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IN NICKEL-BASE SUPERALLOYS: EFFECT ON PROPAGATION OF MATRIX DISLOCATION LOOPS
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In nickel-base superalloys the interfacial area between γ-matrix and cuboidal γ'-precipitates is very high with an area density of about 10 7 m 2 /m 3 . Therefore the interface plays a crucial role in the structural and mechanical behaviour of superalloys. During the primary stage of high temperature creep the coherency stresses between γand γ'-phase are relaxed by interfacial dislocation networks, a process which is designated as loss of coherency of the γ/γ'-interfaces. The formation mechanism of these networks was extensively studied by [1][START_REF] Sato | A 5th generation Ni-base single crystal superalloy with superior elevated temperature properties[END_REF][START_REF] Zhang | [END_REF][4][5][START_REF] Schneider | Hochtemperaturkriechverhalten und Mikrostruktur der einkristallinen Nikelbasis-Superlegierung CMSX-4 bei Temperaturen von 800°C bis 1100[END_REF][START_REF] Feller-Kniepmeier | [END_REF][8][START_REF] Fredholm | High temperature creep mechanisms in single crystals of some high performance nickel base superalloys[END_REF], with the unanimous conclusion, that during primary creep a/2〈110〉 dislocation loops are gliding on {111}-planes through matrix channels. At the intersection between {100}-interface and glide plane they leave behind 〈 1 1 0 〉 oriented dislocation segments. Cross slip of the leading segment of a matrix dislocation loop generates zigzag-shaped interfacial dislocations.

Fig. 1 gives an impression of the resulting dislocation arrangement in the γ/γ' interfaces of CMSX-4 after creep-deformation at elevated temperature and high stress. Here dislocation loops can be recognized, having about the width of the matrix channel and a direction diagonal to the {100} habit planes of the γ'cubes, which is in full agreement with the described mechanism. However, when temperatures become high and stresses low, the appearance of the interfacial dislocations changes significantly (Fig. 2).

The dislocations now mostly lie parallel to the edges of the γ'-cubes and can hardly be recognised as trailing segments of dislocation loops. The aim of our investigations was to identify the mechanism responsible for the formation of such configurations. 

Experimental

To obtain an overview of the process of loss of coherency during primary creep, four single crystal superalloys, SRR99, CMSX-4, CMSX-10 and TMS138 were investigated, representing generation 1 to 4 in superalloy development. Table 1 shows the increasing content of refractory elements and finally the use of ruthenium in the latest alloy. In the table the constrained misfit is given, as measured in the coherent γ/γ' compound in the Primary Dendrite Arm (PDA). The misfit of the isolated phases, the unconstrained misfit, is about two times smaller [START_REF] Glatzel | Microstructure and Internal Strains of Undeformed and Creep Deformed Samples of a Nickel-Base Superalloy[END_REF]. The misfit averaged over the whole dendritic structure is about 50-70% of the misfit in the PDA [START_REF] Brückner | [END_REF].

At high temperatures around 1100°C superalloys are usually tested for creep under applied stresses of about 100 MPa, which are comparable with misfit stresses. The applied stresses in the hottest section of a turbine blade are even lower. This means that both applied stress and misfit stresses become relevant for the dislocation movement in the matrix channels and γ/γ'-interfaces. To distinguish the effect of misfit and applied stress, dislocation structures obtained during creep tests were compared with those after annealing experiments. Table 2 gives an overview of the creep and annealing tests, presented in this paper. For all creep tests the load axis is [001].

The dislocation structures were investigated mainly by TEM (Philips, CM 30). Additionally a high resolution SEM was used (Leo Gemini 1530 VP), allowing to visualise interfacial dislocations via the grooves, generated by the dislocations on the γ/γ'-interface [START_REF] Epishin | [END_REF].

The spatial distribution of misfit stresses in the γand γ'-phases was computed by the Finite Element Method (FEM) using the software ABAQUS. Perpendicular to the load axis ("P-channels").

TEM results: Microstructural investigations

•

The average propagation direction of a loop is 100 .

•

The tip of the loop is narrow but with increasing distance from the tip the loop becomes wider.

• Two types of cross-slip can be distinguished: when the tip of the loop approaches a channel parallel to the average propagation direction ("R-channel") it is Repelled by cross slip, but when it impinges a channel perpendicular to the propagation direction ("C-channel") it Crosses the channel and cross-slips.

•

The trailing zigzag line moves towards the γ'-edge, which is parallel to the average propagation direction. Along this edge it straightens in 100 direction.

Detailed inspection of the shape of the dislocations crossing the C-channels shows, that cross slip takes place directly at the γ'-edges (Fig. 4). Which side of the C-channel is selected, depends on the dislocation line direction (arrows in Fig. 4). Especially when no stress is applied, the effect of alignment of the interfacial dislocations in 100 direction is very pronounced. This leads to dislocation networks, which are square rather than hexagonal.

Inspection of literature shows, that interfacial dislocations with 100 line direction and square network meshes are found typically, when temperatures are very high and stresses low, or when specimen are simply annealed (Table 3).

Fig. 6 shows such networks in SRR99, annealed at 1100°C for 300 h. Fig. 6a is a TEM micrograph and Fig. 6b a SEM image of the same specimen. The TEM image visualises the network with a somewhat better resolution, whereas the SEM image supplies a better overview, but in any case the observed dislocation structures are practically the same.

The transition of 110 oriented interfacial dislocations into square networks can be recognized in Fig. 7, taken with a foil of TMS138, 1100°C, 137MPa, 2 h, 0.04%.

FEM results and discussion

FEM results for coherency misfit in CMSX-4 at 1100°C

During primary creep under uniaxial tensile load applied in [001] direction the matrix dislocation loops cross glide in the P-channels (001). Driving forces for this movement are the applied stress a 33 σ and the misfit stresses m σˆ, given as 3D stress tensor. In this case the applied stress a 33 σ is quite uniformly distributed within the γ/γ'-microstructure because the difference of the elastic constants of γand γ'-phase [15,16]. Therefore the stress a 33 σ causes just glide on one plane but not the cross glide on another.

F
The misfit stresses m σˆ however differ strongly in the γ-and γ'-phases and follow the periodicity of the γ/γ'-microstructure. So the cross glide must be a consequence of local changes of the misfit stresses. To understand this effect the spatial distribution of ) , , ( ˆz y x m σ was calculated by FEM at 1100°C. The elastic constants of γand γ'-phases were taken to be the same and equal to those of CMSX-4 at 1100°C, i.e. 11 c =153 GPa, 12 c =100 GPa and 44 c =89 GPa [17]. The unconstrained γ/γ'-misfit in CMSX-4, -0.25%, was obtained by extrapolation of neutron diffraction data from [START_REF] Glatzel | Microstructure and Internal Strains of Undeformed and Creep Deformed Samples of a Nickel-Base Superalloy[END_REF] up to 1100°C. The γ'-volume fraction 63% was measured on SEM images showing the γ/γ'-microstructure of CMSX-4 creep tested at 1100°C.

It was assumed, that the corners of the γ'-cubes are slightly rounded with a radius r . The ratio between r and γ'-edge length l , l r ≈20, was measured by processing of dark field TEM images of undeformed CMSX-4. A 1/8th of the periodic cell of the γ/γ'-microstructure was represented by a mesh with 671151 elements: 388157 elements for the γ'-phase, the rest for the γ-phase. The structural model for the FEM calculations is shown in Fig. 8.

Fig. 9 represents components of the misfit stress tensor in two cross cuts along the P-channel (see Fig. 8).

The normal stresses m σ directly above the γ/γ'-interface (0.03 w ). The area, where the γ'-cube is lying below the matrix is marked by a dashed line and designated as γ/γ'. It follows from the FEM calculations that the normal stress m 22 σ (Fig. 9a) is compressive in the γ/γ' area with a high absolute value of about 250 MPa. In the (010)-channel however it changes its sign. The normal component m 33 σ is tensile (Fig. 9b) but its value is much lower, namely below 50 MPa. The shear components m 13 σ and m 12 σ vanish in the middle of the channel but they can reach high values close to the edges of the cube. In σ by permuting the directions 1 and 2. They are not shown here, because they don't play a role for the following considerations.

Forces acting on the dislocation loop

Fig. 10 shows a dislocation, which has a 90° kink close to the R-channel. The leading segment glides in the matrix, the trailing segments are lying in an upper and a lower γ/γ'-interface. The Burgers vector is [ ]

1 1 0 2 a b = r
. The kink forms when the matrix segment cross glides from a ( ) 

ξ τ r r r × = n b F glide (1)
where τ is the resolved shear stress (RSS), b b r = and n r the glide plane normal. The RSS is given by:

( ) [ ]n b b r r σ τ = ( 2 
)
where σˆ is the stress tensor.

It should be mentioned that n r appears in both equations ( 1) and ( 2), therefore the sign of n r is irrelevant. Applying (1) for the considered glide systems one gets on the ( )

11 1
and ( ) 111 planes respectively: 

( ) ( ) ( ) [ ] 0 , 1 , 1 2 ] 2 , 1 , 1 [ 6 1 ] 111 [ 3 1 2 111 111 111 ± = - ± × = a a F glide m m m m r τ τ (3)
σ σ σ σ τ + - ± = m m (6) 
m m m m m σ σ σ τ τ ≈ + - = - (7) 
According to Fig. 9c, d the difference is caused nearly completely by m 13 σ , while the effect of m 12 σ is negligible.

Formula (6) can be used to attain a descriptive understanding how plastic deformation works on a microscopic level. The plastic strain tensor εˆ produced by a dislocation gliding on a plane n r over an area

A is: F o r P e e r R e v i e w O n l y 10 ( ) b A A b V r r r r ⊗ + ⊗ = 2 1 ε (8) V is the crystal volume and n A A r r ⋅ = . In our case b r is [ ] 1 1 0 2 a and [ ] 111 3 1 m r = A
, which gives:

( )           - ± ± = 1 0 2 1 0 1 2 1 2 1 2 1 0 3 2 111 ˆm m m V a ε (9) 
It follows, that glide on both octahedral planes causes a contraction 22 ε perpendicular to the stress axis and an elongation 33 ε along the axis. σ vanish along the (100) plane through the cube center (see also Fig. 9c,d).

1 The sign of b r is defined according to the so-called FS/RH convention [20]. We now discuss the forces acting on the leading screw dislocation of the [ ] ( ) σ . The RSS increases when tensile load is applied (arrows in Fig. 12a). Applied and misfit stress a 33 σ and m 22 σ drive the dislocation loops through the P-channel, thus elongating the specimen by 33 ε as well as relaxing the misfit stresses by 22 ε (see equation ( 9)).

111
• Close to the R-channel (010) ( )

m 111
τ strongly decreases and becomes slightly negative in the center of the R-channel (Fig. 12a). The change of ( )

m 111
τ is mostly caused by m 22 σ (Fig. 9). In general the matrix is under compression to attain coherency with the γ'-phase. Locally however it is under tension, namely when the P-channel crosses the R-channel.

•

Crossing the C-channel (100) ( )

m 111 τ
shows a strong oscillation near the (100) interface (Fig. 12b).

From Fig. 9 follows, that the main reason is m 13 σ . The shear stress piles up in the γ/γ'-area, when approaching the C-channel. It has opposite directions on the left and right side of the C-channel, which explains the oscillation of RSS in this region.

Cross glide at the R-channels (010)

From the zigzag shape of the deposited interfacial dislocations (see Fig. 3) follows, that the matrix segment always changes its glide plane when approaching the R-channel (010). This type of cross slip is σ (equation ( 7)). In this area however m 13 σ is practically zero according to Fig. 9c. So, the shear stress on the dislocation continuously decreases, when it approachs the R-channel on ) 11 1 ( , but the force increases as soon as the dislocation cross slips into (111) and thus returns back from the edge to the centre of the γ/γ'-area. This misfit stress barrier at the Rchannels can be overcome if the applied stress a 33 σ is strong enough as observed during creep under high applied stress at lower temperatures (Fig. 1).

Cross glide at the C-channels (100)

TEM analysis of propagating dislocation loops shows that a loop cross glides every time when crossing a C-channel (100). It is remarkable that this bend in the dislocation line takes places only on one of the two interfaces of the C-channel (100) as observed in Fig. 3 and schematically drawn in Fig. 13.

For a detailed discussion the distribution of ( ) 

m

Alignment of the interfacial dislocations parallel to the R-channels (010)

The experiment shows that the deposited zigzag interfacial dislocations first move in the (001) interface by glide/climb but then stop near the γ'-edge, where they align in 100 direction parallel to the Rchannels (see Figs 2 and3). To analyse the interaction of the kink, schematically shown in Fig. 10, with the misfit stresses at the γ'-edge, the elastic force driving a straight dislocation segment with [ ]

1 1 0 2 a b = r was calculated: ( ) [ ] ξ σ σ r r r × + = b F m a el ˆ (10) 
The line direction was approximated by i.e. it is transformed from a 60°-dislocation into an edge dislocation. Such interfacial edge dislocation with 001 orientation are typical for networks in modern nickel-base superalloys, e.g. TMS138, where the γ/γ'-misfit is high and therefore the effects of misfit stresses pronounced.

Conclusions

1. It is shown experimentally that under low applied stresses the matrix dislocations frequently cross glide with the periodicity length equal to that of the γ/γ'-microstructure. The reason for this effect are inhomogeneous misfit stresses, which control the dislocation movement in such a way, that the resulting interfacial dislocation segments relax most effectively the misfit stresses. An outstanding role in this frequent cross glide is played by the shear components of the misfit stress. They are low on average but near the γ'-edges attain a high value. The result is, that the dislocation loops follow an average 001 direction on a zigzag course, being reflected when approaching R-channels parallel to this 001direction, and cross slipping when traversing C-channels perpendicular to this direction. Straightening of the interfacial zigzag dislocation into 001 oriented edge dislocations is an additional effect of the shear stresses. Two sets of these 001 dislocations can react, forming 001 oriented square networks.

2. The described effects occur when the magnitude of misfit stresses is not much lower than the magnitude applied stress. This is the case of annealing or creep under low applied stress. 4. In single-crystal nickel-base superalloys of the newest generations with a high concentration of refractory elements the γ/γ'-misfit is very high. The described effects explain the formation of very regular square networks with 001 orientation as observed, e.g. in TMS138.

3. Cross glide at C-channels was explained only qualitatively and needs further investigation. For detailed understanding of its mechanism modeling of this process by dislocation dynamics is required. The projection of the Peach-Koehler formula force into the glide plane and perpendicular to the dislocation line vector ξ r gives the glide component of the elastic force acting on a dislocation:

( ) [ ] ( ) { } ξ ξ σ r r r r × ⋅ × ⋅ = n b F glide ˆ (1A)
where σˆ, b r , ξ r and n s are respectively the stress tensor, the Burgers and line vectors, and the normal of the glide plane. Use of the Lagrange identity ( ) ( ) ( ) ( ) ( ) ( ) TMS138 NIMS, Japan.

C B D A D B C A D C B A r r r r r r r r r r r r ⋅ ⋅ ⋅ - ⋅ ⋅ ⋅ = × ⋅ × with b A r ⋅ = σˆ, ξ r = B , n C r = and ξ r = D gives: ( ) [ ] ( ) ξ σ r r r r r × ⋅ ⋅ ⋅ = n n b F glide ˆ (2A) ( ) n b F glide r r ⋅ ⋅ = σˆ ( 
5.9 -2.9 5.9 63.9 2.9 2.0 5.6 5.9 4.9 0. [100]

[001]

[010] 

Fig. 3 5 •

 35 Fig.3shows a typical dislocation configuration in TMS-138 after creep at 1100°C, 137 MPa for 2h.The micrograph illustrates the following principles:

Fig. 5a shows

  Fig. 5a shows dislocation loops in SRR99 creep deformed at 980°C, 200 MPa, 45.4h, 0.3%. The beam

22 σ and m 33 σ 12 σ and m 13

 331213 are shown for a (001) plane lying in the middle of the channel (0.5 of the channel width w , Fig.9a, b), the shear stresses m

Fig. 9 one can see, that m 13 σ 12 σand m 13 σ , while the components m 33 σ and m 12 σ

 13121312 has a maximum of about 250 MPa sharply confined to the (100) edge of the γ/γ'-area. Such an inhomogeneous distribution of shear stresses along interfaces is well-known from the mechanics of composite materials. It is called "end-effect" and occurs, e.g. in discontinuous fibres [e.g. 18]. The shear stress m has also a local maximum at the γ'-corner, but it is not pronounced. It follows from the FEM results that the relevant components of the misfit tensor are m 22 σ are small and therefore less important for the dislocation movement. The distribution of the components m 11

11 1 matrix

 111 plane to a ( ) 111 plane. The leading dislocation is assumed to be the shortest segment connecting the lower and upper (001) interface along the {111} glide plane. This gives the normalised line vectors average movement direction is [100]. The gliding component of the elastic force acting on the dislocation is (see Appendix):

The signs of b r and ξ r however determine the 1 ,

 1 sign of glide F r. They have to be defined in such a way, that the edge component of a dislocation segment lying in the interfaces relaxes the misfit stresses of an alloy misfit. According to the discussion in[19] for a negative misfit and a Burgers vector the dislocation segment in Fig.10lying in the lower interface must have the line vector the upper interface the line vectors have opposite directions.

τ

  calculated according to[START_REF] Schneider | Hochtemperaturkriechverhalten und Mikrostruktur der einkristallinen Nikelbasis-Superlegierung CMSX-4 bei Temperaturen von 800°C bis 1100[END_REF] is shown in Fig.11. In order to clarify how the C-channel is crossed not only the area of the C-channel but also of the neighbouring γ'-cubes is analysed. The RSS ( ) m 111 τ depends very sensitively on the distance between the (001) section and the (001) γ/γ'-interface. Therefore sections in 3 distances are shown: in the middle of the P-channel 0.5w (a), very close to the (001) interface 0.03 w (c) and in-between 0.25 w (b).

Fig. 11 that m 13 σ and m 12

 111312 Fig.11shows immediately, that a dislocation arriving from the left side on a (111) plane, is rejected when

τ

  is caused by these components. The line however, along which RSS in Fig.12ais calculated lies in this plane and therefore in this case

τ

  can be obtained by mirroring Figs 11 and 12b on the (100) plane. From Figs 9, 11 and 12 follows: • Inside the γ/γ' area the RSS is positive. Fig. 11 and Figs. 12a, b show, that RSS is nearly constant across the P-channel in [001] direction and along this channel on the (001) plane. According to equation (6) and Fig. 9 RSS it is mostly caused by m 22

.

  Fig.10. From Fig.12afollows, that the average RSS rapidly decreases from about 120 MPa down to about -10 MPa when the dislocation moves on the (111 ) glide plane from the center of the γ/γ'-area to the middle of R-channel. It is important that in a good approximation ( ) This is exactly correct for x=0 but also well achieved nearly along the complete R-channel, because the difference ( )

111 τσm 13 στ 1 τ 1 .

 1111311 in the (010) section across the C-channel (100) was plotted (Fig.12b). The RSS ( ) do not depend on the sign of the x-component of n has opposite signs on the left and right side of the C-channel. This means ( ) are mirror symmetric with the symmetry plane lying in the middle of the Cchannel. For a better understanding of the effect of ( ) m 111 τ on the movement of the matrix dislocations, a colour map on a longitudinal (010) cut through the middle of four neighbouring γ'cubes (Fig.14). The leading part of the dislocation loop, which is actually curved, is approximated by the the trailing dislocation segments lying in the upper (U) and lower (L) (001)interface. When the lower part of the loop reaches the channel crossing, it extends under the influence of the local maximum of ( ) m 111 τ towards the opposite channel side (dotted line in Fig.14), where ( )m111 τ strongly decreases. Because of the mirror symmetry, here ( ) m 11 has its maximum. Therefore this leading dislocation tip turns into screw orientation and cross slips from (111) to ( ) 11 The upper part of the dislocation loop follows the leading tip into the new ( )

13 σ

 13 the change of the shape of the kink: the sharp bend of the dislocation line becomes trapezoidal. Under uniaxial tension in[001] One can see from[START_REF] Epishin | Influence of dendritic inhomogeneity on creep behaviour of a single-crystal superalloy of the 3 rd generation[END_REF] that on the (001) interface the dislocation is driven by the applied stress a 33 σ as well as by the misfit stresses m 23 σ and m 33 σ . The normal stress a 33 σ is positive and homogeneously distributed, so it moves the dislocation always forward. The normal stress m 33 σ supports the applied stress but its contribution is small. The shear stress m 23 σ shows a different behavior: it is generally very small but maximum at the transition to the R-channel (010). (The distribution of m 23σ can be obtained from that for m by permuting the directions 1 and 2). Fig.14shows the distribution of relatively small, about 50 MPa. But due to the sharp peak of m 23 σ just before the R-channel it becomes strongly negative (below -200 MPa), thus acting as a barrier for the interfacial dislocation movement. Therefore the dislocation can not overcome this stress barrier if the applied stress is low. It stops and aligns parallel to the γ'-edge,

3 .

 3 The effects also should increase with temperature due to the increase of the absolute value of γ/γ'misfit.

Figure 1 .

 1 Figure 1. Interfacial dislocations in CMSX-4, creep deformed at 850°C, 650 MPa, 0.4 h, 0.35%. Two channels marked by arrows. Cross section, weak beam, beam direction ] 001 [ 0 = k r , diffraction vector 0 6 0 = g r . Vertical line in the middle results from the montage of two images.

Figure 2 .

 2 Figure 2. a) Interfacial dislocations in CMSX-10, creep deformed at 1100°C, 120 MPa, 25 h, 0.12%. Cross section, bright field (BF), ] 100 [ 0 = k r , 002 = g r . b) In CMSX-4, annealed at 980°C for 1000 h. BF, 020 ], 001 [ 0 = = g k r r.

Figure 3 .

 3 Figure 3. Dislocation loop expanding in a matrix channel during primary creep. TMS-138 1100°C, 137 MPa, 2 h, 0.04%. Cross section, BF, [ ] 020 , 001 0 = = g k r r. Tilted line in the middle results from the montage of two images.

Figure 4 .

 4 Figure 4. Interfacial dislocations with ] 101 [ 2 / a b = r , propagating in ] 010 [ average direction. Cross slip takes place directly on the edge of C-channels. TMS 138, 1100°C, 137 MPa, 2 h, 0.04%, cross section. BF, [ ] 020 , 100 0 = = g k r r.

Figure 5 .

 5 Figure 5. Dislocation loops in SRR99 creep deformed at 980°C, 200 MPa, 45.4 h, 0.3%. a) Viewing direction perpendicular onto the ) 001 ( interface. Cross section, BF, [ ] 0 2 0 , 001 0 = = g k r r.

Figure 6 .

 6 Figure 6. Square interfacial networks in SRR99, annealed at 1100°C for 300 h. (001) cut, imaged either by TEM in BF, multibeam (a) or by SEM (b).

Figure 7 .

 7 Figure 7. Dislocation loops align in 100 directions and form square networks. TMS138, 1100°C, 137 MPa, 2 h, 0.04%. Cross section, BF,

Figure 8 .

 8 Figure 8. Structural model for FEM calculations, given in a (100) projection. The analysed area is cubic and extends from the center of a γ' cube to the center of the crossing matrix channels.

Figure 9 . 13 σ (c) and m 12 σ

 91312 Figure 9. Distributions of misfit stresses in MPa in (001) sections of the P-channel at different distances from the interface: components m 22 σ (a) and m 33 σ (b) at the distance 0.5w, components m 13 σ (c) and m 12 σ (d)

Figure 10 .

 10 Figure 10. Kink in a dislocation loop. The loop moves in a P-channel lying between two γ' cubes.

Figure 11 .

 11 Figure 11. Distributions of RSS ( ) m 111 τ

Figure 12 .Figure 13 .

 1213 Figure 12. Resolved shear stresses ) , , ( z y x RSS acting on dislocations gliding in the P-channel (001). a) ( ) ( ) m m 11 1 111 τ τ = for 0 = x in y-direction across the R-channel (010).

Figure 14 .

 14 Figure 14. Distribution of ( ) m 111 τ in MPa on a longitudinal (010) section with y=0. (Middle of the cube edge in [010] direction).
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Table 1 .

 1 Investigated single crystal superalloys: Composition in wt%. Constrained misfit, measured at RT in the primary dendrite arm (PDA).

	2B)

Table 2 .

 2 Creep and annealing tests in the present investigation.

	1	≈-1.0 [12]

Table 3 .

 3 Misfit networks with square or rectangular 〈100〉-meshes and interfacial dislocations with 100 line direction observed by different groups.
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