations. Semi-analytical 

solutions for the evolving parameters of arbitrary two-parameter distribution functions can be 

developed. As examples Kirkaldy and Weibull-type distribution functions are investigated. It 

is shown that the parameters of the Kirkaldy distribution function are not independent, and, 

thus, the general non-steady-state analysis fails. For a Weibull-type distribution function 

nearly exact and simple analytical expressions for both parameters are presented and 

discussed for the grain growth and coarsening cases.    

 

Keywords: Grain growth; Coarsening; Thermodynamics; Modeling; Distribution concept  
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1. Introduction 

Non-steady-state distributions of grains are a topic of current research. These 

distributions have been constructed by the multi phase-field (MPF) model, the Monte Carlo 

Potts (MCP) model and the model based on principle of maximum dissipation (PMD) in 

recent studies.  

A set of continuous field variables ( ),i r tφ , depending on the position r  and time t is 

defined within the MPF model. These field variables 
i

φ , used as order parameters, overtake 

the role of the volume fraction of a distinct orientation. A free energy functional must now be 

proposed including additional weighted gradient terms of the set of 
i

φ . The MPF model 

involves a remarkable set of de-facto unknown parameters, for details see e.g. [1]. A 

computationally improved version was recently presented in [2] and applied to simulations of 

normal grain growth reflecting the Hillert theory.  

Zöllner and Streitenberger [3] used the MCP model, which is computationally very efficient 

and compares the energy state of a lattice site with a possible neighbouring state. Then a 

probability is defined for a flip to this neighbouring state. This concept needs the definition of 

the energy states as functions of the orientation of a lattice site and its neighbours. In addition 

to the physical parameters (e.g. the grain boundary energy) several technical parameters must 

be set properly. Then is possible to reflect the Hillert theory of normal grain growth. 

Of course, a significant number of parameters appears again. A proper selection allows also 

reflecting the Hillert theory for normal grain growth.  

The PMD concept is based on the proper formulation of the total dissipation Q and of the total 

Gibbs energy G of the system both in the case of grain growth and coarsening, see [4]. The 

Gibbs energy G contains the total grain boundary (or interface) energy, which unlike the other 

contributions to the total Gibbs energy G, may change with time. Svoboda et al. could show in 

[5] how this concept can be applied to modelling of non-steady grain growth. Two possible 

approaches were introduced. The evolution equations for the radii of individual grains were 

obtained by using the multigrain concept and for the parameters of the distribution functions 

by means of the distribution concept. The latter concept has been demonstrated for Rayleigh's 
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distribution [6] with the mean grain size as parameter. The authors have shown in [7] how the 

distribution concept can be used to derive the evolution equation for the grain radius scaling 

parameter ( )a t  as well as for the radius ( )R t  of the individual grains for several prominent 

one-parametric distribution functions. The value of the critical radius 
c

R  follows then 

automatically from the condition ( ) 0cR R =& . 

The distribution concept is also supported by very recent automated analysis methods 

for three-dimensional polycrystalline microstructures as presented by Groeber et al. [8,9]. 

This gives a strong motivation to look deeper into the analysis of distribution functions with 

multiple parameters.   

In this paper a non-steady-state distribution function is investigated with an object radius 

( )cR t , and a dimension-free parameter ( )tβ , determining the shape of the distribution 

function, for both the grain growth and coarsening case. A general derivation of the two 

equations for ( )a t  and ( )tβ  is given and applied to the Weibull-type distribution function, 

see e.g. [7], with the special case of the Rayleigh/Louat distribution function, see e.g. [6]. In 

this context it is worth to note that the case with ( )a t  and constβ =  is correctly named as 

self-similar state, but many authors use the denomination "steady-state" for this case, see also 

[5]. Consequently, we use for ( )a t  and ( )tβ  the denomination "non-steady-state". 

Finally, the authors would like to remark that a spherical approximation of equiaxed grains is 

a somewhat coarse approximation. Refined three-dimensional vertex models are available and 

summarized in a very recent paper [10]. However this approach is extremely complicated. 

Our study is concentrated on the grain size distribution functions with a low number of time 

dependent parameter, which allows a simple, effective and well established description with 

the average grain radius as a specific parameter. 

2. Theory 

2.1. Description of the distribution function 
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The distribution concept, outlined in detail in [5], allows describing the grain growth 

by means of the evolution of the grain-radius distribution function. The evolution of the 

distribution function ( ) ( )( )1, ,..., nf R a t a t  is based on the evolution of the parameters 

( ) ( )1 ,..., na t a t , the evolution equations of which can be derived from the Onsager 

thermodynamic extremal principle. Let us deal in detail with two-parametric distribution 

functions, in which the first parameter a  is used for the scaling of the object radius R  and the 

second parameter β  influences the shape of the distribution function for the normalized 

coordinate r R a= . Then one can write the distribution function in the form 

( ) ( )( ), ,f r a t tβ . As the distribution function must meet the normalization condition for the 

constant total volume of the objects 

 3 4 3

0 0

1R fdR a r fdr

∞ ∞

= =∫ ∫ , (1) 

the distribution function can be written without any loss of generality as  

 ( ) ( )4

1
, , ,f r a h r

a
β β= . (2) 

 

2.2. Derivation of the evolution equations 

2.2.1. Classification into two cases 

 We distinguish two cases, the growth case and the coarsening case, which are 

characterized by a Gibbs energy parameter A and a dissipation multiplier B(R) as outlined 

already in [4]: 

 Grain boundary migration controlled grain growth is considered in the growth case.  

Then the parameter A is set to 2πγ  with γ  being the specific grain boundary energy. The 

function ( )B R  is defined as 22 R Mπ  with M  being the grain boundary mobility. 
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 Diffusion controlled coarsening of precipitates in multi-component systems is 

investigated in the coarsening case. Then the parameter A is set to 4πγ  with γ  being the 

specific interface energy. As outlined already in [4] and later in [7], sect. 2, the function 

( )B R  is defined as 34 Rπε . An explicit expression for ε  depending on the chemistry of the 

matrix and the precipitates can also be found in [7], sect. 2. 

 Finally we can describe both cases by an indicator l  and a factor b
l
 as following: 

 ( ) 21 12 , 2A B b a rπγ π ++ += =
ll l

l
, (3) 

Growth case: 0=l , 1b M=
l

, Coarsening case: 1=l , b ε=
l

. 

 

2.2.2. Formulation of the total  Gibbs energy G and its derivatives with respect to a  and β  

 The Gibbs energy G of the system can be taken from [5] sect. 3 as 

 ( )2 3 2 2

0 0 0

,
A

G A R fdR Aa r fdr r h r dr
a

β
∞ ∞ ∞

= = =∫ ∫ ∫ . (4) 

Using the chain rule for calculation of partial derivatives one obtains  

 
5

1
4

f h
h r

a a r

∂ ∂ = − + ∂ ∂ 
. (5) 

Then using Eq. (3) and applying the integration per parts with 3 0r h =  for 0r =  or r → ∞  

one obtains 

 
1

2
2

0

2G
r hdr

a a

πγ ∞+∂
= −

∂ ∫
l

; (6) 

furthermore 

 
1

2

0

2G h
r dr

a

πγ
β β

∞+∂ ∂
=

∂ ∂∫
l

. (7) 
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2.2.3. Formulation of the dissipation Q and its second derivatives with respect to the rates a&  

and β&  

 The dissipation Q can be taken from [5], sect. 3. as 

 

( )
2

0

2
2

1 5

0

2
2

1 1

0

2

2 4

R R

r r

r r

B R f f
Q a dR dR dR

f a

r f f
b a a dr dr dr

f a

r h h
b a a h r dr a dr dr.

h r

β
β

π β
β

π β
β

∞ ∞ ∞

∞ ∞ ∞+
+ +

∞ ∞ ∞+
+ −

 ∂ ∂′ ′= + = 
∂ ∂ 

 ∂ ∂′ ′+ = 
∂ ∂ 

 ∂ ∂  ′ ′− + +  ∂ ∂  

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

l

l l

l

l

l l

l

&&

&&

&&

 (8) 

In the calculations above we used Eqs. (3) and (5).  

 The second partial derivatives then read  

 

2
2 2

1 1
2

0

1
2 4

2
r

Q r h
b a h r dr dr

a h r
π

∞ ∞+
+ −  ∂ ∂  ′= +  ∂ ∂  

∫ ∫
l

l l

l
&

, (9) 

 

2
2 2

1 1
2

0

1
2

2
r

Q r h
b a dr dr

h
π

β β

∞ ∞+
+ +  ∂ ∂

′=  
∂ ∂ 

∫ ∫
l

l l

l&
, (10) 

 
2 2

1

0

1
2 4

2
r r

Q r h h
b a h r dr dr dr

a h r
π

β β

∞ ∞ ∞+
+  ∂ ∂ ∂  ′ ′= − + ⋅  ∂ ∂ ∂ ∂  

∫ ∫ ∫
l

l l

l&&
. (11) 

 

2.2.4. Evolution equations for a&  and β&  

 The system of evolution equations is also explained in [5], sect. 3, and writes 

 
2 2

2

1 1

2 2

Q Q G
a

a a a
β

β
∂ ∂ ∂

+ = −
∂ ∂ ∂ ∂

&&
&& &

,      
2 2

2

1 1

2 2

Q Q G
a

a
β

β β β
∂ ∂ ∂

+ = −
∂ ∂ ∂ ∂

&&
& &&

. (12) 

We introduce the following abbreviations 

 ( ) 2

0

Ga
I r hdrβ

∞

= ∫ ,  (13a) 

 ( ) ( )2

0

G Ga

h d
I r dr I

d
β β β

β β

∞ ∂
= ≡

∂∫ ,  (13b) 
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 ( )
2

2

0

3
Qaa

r

r
I hdr rh dr

h
β

∞ ∞+  
′= − 

 
∫ ∫

l

, (13c) 

 ( )
2

2

0

Q

r

r h
I dr dr

h
ββ β

β

∞ ∞+  ∂
′=  

∂ 
∫ ∫

l

,  (13d) 

 ( )
2

0

3
Qa

r r

r h
I hdr rh dr dr

h
β β

β

∞ ∞ ∞+    ∂′ ′= − ⋅   ∂  
∫ ∫ ∫

l

. (13e) 

Integration per parts is used in integrals (13c) and (13e). Then the evolution of the system is 

given by the set of equations  

 ( ) ( ) ( )
1

1 1 1
2

2
2 2

Qaa Qa Ga
b a I a b a I I

a
β

πγ
π β π β β β

+
+ − +− =

l

l l l l

l l

&& , (14) 

 ( ) ( ) ( )
1

1 1 1 2
2 2

Qa Q G
b a I a b a I I

a
β ββ β

πγ
π β π β β β

+
+ + +− + = −

l

l l l l

l l

&&  (15) 

and after their simplification as 

 ( ) ( ) ( )2Qaa Qa Ga

a
I I I

a a b
β

γ
β β β β+− =

l

l

&
& , (16) 

 ( ) ( ) ( )2Qa Q G

a
I I I

a a b
β ββ β

γ
β β β β+− =

l

l

&
& . (17) 

 

3. Solutions  

3.1. Solution of the evolution equations 

 The solution of the set of equations (16), (17) with respect to /a a&  and β&  is given by 

 
( ) ( ) ( ) ( )

( )2 2

G Qa Ga Q

a

I I I Ia
F

a a b D a b

β β βββ β β βγ γ
β+ +

−
= =

l l

l l

&
, (18) 

 
( ) ( ) ( ) ( )

( )2 2

G Qaa Ga Qa
I I I I

F
a b D a b

β β
β

β β β βγ γ
β β+ +

−
= =

l l

l l

&  (19) 

with the determinant D  as 

 ( ) ( ) ( )( )2
0

Qaa Q Qa
D I I Iββ ββ β β= − > . (20) 
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After dividing Eq. (18) by Eq. (19) one obtains 

 
( )
( )

a
Fa

a Fβ

β
β

β
=

&
& . (21) 

Equation (21) can be integrated in time with the result 

 
( )
( )

[ ]
0

0 0 0exp exp ( ; , )a
F

a a d a J
F

β

ββ

β
β β β

β

 
′= = 

  
∫ l . (22) 

The quantities 0a  and 0β  represent the initial values of a  and β  at the time 0t = . 

 By inserting of Eq. (22) into Eq. (19) one finds the differential equation for β  as 

 ( ) ( ) 02
0

exp 2 ( ; , )F J
a b

β

γ
β β β β+

 = − + l

l

& l l . (23) 

Equation (23) can be integrated with respect to time yielding  

 0 0( ; , , )t H aβ β= l  (24) 

ensuring that 0 0 0( ; , , ) 0H aβ β =l . 

 The actual solution of β  needs an inversion of Eq. (24), 

 1
0 0( ; , , )H t aβ β−= l . (25) 

Insertion of Eq. (25) into Eq. (22) leads finally to a time evolution 0 0( ; , , )a a t a β= l . 

 

3.2. Asymptotic behaviour of the solution 

 The asymptotic value 
asym

β  of β  can be found from Eq. (19) by putting 0β =& , which 

enforces a non-linear equation for 
asym

β  as 

 ( ) ( ) ( ) ( )G asym Qaa asym Ga asym Qa asym
I I I Iβ ββ β β β= . (26) 

If we insert the value 
asym

β  into Eq. (16) and take 0β =&  into account, we find an asymptotic 

evolution equation for a  as 
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( )
( )1

Ga asym

Qaa asym

I
a

a b I

βγ
β+=

l

l

& . (27) 

This is exactly the evolution equation for a , as it was studied in detail by the authors in the 

recent paper [7] for the case that only a  is a time dependent parameter. 

 

3.3. Determination of the critical radius 
c

R  

 The critical radius 
c

R  is defined in [5], sect. 3 in such a way that ( ) 0cR R =&  yielding the 

equation  

 ( )' ' ,   0
c c

c

R R

f f
a dR dR fR R R

a
β

β

∞ ∞∂ ∂
+ = =

∂ ∂∫ ∫& & && . (28) 

Equation (28) can be reformulated with Eqs. (2), (5), (21) and leads to the final relation for 

/
c c

r R a=  as 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( )

( )3 ,
c c

G Qa Ga Q a

c c

G Qaa Ga Qa r r

I I I I F h
dr hdr r h r

I I I I F

β β ββ

β β β

β β β β β
β

ββ β β β β

∞ ∞   − ∂
= = −   

   ∂−    
∫ ∫ . (29) 

Integration per parts is used in the last integral. The solution of Eq. (29) with respect to 
c

r  

provides the value of the critical radius ( )c cR ar β= . 

 

4. Examples 

4.1. The Kirkaldy-distribution function 

 The authors of [7] have discussed the Kirkaldy-distribution function as one of the 

simplest 2-parameter distributions reading 

 
4
K

K

h
f

a
= ,   

2 6

4 2 6

15
K

r r
h

β β β
 

= − 
 

. (30) 

The quantity β  acts in this case as a so called cut-off dimension-free radius, which was 

suggested by Kirkaldy to be 32/21 for the coarsening case. One may tend to check whether 
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asym
β  obtains the value 32/21 by using Eq. (26). However, one can show that Eq. (26) is 

trivially fulfilled for any value of 
asym

β . Moreover, also the determinant 0D =  for any value 

of β .  

 The explanation of both facts can be identified from the distribution function itself, 

expressed in the variable R  as 

 ( )
2 6

4 4 2 2 6 6

15
, ,K

R R
f R a

a a a
β

β β β
 

= − 
 

, (31) 

which clearly shows that de facto only one parameter, namely aβ , is involved in 
K

f , and 

thus, Kirkaldy’s proposal is a one-parameter distribution function. 

 

 

4.2. The Weibull-type distribution function 

 As dealt with by Streitenberger et al. [3] and discussed in [7] a widely applicable class 

of distribution functions is a Weibull-type distribution function. The original version of this 

distribution includes 3 parameters, namely ,a β  and cut-off radius 0r , which is e.g. 1.5 in the 

prominent LSW-distribution and 2.0 in the Hillert-distribution, see also [7], sect. 1. For 

0r → ∞  and 0β = we have the classical Rayleigh-distribution function. For 0r → ∞  and 

0β ≠  the distribution function reads 

 
2

1 3
exp

2W W

r
h L r

β
β

β

+
+  

= − + 
,   

( )
( ) ( )( )

53
222 3

5 2W
L

+−
+++ ⋅

=
+ +

β
βββ

Γ β β
,   W

W

dL
L

dβ
′ = . (32) 

 In the current case we do not restrict to a specific value of β  and let β  develop starting 

from an initial value 0β . To calculate the second derivates of Q  with respect to a&  and β&  we 

can use exact relations for the integrals 

 ( )
2

2
5

3
exp 1

2
W W

r

f L r
dr r

a a

β
β

β

∞ +
+ ∂

′ = − − ∂ + 
∫ , (33a) 
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( )
( ) ( )

2 2

4

3 1 1
exp ln

2 3 2 2
WW W

Wr

Lf L r r
dr r

a L

β ββ
β β β β β

∞ + + ′ ∂  −
′  = + −   ∂ + + +     

∫ . (33b) 

All further integrals with respect to Q  in Eqs. (13c-e) can also be performed analytically e.g. 

by using MAPLE (http://www.maplesoft.com). But the integration procedure leads to 

extremely lengthy expressions in variable β . 

 The integrals (13a,b) can also be evaluated analytically and read as 

 ( ) ( )
1 1

2 2
4 5

3 2
2 2Ga

I
β

β β
β β

β β
β β

+
+ +

   + +
= + Γ Γ   + +   

, (34a) 

 ( ) ( )G Ga

d
I I

d
β β β

β
= . (34b) 

We can calculate 
asym

β  from the steady-state condition (26) yielding for the 

Growth case: 0.50703
asym

β = , Coarsening case: 1.86659
asym

β = . 

 The functions ( ) ( )aF ,Fββ β in Eqs. (18), (19) can nearly exactly be fitted by quadratic 

polynomials in the variable ( )asymβ β−  as 

Growth case: 

( ) ( ) ( )2
0.37519 0.30307 0.25511

a asym asym
F β β β β β= + − + − , (35a) 

( ) ( ) ( )2
5.13085 0.05895

asym asym
Fβ β β β β β= − − − ; (35b) 

Coarsening case: 

( ) ( ) ( )2
0.16169 0.07278 0.11919

a asym asym
F β β β β β= + − + − , (35c) 

( ) ( ) ( )2
7.47000 0.87085

asym asym
Fβ β β β β β= − − − .      (35d) 

Note that the function ( )Fβ β  is nearly a linear function in β  and ( ) 0asymFβ β = . This allows 

to express ( )a β , Eq. (22), in a quite simple, nearly exact analytical form as following: 
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 ( ) ( )0

b

asym

asym

a a C
β

β β
β β

 
= ⋅  − 

,  ( ) 2
1 21.0C C Cβ β β= + + ,   (36) 

Growth case: 0.07312b = ,    1 20.086, 0.023C C= = − ; 

Coarsening case: 0.02164b = ,    1 20.045, 0.009C C= = − . 

This rather simple equation allows to find via Eq. (23) the equation for β  as function of a 

dimension-free time parameter τ , ( )2
0t a bτ γ += l

l
 with 0 0β =  as 

 

( ) ( )( )

( )

22

0

 

     

b

asym

asym

C
d

F

β

β

ββ
β τ

β β β

++
 

=  − 
∫

ll
%

%
% %

. (37) 

Since the exponent ( )2b +l  is 0.14624 for growth and 0.06492 for coarsening, resp., the 

integral above has no analytical solution. Of course, the above relation must be inverted to 

find to a functional relation ( )β β τ= . Insertion of ( )β τ  into the according Eq. (22) yields 

finally ( )a τ .  

 Let us study two limiting cases, namely 0β →  (short term solution) and 
asym

β β→  

(long term solution). For 0β →  we can use in Eq. (37) the values 1C =  and ( )0F Fβ β= . 

Then we find after a short analysis the linear relation  

 ( )0Fββ τ= . (38) 

 It is well known, that the parameter scaling the radius obeys the parabolic (cubic) law in 

the steady state of growth (coarsening) as 

 ( ) ( )2 2
0a a tα+ +− =l l   (39) 

with α  being a material parameter. Using the dimension-free time parameter τ , one can 

rewrite (α  being a material parameter again) the law as  

  
( )

( )

2

2
0

1
a

a
ατ

+

+
= +

l

l
. (40) 
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Just this form of equation is obtained by linearization of Eq. (36), raised to the power by 

( )2+l . Insertion of Eq. (38) yields 

 
( )

( ) ( )
( )2

12
0

0
1 2

asym

bFa
C

a

β τ
β

+

+

 
= + + +  

 

l

l
l     or    ( ) ( ) ( )

1

2

0 1

0
1 2

asym

bF
a a C

β τ
β

+  
= + + +      

l

l . (41) 

 The direct linearization of Eq. (36) and the use of Eq. (38) provide 

 
( )

0 1

0
1

asym

bF
a a C

β τ
β

  
= + +      

. (42) 

The quantity ( )0 asymbFβ β  obtains the value 0.37298 for the growth case and 0.12647 for the 

coarsening case, resp.  

 The comparison of the short term and numerical solutions is presented in Figure 1 for 

both the growth case (Fig. 1 a), c)) and coarsening case (Fig. 1 b), d)). The solution obtained 

numerically by direct integration of Eqs. (18) and (19) can be considered as an exact one and 

represents a reference solution. The solution given by Eq. (36) with the use of the values of 

β  from the numerical solution provides the solution for a  within an accuracy of 1% for both 

cases. Using Eqs. (38) and (41), one obtains a very good agreement for 0.1τ < . For larger 

times, however, the values of a  differ by a factor of up to 1.26 for the growth case and by a 

factor of up to 1.58 for the coarsening case. Moreover, no asymptotic behaviour for β  is 

obtained. Using Eqs. (38) and (42), one obtains a very good agreement for 0.1τ <  and a 

disagreement for larger times.  

 From Figure 1b), d) it is evident, that the dependence ( )β τ  can be described quite well 

by the relation (38) up to the time  

 ( )* 0asym Fβτ β=   (43) 

and then by keeping  

 
asym

β β=  for *τ τ> .  (44) 
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The short term solution for a  is given by Eq. (41) for *τ τ≤  and a  reaches the value   

 ( )
( )

( )
1

2
1*

0 1 2
0

asym
C

a a b
Fβ

β +  
= + + +      

l

l  (45) 

for  *τ τ= . For *τ τ>  one can insert 
asym

β β=  into Eq. (18) and its direct integration 

provides the long term solution:   

( ) ( ) ( ) ( ) ( ) ( ) ( )2 * 2 2 *
02 2a asym a asyma a tF a F

b

γ
β β τ τ+ + +− = + = + −l l l

l

l l ,     *τ τ> . (46) 

Again the parabolic (cubic) law can be recognized for *τ τ> . The solution ( )β τ  and  

( )a τ given by the combination of the short term solution (Eqs. (38) and (41)) for *τ τ≤  and 

the long term solution (Eqs. (44) and (46)) for *τ τ> is presented by triangles in Figure 1a,b. 

The deviation of ( )a τ  from the reference solution is less then 1% in the whole interval 

0 τ≤ < ∞ .   

 The evolution of ( )Wh τ  given by Eq. (32) for different values of τ  is presented for both 

the growth and coarsening case in figure 2. The function ( )Wh τ  stops to evolve for the 

normalized time 1τ ≥ , which corresponds to the values of τ , for which 
asym

β β≈ . The 

evolution of distribution function ( )Wf τ  given by Eqs. (2) and (32) for different values of τ  

for both the growth and coarsening case is presented in figure 3.  

 The critical radius 
c

R  is investigated according to sect. 3.3. For the left hand side of Eq. 

(29) we use the fits from Eqs. (35a-d). The integrals on the right hand side of Eq. (29) can be 

found analytically. It can easily be shown that for 
asym

β β=  the critical radius is a . The 

numerical solution of Eq. (29) both for the growth and coarsening case are shown in Fig. 4. It 

is interesting to note that 
c c

r R a=  deviates not significantly from 1 in the interval 
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0 2
asym

β β≤ ≤ . The reason for running β  beyond 
asym

β  lies in the fact that in general one 

may start with any β − value. 

 Finally we list the kinetic equation as evolution equation for R&  according to the first 

relation (28) using the exact integrals (33a), (33b). After some analysis we find with Eqs. 

(18), (19) 

( ) ( ) ( )
( )

1 2 21 1
ln

2 2 3
W

a

W

F L
R R r F r r r r r

b L

ββ ββγ
β

β β
+ − −

  ′  
= − + − +   + +     

l l

l

& . (47) 

The first part of the above kinetic expression agrees with the mathematical structure of the 

kinetics of the one-parameter Weibull-type distribution in [7], Eqs. (20), (21), however, with a 

fixed value of β  there. The second contribution to kinetics refers to the term β&  and 

approaches zero, when 
asym

β β→ . The most important feature of this kinetics is that β  is 

now a function evolving with the time.  

 

5. Discussion and outlook 

 A non-steady object-radius distribution function is described by two parameters. The 

first parameter, a , scales the object radius R  and can be considered as the "representative" 

object radius. The second parameter, β , is dimension-free and characterizes the shape of the 

radius distribution function. 

 One can show that 

• β  is now not a somewhat arbitrary parameter but tends to a distinct value 
asym

β , which 

differs for the growth and coarsening case (depends on controlling process) and can be 

determined from the  PMD, 

• an explicit evolution equation can be given for ( ),a a β&  and ( ),aβ β& , so finally the 

evolution of a  as well as β  can be calculated by numerical integration in time, 
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• an explicit functional relation can be determined for ( )a t  and ( )tβ . 

 This allows now to follow actual distributions during their evolution with a dimension-

free time parameter τ  being either ( )2
0M a tγ  in the growth case or ( )( )3

0a tγ ε  in the 

coarsening case. 

 The study of a Weibull-type distribution function gives a clear evidence that the 

evolution of the parameter scaling the object radius R  represented by ( )a τ , follows a 

"parabolic" or "cubic" regime with a changing parameter ( )β τ . 

 As a future work the following two tasks seem to be worth while for solving: 

• Treatment of precipitation controlled by bulk diffusion and additionally by interface 

reaction. In this case the dissipation consists of two terms due to bulk diffusion 3 2R R&�  

and due to interface reaction (analogy to the grain boundary migration) 2 2R R&� . In that 

case the features of grain growth and precipitate coarsening are coupled. Growth 

mechanism dominates for fine precipitate structure and mechanism of coarsening 

dominates for coarse precipitate structure. As the relations of the controlling mechanisms 

change during the system evolution, one can expect that the β  parameter approaches its 

asymptotic value very slowly. 

•  A third parameter may be brought into play, e.g. the so-called cut-off parameter 0r , 

restricting the distribution ( )f R  to the interval 0 00 r r R a≤ ≤ = . The cut-off parameter 

0r  is set to 2 in the Hillert-distribution or 1.5 in the LSW-distribution and is discussed by 

Zöllner and Streitenberger [3] for the Weibull-type distribution function. In this case the  

matrix of the set of linear equations for a& , β&  and 0r&  is of dimension 3 with the 

unchanged original 2x2 submatrix corresponding to a&  and β&  if 0r → ∞ . The solution of 
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this problem may be tackled in an iterative way, e.g., by considering a finite 0r  as a 

certain disturbance in relation to 0r → ∞  in the cases considered in this paper. 

 Specifically in the case of two and more parameters the principle of maximum 

dissipation (PMD) has proven to be a rational and efficient tool to derive evolution equations 

in an analytical form. However, the authors assume that in both new problems only numerical 

strategies will lead to results. It should be mentioned that very recently the evolution 

equations have been derived without the need to apply the PMD for one-parameter systems 

[11]; in that case only the usage of the total Gibbs energy balance equation is sufficient.  

 

6. Summary 

 The content of the paper can be summarized into the following items: 

• In the simplest case the non-steady-state evolution of the object radii distribution can be 

described by a two-parameter function. The first parameter ( )a t  can be used for the 

scaling of the object radius R  and the second one, ( )tβ , influences the shape of the 

distribution function for the normalized coordinate r R a= . 

• The evolution equations ( ),a a a β=& &  and ( ),aβ β β=& &  can be derived by application of 

principle of maximum dissipation (PMD) for an arbitrary two-parametric distribution 

function and their semi-analytical solution can be developed. 

• The general evolution equations are applied to Kirkaldy and Weibull-type two-parameter 

distribution functions. The Kirkaldy distribution function is identified having two 

dependent parameters, and the general analysis fails. On the other hand, the Weibull-type 

distribution function is analyzed in detail.  

• The evolution equations for parameters of the Weibull-type distribution function are 

integrated numerically with respect to time. This solution is considered as the exact 

reference solution. Several simple approximate analytical solutions are presented. A 
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combination of a short term and a long term solution seems to be very successful and 

agrees with the reference solution within one percent for ( )a t  and, except to a short 

transient period, almost exactly also for ( )tβ .   
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Figure 1:  Comparison of different solutions ( )a τ  and ( )β τ  for growth case – a) and c) and 

coarsening case – b) and d).  

 

Figure 2: Evolution of ( )Wh τ  given by Eq. (32) for different values of τ . a) growth case, b) 

coarsening case.    

 

Figure 3: Evolution of distribution function ( )Wf τ  given by Eqs. (2) and (32) for different 

values of τ . a) growth case, b) coarsening case.    

 

Figure 4: Dependence of normalized critical radius 
c

r  on parameter β  being a solution of Eq. 

(29) with 
W

h h= . a) growth case, b) coarsening case.  

 

Page 20 of 22

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
 

a)       b) 

 

  c)       d) 

Figure 1:  Comparison of different solutions ( )a τ  and ( )β τ  for growth case – a) and c) and 

coarsening case – b) and d).  

 

   a)      b) 

Figure 2: Evolution of ( )W
h τ  given by Eq. (32) for different values of τ . a) growth case, b) 

coarsening case.    
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   a)      b)   

Figure 3: Evolution of distribution function ( )Wf τ  given by Eqs. (2) and (32) for different 

values of τ . a) growth case, b) coarsening case.    

 

   a)      b) 

Figure 4: Dependence of normalized critical radius cr  on parameter β  being a solution of Eq. 

(29) with Wh h= . a) growth case, b) coarsening case.  
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