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ABSTRACT 

       Bradley(1931) calculated the adhesive force between rigid spheres to be γπ ∆R2 , 

where γ∆ is the surface energy of the spheres: Johnson, Kendall & Roberts (1971) 

calculated the adhesive force between elastic spheres to be γπ ∆R)2/3( and independent of 

the elastic modulus. Derjaguin and colleagues published an alternative theory for elastic 

spheres ("DMT" theory), and concluded that Bradley's value for the pull-off force was the 

correct one. Tabor (1977) explained the discrepancy in terms of the range of action of the 

surface forces 0z , and introduced a parameter ( ) 3/13
0

22 / zER γµ ∆≡ determining which 

result is applicable. Subsequently detailed calculations by Derjaguin and his colleagues 

(Muller et al (1980) and others, assuming a surface force law based on the Lennard-Jones 6-

12 potential law, covered the full range of the Tabor parameter. Johnson & Greenwood 

(1997) presented a map delineating the regions of applicability of the different theories. 

         Yao et al (2007) repeated the numerical calculations but using an exact sphere shape 

instead of the usual paraboloidal approximation. They found that the pull-off force could be 

less than one-tenth of the JKR value, depending on the value of a ‘strength limit’ E/0σ , 

and modified the Johnson & Greenwood map correspondingly. 

 Yao et al’s numerical calculations for contact between an exact sphere and a elastic 

half-space are repeated and their values confirmed: but it is shown that the drastic 

reductions found occur only for spheres that are smaller than atomic dimensions.  

The limitations imposed by large strain elasticity and by the ‘Derjaguin 

approximation’, are discussed. 
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INTRODUCTION. 

 

Bradley(1932) calculated the adhesive force between rigid spheres in terms of a law of force 

between the ‘molecules’ 1 : which he then related to the surface energy γ∆ of the bodies. 

Johnson, Kendall & Roberts (1971) calculated the adhesive force between elastic spheres 

directly in terms of the surface energy.  Oddly, although both approaches predicted a pull-

off force proportional to γ∆R , [where R is the radius of the sphere, or, for two spheres, the 

effective radius )/( 2121 RRRR + ] they gave different coefficients, π2 or 2/3π , and no 

dependence on the elastic modulus. Thus, both values appear to be applicable to rigid 

spheres 

The JKR theory gives a complete description of adhesive contact between spheres, 

with the dependence on load of the contact radius and approach/compression as well as the 

pull-off force. Derjaguin and colleagues subsequently postulated that adhesive contact is 

described by the Hertz equations except that the load includes a (negative) contribution 

from surface forces acting across the gap outside the contact ( the "DMT" theory, Derjaguin 

et al (1975) ). They rejected the JKR theory as neglecting the adhesive forces across the 

gap, and concluded that Bradley's value for the pull-off force was the correct one. Tabor 

(1977) explained this discrepancy in terms of the range of action of the surface forces 0z , 

and introduced a parameter ( ) 3/13
0

22 / zER γµ ∆≡ , where E is the elastic modulus, 

determining which result is applicable. Subsequently, detailed calculations by Derjaguin 

and his colleagues (Muller et al 1980), and more fully by Greenwood (1997) and Feng (2000, 

2001) analysed the behaviour over the complete range of the Tabor parameter2, assuming a 

surface force law based on the Lennard-Jones 6-12 potential law. More precisely, they used 

the ‘3-9’ law governing the surface force between two half-spaces which results from the 6-

12 potential law between particles, 
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together with the Derjaguin approximation that this law may be used between surface 

elements even when the elements are not plane or parallel. We note that while the surface 

force between two planar half-spaces is by symmetry a normal traction, between curved 

surfaces it is necessary to assume that the tractions are normal to the surface, or more 

specifically, that any tangential tractions have no effect. 

                                                 
1 Hamaker (1937) obtained the same result rather more neatly. 

2 Replacing Tabor's E  by the plane strain modulus )/(
2−1≡′ νEE   
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Interpretation of AFM measurements of nanoscale contacts has relied on the DMT 

and JKR theories for the limiting values of the Tabor parameter, and on these detailed 

numerical calculations, or more conveniently on an analytical theory by Maugis(1992) 

which uses a simplified surface force law, to bridge the gap between these extremes.  A map 

delineating the regions of applicability of the different approaches in terms of the Tabor 

parameter and a load parameter was presented by Johnson & Greenwood (1997)  

Yao et al (2007) have recently argued that there is a 'strength limit' E′/0σ  to these 

theories of the adhesive elastic contact between a sphere and a elastic half-space 3; and that 

the Johnson & Greenwood map showing the areas of the applicability of the different 

theories needs to be modified to allow for this strength limit. They repeated the numerical 

calculations using the same law of surface force but using an exact sphere shape instead of 

the paraboloidal approximation dating back to Hertz. They found that the pull-off force 

could be considerably less than the accepted values lying between 2π R∆γ  (the Bradley 

limit) and (3 / 2)π R∆γ  (the JKR limit). and modified the Johnson & Greenwood map 

correspondingly to include the dependence on the strength limit E′/0σ . 

It is not clear that the term 'strength limit' is appropriate. Indeed, since the two 

material properties involved in the 'strength limit' are an intrinsic part of the numerical 

calculations, it is not clear how the strength limit can also be a limiting property.  The 

effect takes place when the contact radius becomes comparable with the radius of the 

sphere: in other words, when the contact area no longer readily fits onto the sphere. Thus, a 

better description is perhaps that there is a size effect associated with the finite size of a 

sphere. 

 If we introduce the 'size ratio' 0≡ zR /ρ , and note that for the Lennard-Jones 

surface force law the surface energy is 00974.0 σγ z=∆  then the Tabor parameter can be 

written 
32

0
31

0
32 ′9740= ///

)/()/().( EzR σµ . Ignoring the numerical factor, then using Yao 

et al's notation )/( E ′≡ 0σε for strength limit, we have 
23 ερµ = . Clearly any two of these 

three parameters may be taken as the independent variables, and there is a case for 

abandoning the Tabor parameter and retaining the size ratio 0≡ zR /ρ  and the strength 

ratio )/( E ′≡ 0σε as the real governing variables: only then can one be certain of obtaining 

a realistic combination. For example, Yao et al combine a realistic strength ratio of 

010= .ε with an unexceptional Tabor parameter of 010= .µ  to obtain a size ratio 010= .ρ ,  

                                                 

3 0σ is the limiting ‘surface force’, equal to )/)(39/16( 0zγ∆  for the Lennard-Jones surface force law, and 

E′ is the plane strain elastic modulus )1/( 2ν−E . 
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that is, for the usual range of action of the surface forces in the Lennard-Jones law, a 

sphere radius of 0.003 nm! However, abandoning the Tabor parameter is too drastic a step 

for the present author: this paper will use µ  and ρ as the parameters.    

 Yao et al’s numerical calculations for contact between a rigid true sphere and a 

elastic half-space are repeated, but it is shown that the drastic reductions in pull-off force 

that they found occur only for spheres which are smaller than atomic dimensions. For any 

conditions for which continuum calculations can be believed, the reduction is rather small. 

It should be emphasised that in all the test cases, the present calculations completely 

reproduce Yao et al's values: the dispute is not about accuracy but about meaningfulness. 

 In addition to the numerical results, asymptotic equations agreeing well with the 

numerical results are found for 0→µ  by the direct integration of the equations for a rigid 

sphere ("Bradley theory"), and for ∞→µ  by using Maugis' (1995) extension of the JKR 

analysis for a true sphere4.  

However, it is argued that the Maugis asymptote is physically wrong, or at best 

highly suspect. Lin & Chen (2006) performed a finite element analysis of the "Hertzian" 

contact between a rigid sphere and a neo-Hookean half-space (and show how this may be 

extended to give a "JKR" theory): but their calculations show that for their material, an 

ideal rubber, the Maugis true-sphere solution is rather less accurate that the simple 

(paraboloidal) Hertz theory. This provides an estimate of the error in using a true sphere 

with infinitesimal elasticity, and the same error can be expected to be there in the full 

numerical solutions. 

In contrast, it is argued that the Bradley asymptote is accurate, and that in fact the 

"Derjaguin approximation" is exact when one of the bodies is a half-space, (as shown by 

Argento et al (1997)). It is less clear that the second Derjaguin approximation, that the local 

contribution to the total force between the two bodies may be treated as a local surface 

traction on an elastic body, is accurate, except when Rz <<0 . 

 

Numerical calculations for a true hemisphere. 

 The basic problem is to calculate the gap shape )(rfh = between a rigid body and 

an elastic half-space, when 'surface forces' (actually normal tractions) )(hσσ =  act on the 

half-space and so modify the gap shape. Until we know the gap shape )(rh we cannot 

calculate the surface traction, but until we know the surface traction we cannot calculate 

the gap shape. We note that the bodies never make 'contact' in the traditional sense:  

                                                 
4 Note that this is not the well-known Maugis (1992) paper, in which the entire range of the Tabor parameter is 

analysed by the use of a simplified (Dugdale) law of force (and the paraboloidal approximation for the sphere). 
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 5 

however far apart they are, there is always an attraction between them: when the 

separation decreases to below 0zh =  the local interaction becomes a pressure, and would 

become enormous if the separation were to become significantly less than 0z - which in 

practice it never does. A contact radius could be defined as the radius at which the surface 

force becomes zero, that is, where it changes from tensile to compressive: the more realistic 

definition seems to be the location of the maximum tensile traction5. This corresponds to 

the JKR contact radius, and to the crack tip location in fracture mechanics problems.  

The equations for the deformation of a half-space by axially symmetric pressure 6 

distributions are well-known (see appendix 1): the surface traction law will be taken to be 

Derjaguin’s law 
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σ )()( . This is derived from the Lennard-

Jones 6-12 potential law acting between individual molecules of two half-spaces, assuming 

the forces to be completely additive, and that the density of 'molecules' is such that the 

summations can be replaced by integrations. The procedure dates back to the classic 

calculations of the force between two bodies by Bradley(1932) and Hamaker(1937), 

themselves based on principles set out by Maxwell and Rayleigh (see below). The law 

quoted for the force between two half-spaces follows readily from these earlier 

contributions, but its first appearance in the contact literature appears to be in Derjaguin's 

1980 paper  (Muller et al(1980)) : the 'Derjaguin approximation' of assuming that a law of 

force between two half-spaces is applicable between surface elements of any two bodies, 

even when these elements are inclined and curved, was introduced much earlier (Derjaguin 

(1934)). Initially Derjaguin simply used his approximation to calculate the total force 

between two spheres (obtaining the same answer as found by Bradley and subsequently by 

Hamaker). Only later, in the 1980 paper, did Derjaguin made the further step of assuming 

the surface force law could be applied as a surface traction, element by element, to calculate 

the elastic deformation of the spheres. 

In the numerical calculations described by Greenwood (1997) or Feng (2000), the 

initial gap shape was (following Hertz) taken to be Rrrz 2= 2
)( . Following Yao et al, it is a 

straightforward matter to replace this using the exact equation for a hemisphere, so that 

22 −−= rRRrz )( . We then need to solve the equation for the film shape  

)()()( rwrzzrh +++−= 0α ;  

where the elastic deflection )(rw is 

                                                 
5 The claim that classical contact theory defines the contact radius as where the pressure falls to zero seems 

misguided: the real classical definition is that it is the radius beyond which the pressure is zero.  
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 ( )∫′4= dssrGspErw ),()()( π  .  

and the pressure depends on the gap height:  )()( hrp σ−= . 

Here α is the approach of the sphere and ),( srG is the influence function giving the 

deflection at radius r due to a ring load at radius s (see appendix 1) 

Feng's method of solving the equations by Newton-Raphson (Feng (2000)) is greatly 

superior to the simple iteration used by Greenwood, and was adopted here (see appendix 1) 

: however there seemed no need for his elaborate curve-following procedure - taking the 

minimum film thickness )0(h  as the independent variable and using small steps in 

approach proved sufficient. In order to get solutions for higher values of the Tabor 

parameter, it was essential to use a variable radial spacing: this had the advantage that it 

was simple to extend the integration range out to the radius of the hemisphere. Details of 

the derivation of the compliance matrix for variable spacing are given in appendix 1.  

 

Figure 1: Pressure distribution at pull-off. 

The inset shows that the pressure spike really was resolved 

  

The calculations reported here use the non-dimensional variables as used by 

Greenwood(1997): a reference radius 0r is defined as ( ) 312
0 ′∆=

/
/ ERr γ ; then the radial 

variable 
∗

r and the radius of contact 
∗

a are defined by 0
∗

0
∗ == raarrr /,/ . 

Dimensionless pressures are defined by ( ) pERp
312∗ ∆′≡

/
γ , so that the maximum surface 

traction becomes µ026.1)( max =− ∗
p .  

Figure(1) shows typical high- µ behaviour, close to the singular pressure distribution 

of the JKR theory. It demonstrates the difficulty of resolving the pressure spike: here a 

radial spacing of 00080=∗
.dr was used, when the sphere radius  Rr =  corresponds  to 

52=∗
.r . [ µρ /)( =∗

Rr ]. The need for a variable spacing to avoid the need for 3 125 

ordinates will be appreciated, as will the problem of correctly placing that fine-spacing! 

Yao et al's calculations for a fixed strength ratio 
∗≡ E/0σε were repeated for 

1.0=ε , and produced results indistinguishable from theirs.  

                                                                                                                                                              
6 The use of the Derjaguin approximation necessarily implies that the tangential tractions are zero: see 'Extension of 

Bradley's theory' below. 
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Pull-off forces for different size ratios are shown in Fig 2 below. For a parabolic 

contact ( ∞=ρ ) the values are in good agreement with values given by Feng. [For 

10,7,5=µ  Feng gives 1.5246, 1.5142, 1.5080: this paper 1.5260, 1.5160, 1.5093] 

 

Figure 2.  Pull-off forces for a true finite sphere. 

 

The green lines are the JKR sphere theory (high µ ), or the rigid  

hemisphere theory (low µ ),  and are clearly excellent asymptotes. 

 

Greater reductions in the pull-off force could be obtained by taking lower values of 

the size ratio. It will be argued below that such calculations would be unjustified because 

the range of action of the surface forces would then exceed the diameter of the sphere, so 

that the surface force law would include the molecular interactions with non-existent 

molecules. The answers would not be the pull-off forces for a sphere, but for an infinite rod 

with a hemispherical end 7 ! 

 In curve-fitting the results of AFM experiments, a frequently used parameter is the 

zero-load contact radius. The precise theoretical equivalent of the quantity obtained 

experimentally is uncertain: here contact radius is defined as the location of the maximum 

tensile stress. Figure 3 shows that for low values of µ there is little dependence on the size 

ratio, but as the JKR region is approached the radii can be appreciably lower. 

 

Figure 3.  Contact radii at zero load. 

For low µ the radius is independent of the size ratio, 

but for 5>µ  the values for a finite sphere are lower. 

 

Figure 4 brings out more clearly why this should be: for values of µ  greater than 5, 

the contact radius is restricted by the radius of the sphere. It also brings out a severe 

restriction on the plausibility of these calculations. The characteristic strain in a Hertzian 

contact is Ra /.20 , and the same estimate should apply here: so we are applying linear 

elasticity for strains of around 0.2 . The resulting errors are discussed below 

 

Figure 4.  Contact radii at zero load. 

       Values of Ra /0  greater than 0.4 are highly suspect. 

 

                                                 
7 Which may not be too far from some experimental configurations! 
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The contact radius at pull-off is of minor practical interest, as in experiments it is affected 

by the stiffness of the apparatus and by any trace of viscoelasticity: the significant point is 

that it is far from the zero value predicted by the DMT theory. Values are given in figure 5: 

while of course smaller, they are still worryingly high for the use of infinitesimal strain 

elasticity. 

 

  Figure 5.  Contact radii at pull-off. 

 

 

JKR theory for a true sphere  

 

Maugis(1995) has given an exact solution for the "Hertzian" contact between a rigid true 

sphere and a linear elastic half-space, and extended it to include the effect of surface 

energy as in the JKR analysis. The JKR equations become (see appendix 2): 

  
3
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where P is the load and δ  the compression, according to the equations of linear elasticity. 

Maugis does not give the pull-off force, but this is readily found from his equations in the 

form (see appendix): 

  )(/
min

χγ fRP =∆    

where   γχ ∆′= /RE 43= /
)/( µρ . 

Fig 6 shows the results. 

 

Figure 6  Pull-off forces according to Maugis' extended JKR theory. 

        The Lin & Chen curve is discussed below. 

 

 The 'paraboloidal' JKR theory is of course the limit as the Tabor parameter tends to 

infinity, so cannot be plotted on a ),( maxTµ  graph - essentially because there is no quantity 

0z  in the JKR theory. However, writing 0/ zR≡ρ , the pull-off force for a finite sphere is 

seen to be a function of )/( µρ , and so for given values of the size ratio ρ can indeed be 

plotted on the graph. The values have been added to Fig 2, and clearly represent the 
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asymptotic behaviour of the numerical solutions − confirming the self-consistency of the 

calculations. 

A large strain solution. 

The Hertzian analysis of the elastic contact of a sphere and a elastic half-space fails 

when the contact radius exceeds about R40. . There are two reasons for this: the parabolic 

approximation to the shape of the sphere breaks down, and so does the use of the equations 

of linear elasticity. The Maugis solution just described includes only the first of these 

effects: but is the second equally important? Fortunately a finite element solution by Lin & 

Chen (2006) is available, in which the solid is treated as an ideal rubber with a constitutive 

law best indicated by the tensile behaviour )/(
21−= λλσ G  where λ  is the stretch ratio 

and G  the low-strain shear modulus: the material is assumed to be incompressible. Lin & 

Chen find that, for this material, the Maugis solution greatly overestimates the effect of 

large Ra / : so much so that a good approximation to their results is  (1/3)*Maugis + (2/3)* 

Hertz. 

Lin & Chen use their solution to obtain a large-strain JKR theory by assuming that 

the relevant punch stiffness is equal to the derivative of load with respect to displacement 

in their solution. They consider only adhesion in the high load region, where the load 

change is relatively small and no problem arises: but near pull-off, where in the 

paraboloidal JKR theory the effect of adhesion is to reverse the load from γπ ∆+= RP
2
3  to 

γπ ∆−= RP
2
3 , using the differential stiffness is less certainly correct. It is, of course, well-

known that the Hertz stiffness is equal to the small-strain punch stiffness for a contact of 

the same radius: both are equal to aE′2 . The same value is obtained from the Maugis 

small-strain solution. Fortunately, for the case of a rigid sphere and an elastic half-space, 

Lin & Chen find the stiffness to be close to aE′2 , so that this value may safely be used. 

Details of the calculation of the pull-off force are given in appendix 2, and the results are 

shown above in figure 6.  

.  

 

Figure 7.  Comparison of the two high- µ  asymptotes. 

 

Figure 7 compares the two resulting high µ  asymptotes, and it is seen that the Maugis 

solution does indeed exaggerate the effect of a finite radius sphere: the errors due to 

simplifying the shape of the sphere and to simplifying the elastic behaviour largely cancel. 

Since the numerical calculations equally include one effect but not the other, they are 

presumably equally at fault. 
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Rigid Sphere Analysis. 

The detailed numerical calculations depend on the Derjaguin approximation that the 

surface traction between curved inclined elements of two surfaces is the same as if the 

elements were plane and parallel. Accepting the approximation, it is straightforward to 

evaluate the force/separation curve between a rigid sphere and a rigid half-space: we have 

simply 

∫ 0=
2=

R

r
drhrT )(σπ  where )(hσ is given by the usual Lennard-Jones law 
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0 −−+= rRRzh .   Hence (see appendix 3) the pull-

off force is found to be   )(
)(

/
8−+

+1
1

3
8

+
1

7
18

−2=∆ ρ
ρρρ

γπ ORT .  

 These values have been added to the pull-off graph, and once again form excellent 

asymptotes. But does this prove the correctness of the numerical calculations? 

 

Extension of Bradley's theory. 

There are three suspect features of the use of the Derjaguin approximation. (a) when 

the element of the sphere is strongly inclined to the surface of the half-space, what is the 

distance between the two and hence the value of the surface force? (b) in what direction 

does the force act? (c) why should the integration be terminated at Rr = ?  Each of these 

may introduce an error, and it is unclear how large, or even in which direction, the final 

error will be. 

 Reconsideration of Bradley's papers suggests that all these worries are 

unnecessary, and perhaps derived from undue familiarity with magnetic lines of force 

around a magnetised sphere! 

Bradley(1932) performs the exact analysis of the force between two rigid spheres, by 

assuming that the solids are composed of regular arrays of molecules8, and assuming that 

the forces between every pair of molecules may simply be added (and that the molecules are 

so densely packed that the summations may be replaced by integrals). It is not easy to give 

a simple physical interpretation of his results for two spheres, but straightforward and 

illuminating to do so when one of the bodies is a half-space. Bradley(1931) ( following 

Rayleigh(1890), who attributes the argument to Maxwell) shows that the force on a single 

                                                 
8 Bradley refers to them as “molecules”, Rayleigh (1890) as “particles”. It is not clear which is the safer term: I would 

prefer “charges”, but this might imply that the law of force is the electrostatic inverse square law. 
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molecule of the first solid found by summing the interactions between that molecule and 

every molecule of a half-space is simply ρρρφπ ddQ
d∫
∞

2= )()( where )(rφ is the potential 

between a pair of molecules a distance r apart and d is the distance of the single molecule 

from the surface of the half-space.  Integrating this over a single 'column' of molecules of 

the first solid, the force per unit area on that solid is obtained as ∫
2

1

d

d
dhhQ )(  when the 

column extends from 1d  to 2d . It will immediately be clear that the force will be 

independent of the lateral position of the 'column', and that its direction will be normal to 

the half-space. If the first solid is also a half-space, it follows that the force per unit area 

between two half-spaces separated by d will be  ∫
∞

=
d

dhhQdF )()( . In particular when the 

potential between two individual molecules is a power law 
m

m rA /=φ , then  

))(()(
2−2−2= m

m dmAdQ π  and  [ ] 3−3−2−2= m
m dmmAdF )))((()( π . Thus, the (6, 12) 

Lennard-Jones potential gives rise to a (3, 9) law of force between two half-spaces: the 

analysis by Bradley (1931) is readily extended to show that it will be 

( ) [ ]9
0

3
00 )/()/(38)( dzdzzdF −∆= γ  where 0z is the equilibrium spacing between the 

two bodies9. [Note that this is not the equilibrium spacing between two isolated molecules, 

which is 00
61 57115 zz .~)(

/
]. 

The derivation of this force per unit area as the force on a single column of molecules 

makes it immediately clear that it applies equally whatever the shape of the body to which 

the column belongs. Even when the surface of the body is inclined or curved, still only the 

distance from the half-space to the first (and last) molecule is relevant.  The surface slope 

does not affect the direction of the force. No force acts on the body from beyond its extent, 

for no relevant columns of molecules exist: the total force between the two bodies is 

correctly found by integrating out only as far as the radius of the sphere. 

Why then does the exact result for the force between a rigid sphere and a half-space 

differ from the result found above? The answer is simply that the far ends of the columns of 

molecules have been ignored: the result of integrating 'round the back' of the sphere must 

be subtracted from the integral 'round the front'. This is readily done, to give the final 

answer as (see appendix 3)  

)(
)21(

1

3

8

)21(

1

3

81

7

18
2/ 8

2

−+
+

+
+

+−=∆ ρ
ρρρρ

γπ ORT . 

                                                 
9 The first explicit statement I can find is Muller et al (1980). 
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We note at once that to order )/( Rz0 this agrees with the result of the simple integration 

'round the front': figure 8 shows that the two methods are in excellent agreement even 

down to 5=0zR /   

 

 

 

Figure 8.  Comparison between the exact rigid-sphere answer and the 

value based on the ‘Derjaguin approximation’. 

 

Thus the usual Derjaguin calculation gives the exact result for a hemisphere, or 

more precisely, for a hemispherically ended infinite circular column. The modification for a 

sphere is straightforward: the accuracy of Derjaguin's approximation does not arise. The 

occurrence of terms in )( 0+2 zR in the exact answer, but only terms in )( 0zR + in the 

approximate answer, is a sufficient clue to the correction. 

 

 

Discussion 

Is the 'Derjaguin approximation' an approximation? It is argued above that, when 

one body is a half-space, the calculation of the adhesive force by what is usually regarded as 

the approximation, ignoring the surface profile, is in fact no approximation. However, a 

warning is necessary. The result above is for the force the half-space exerts on the sphere. 

Newton's third law guarantees that it is also the force that the sphere exerts on the half-

space. We note that Argento et al (1997) have also argued that when at least one of the 

bodies is a half-space, the Derjaguin approximation will lead to the correct total force. 

However, there is no law guaranteeing that the surface traction distributions match: 

the correct surface traction distribution on body A does not imply that the surface traction 

distribution on body B is correct, and there is indeed some considerable doubt over this. The 

question only becomes serious when these body forces are used as surface tractions in an 

elastic calculation. Derjaguin's original 1934 paper, in which the 'approximation' first 

appears, considers only the total force: the widely quoted 1975 paper presenting the DMT 

theory merely adds the integral of the surface forces to the total force. Only in the ground-

breaking 1980 paper by Derjaguin and his collaborators do the authors, without comment, 

treat the actual interaction as being a surface traction. Argento et al equally fail to discuss 

whether their general procedure for replacing volume integrals over individual molecules 

by surface integrals will yield surface traction distributions which can properly be used in 
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elastic calculations10. There is clearly a matter for concern, even if the treatment of the 

body molecules as a continuum is accepted. 

  But once we attempt to apply continuum theory to bodies whose size is of the order 

of the range of action of the surface forces 0z , a new worry arises. If a solid can indeed be 

treated as an array of 'molecules', the body forces do not form a continuous pressure but are 

separate forces at a lateral spacing of order 0z . Nor are they applied at the surface, but 

internally at individual molecules. It can be argued that a point force applied at a 

particular depth in an elastic solid may perhaps be regarded as a distributed pressure 

applied to a surface element of the solid whose width is of the order of that depth 11. Both 

lines of thought suggest that the resolution of the continuum analysis can only be of order 

0z . Luan & Robbins (2005) compare continuum analysis with a molecular simulation of 

contact between a cylinder or sphere and a elastic half-space, and similarly find pressure 

fluctuations on a scale of 0z , dependent on the particular atomic structure considered, but 

even in the best case (a bent commensurate crystal) there are substantial differences within 

02± z  from the contact edge. Converting 0z to the non-dimensional radius of the numerical 

calculations, we find that a width 0z  corresponds to µρ/1=∗
dr . Thus, for the pressure 

distribution of figure 1 with 50=8= ρµ , , the molecular spacing12 is 050=∗
.dr − rather 

considerably wider than the pressure spike, and enormously greater that the resolution 

thought necessary!  Perhaps the pressures found by the Derjaguin approximation should be 

'smeared out' by introducing an intermediate step of replacing them by a suitable moving 

average?  

 

 

The governing variables. 

 This paper argues that R and 0z are measurable physical quantities, so that 

)/( 0≡ zRρ is a basic variable: and particularly that  

(a) values less than 1 are intrinsically absurd,  

                                                 
10 The author has belatedly discovered a paper by Wu (2006) in which thepresent problem has been solved using the 

Argento surface tractions. The (minor) differences in results are being investigated. 

11 An idea perhaps envisaged by Derjaguin(1934): [das ist so lange berechtigt, wie die Durchmesser dieser 
Flächenelemente wesentlich grösser sind als die molekulare Wirkungsradius]. But at that time there was no question 

of elastic deformation.  

12 As noted earlier, the molecular spacing is not 0z but 0
6115 z

/
)( . 
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(b) if the values of the surface force round the back of the sphere are still 

substantial, they should be taken into account − but certainly not by treating them 

as surface tractions on the near face of the sphere!  

(c) the finite spacing of the molecules becomes significant for ρ  small ( 10<ρ ??). 

 Yet 0σ and 
∗E  are measurable physical quantities: is it unreasonable to specify their ratio? 

Perhaps it is the Tabor parameter that is the artificial combination?  It may be noted that 

many of the figures presented by Yao et al do indeed use )/( 0zR  and )/( 0 E ′σ as the 

governing variables, and no error can arise if this is done. If either is left to 'chance' by 

choosing µ  and either of the other two, a physically impossible combination may be chosen. 

But the vast majority of experimental work uses spheres for which the paraboloidal 

approximation is entirely satisfactory: for this the Tabor parameter µ  remains the proper 

controlling variable.  

Conclusion. 

 When the radius of the sphere is no longer vastly greater than the equilibrium 

separation between the two bodies, the pull-off force will fall below, and the contact radii 

will be smaller than, the values for a large sphere. However, unless the reduction is trivial  

(ie for perhaps 050> zR ), attempts to calculate it by the methods of contact mechanics 

introduced by Derjaguin and his collaborators and followed by Greenwood, Feng, and others 

are highly suspect. 
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Appendix 1: Numerical Solution 

 

Compliance matrix for axisymmetric loading of a half-space. 

 

The pressure distribution is approximated as piece-wise linear by the method of overlapping 

triangles (Johnson 1985). The influence function of a single triangle is found as follows. 

Write the Green's function for a ring load P1(s) acting on a half-space of unit plane strain 

modulus as 4 π( )G(r, s ) , so that the deformation at radius r  due to a general axisymmetric 

pressure distribution will be  

 w(r ) =
4

π ′ E 
p(s )G (r, s) ds∫  

The function G (r , s) is well-known, but will not be required. 

For a triangular pressure distribution extending from s j−1 to s j+1 , with a maximum jp  at s j , we 

integrate this equation by parts, to get 

 w(r ) =
4

π ′ E 
′ p (s) H (r, s )

s j− 1

sj + 1

∫ ds   where  H (r , s) = G(r ,s )
0

s

∫ ds ,  

the integrated term vanishing since p(sj −1), p(sj+1)  both vanish. 

But for the triangular pressures, )()( 1−−=′
jjj sspsp  for s j−1 < s < sj , and 

)()( 1 jjj sspsp −−=′ +  for s j < s < s j+1 , so that 

 












−
−

−′
= ∫∫

+

− +−

dssrH
ss

dssrH
ssE

p
rw

j

j

j

j

s

sjj

s

sjj

j 1

1

),(
1

),(
14

)(
11π

 

or   w(ri ) =
4 pj

π ′ E 
Ji j − Ji j =1[ ]   where Ji j =

1

sj − sj−1

H(ri , s)
s j− 1

sj

∫ ds . 

Now for a uniform pressure  p0  over a circle of radius s , we have 

w(r ) =
4 p0

π ′ E 
G(r, s) ds

0

s

∫ =
4 p0

π ′ E 
H (r, s) , and it is well-known (see, e.g. Johnson 1985) that the 

answer is w(r ) =
4 p0

π ′ E 
s E(r / s) or (s

2
/ r )B(s / r )[ ] depending on whether  r < s  or  

r > s .  [ E(k ) and B(k ) are elliptic integrals, see Jahnke & Emde] 

To evaluate Ji j , we write s = sj −1 + ξ (sj − sj−1) to get Ji j = s { }
0

1

∫ dξ  where { }

  
denotes either {E(r / s )} or {(s / r) B(s / r )} . This is conveniently integrated by 8-pt 

Gaussian quadrature, the integrand always being finite and well-behaved except that when s = r  

it has a logarithmically infinite slope {always at an end of the range since  ri , s j  are the same set 

of points1). Note that the scale of the pressure distribution enters the equations only through the 

single factor s . Thus, for an unevenly spaced set of points 0,s1 , s2 , s3 , s4 , s5 , . . . . the integral is 

evaluated for s = 0, 1, (s2 / s1),(s3 / s1), (s4 / s1 ),(s5 / s1 ), . . . .  and the choice of scale left until 

later. 

 

Newton-Raphson Solution. 

 

The equations to be solved are (Greenwood 1997, Feng 2000) 

                                                 

1 For comparison, 2501490−=∫
1

0
.)log( dsss  using 6-pt Gaussian, 2500450− .  using 8-pt gaussian. 
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)()()( rwrzzrh +++−= 0α ;   )()( hrp σ−=  

and ( )∫′4= dssrGspErw ),()()( π   

Define a reference radius 0r  as ( ) 312
0 ′∆=

/
/ ERr γ , and define radial distances and the 

contact radius as 0
∗

0
∗ == raarrr /,/ . Note that this definition avoids the introduction of 

0z , so that the JKR theory can be included. Normal distances are scaled by 0z , so that 

00
∗ −= zzrhrH /))(()( , 0

∗ = z/αα . 

The dimensionless pressure is defined by
312∗ ∆′= /)/( γERpp , so that 










1+

1
−

1+

1
3

8
=

93
∗

)) HH
p

µ
 and the height of the pressure spike will be ( ) µ3916 , 

ie µ026.1)( max =− ∗
p  (which correctly becomes infinite for JKR conditions).  Then 

∫ ∗∗∗∗∗2∗
2
1∗ ++−= dssrGsprH ),()(µµα  .  We choose )(0H as the independent variable 

in preference to the approach 
∗α  in order that the complete S-curve of )(αP  may be 

followed, so we subtract ∫ ∗∗∗∗∗ 0+−=0 dssGspH ),()()( µα  to obtain 

{ }∫ ∗∗∗∗∗∗2∗
2
1∗ 0−+=0− dssGsrGsprHrH ),(),()()()( µµ  

In discrete form this becomes 

[ ] ∗∗
0

∗2
2
1

0 ∑ −++= jjjiii pGGrHH µµ   for NjNi :,: 0=1= . More conveniently, since 

)( 00 = Hfp  and so is known once 0H has been chosen, we separate off  the 0=j  term and 

write [ ] [ ] ∗∗
0

∗2
2
1∗

0
∗
00

∗
00 ∑ −++−+= jjjiiii pGGrpGGHH µµµ    for Nji :1, = . 

[The 
∗
jiG  must contain a length scale corresponding to 

∗
ds : conveniently taken as the 

length of the first element.] 

Define jjiji GGC 0
∗∗ −=    and write this 

∗2
2
1∗

000 ∑+++= jjiiii pCrpCHH µµµ , noting 

that the only elements of the original matrix which need be retained are those of the first 

row jG 0
∗

, used after the iteration to find the approach 
∗∗

00
∗ ∑+−= jj pGH µα . 

Define the residuals in an approximate solution as 
∗∑−−= jjiiii pCAHR µ  where iA  are 

the known quantities { }2
2
1∗

000 ++= iii rpCHA µµ .   If a particular film thickness )( jH is 

varied, all the residuals will change, and we have 
)(

)(
)()(

)( j

j
jiji

j

i

H

p
C

H

R

∂

∂
−=

∂

∂
∗

µδ . Hence, the 

Jacobian matrix describing the change is DCµIJ −= , where  D is the diagonal matrix 

with elements )(' iHf , the derivatives of the surface force law )(Hfp = . 
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 To reduce the residuals to (hopefully) zero, we change the film thicknesses such that 

RdHJ −= : conveniently found in MATLAB by the matrix division J\RdH −=  rather 

than by inverting J . For low values of µ  )1( <µ  a few iterations suffice when taking the 

rigid shape as an initial guess: for higher values of µ  the process diverges unless a 

reasonable initial guess (the solution for a neighbouring value of )(0H or of µ ) is available. 

 

 

 

Appendix 2: JKR theory for a true hemisphere. 

 

Non-adhesive contact between an elastic plane and a rigid axisymmetric indenter  

 The following method is taken directly from Barber's (1992) presentation of Collins' 

method.  If the imposed displacements within a contact r < a  are u(r ) , (and the pressures 

are zero for r > a), we define  

 g(t) = −
′ E 

π
d

dt

r u(r )

t
2 − r

2
0

t

∫ dr  

Then according to Barber, the contact pressures will be  

 p(r ) =
1

r

d

dr

t g(t)

t
2 − r

2
r

a

∫ dt    and the load  ∫−=
a

dttgP
0

)(2π  

If the indenter shape is z = f (r ) , the displacements will of course be u(r ) = δ − f (r )  where 

the 'approach' δ  is unknown: it is found from the condition that if the pressure falls to zero 

at the contact edge, then g(a) = 0 . 

If we integrate the equation defining g( t)  by parts and then perform the differentiation, we 

get an alternative form: 

I( t) ≡
r u(r )

t
2 − r

2
0

t

∫ dr = −u(r) t
2 − r

2

0

t

+ ′ u (r ) t
2 − r

2

0

t

∫ dr = t u(0) + ′ u (r ) t
2 − r

2

0

t

∫ dr  

so that  g(t) = −
′ E 

π
dI

dt
= −

′ E 

π
u(0) +

t ′ u (r )

t
2 − r

2
0

t

∫ dr
 

  
 

  = −
′ E 

π
δ − t

′ f (r )

t
2 − r

2
0

t

∫ dr
 

  
 

  . 

Thus, the condition that g(a) = 0  gives the approach as δ = a
′ f (r )

a
2 − r

2
0

a

∫ dr  

For a power law indenter f (r ) = An r
2n

 this gives 

π
′ E 
g(t ) = −δ + 2n Ant

r 2n−1

t
2 − r

2
0

t

∫ dr = −δ + 2n An t
2n s2 n −1

1 − s
2

0

1

∫ ds = −δ + cnAnt
2 n

 

where cn =
2. 4.6... .(2n)

1. 3.5. ..(2n − 1)
. 

Then  δ = cnAna
2n

  and ( ) 12

0

2

12

2
22 +







′=+−′−=
+∫ n

n

a
n

nn aAEdttAcEP
n

n
δ  

 which are Steuermann's equations (Steuermann 1939, Johnson2 1985) . 

 

                                                 
2Johnson also gives Steuermann's equations for the pressure, repeating the misprint in Steuermann's paper of an 
additional  factor  n. 
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 4 

 Load/displacement relation for a hemispherical asperity. 

 

 The shape is  f (r ) = R − R
2 − r

2
 , so that ′ f (r ) =

r

R
2 − r

2
  and

 












−−
−

′
−= ∫0 2222

dr

rtrR

r
t

E
tg

t
δ

π
)(   

The integral is equal to   
1

2
ln

R + t

R − t

 
 

 
 ,  so that   g(t) = −

′ E 

π
δ −

t

2
ln

R + t

R − t

 
 

 
 

 
 

 
 
. 

Thus δ =
a

2
ln

1 + a / R

1 − a / R

 
 
 

 
 
 

 

 and dt
tR

tR
tEP
a









−
+

′= ∫ ln
0

=
1

2
′ E R

2
1 +

a

R

 
 

 
 

2 
 
 

 
 
 

ln
1 + a / R

1 − a / R

 
 
 

 
 
 

− 2a / R
 

 
 

 

 
  . 

For a / R  small, these reduce to the familiar Hertz equations RaEPRa /;/
3

3
42 ′==δ . 

 

Adhesive contact. 

 To obtain the equations describing the effect of surface energy on the above contact, 

as in the JKR theory, we impose a uniform 'lift' ∆  over the contact area. The corresponding 

pressures are given by Boussinesq's solution for a stamp on a half-space: 

p(r ) = −
′ E ∆
π

1

a
2 − r

2
 (the sphere geometry being irrelevant), and the corresponding load 

is 2 ′ E a ∆ . These pressures are infinite at the contact edges, with a stress intensity factor 

N = lim
r → a − a − r p(r )( )=

′ E ∆
π 2 a

, and fracture mechanics theory requires that 

N = ′ E ∆γ / π  . Thus ∆ = 2π a ∆γ / ′ E  and the load change is − 8π ′ E ∆γ a
3

. 

Combining these results with the non-adhesive solution gives the Maugis equations 

3
2

2 8/2
/1

/1
ln1

2

1
aERa

Ra

Ra

R

a
REP γπ ∆′−














−









−
+




















+′=

 

and δ =
a

2
ln

1 + a / R

1 − a / R

 
 
 

 
 
 

− 2π a ∆γ / ′ E . 

 

Pull-off force. 

Write Rax /= : then 
32 82

1

1
ln}1{

2

1
x

RE
x

x

x
x

RE
RP

γ
π

γ
γ

∆

′
−








−









−
+

+
∆

′
=∆ , or

 
32

8)( xxFRP πχχγ −=∆   

 where x
x

x
xxF −









−1
+1

+1
2
1

= 2 ln}{)(  and γχ ∆′= /RE
4/3)/( µρ= .  

Then the pull-off force is when 0=dxdW / , ie  when xxF πχ 23′=1− /)( .  Here this 

becomes πχ 23








−1

2
−









−1
+1

=
2

23
211−

x

x

x

x
x

/
/ ln .

 

It will be seen that it is easier to obtain χ as a function of x , [ and hence  

max
/,/ γπ ∆RTRa

crit   as functions of  
34≡ /)/( χµρ ]  than to insist on choosing )/( µρ .  
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 5 

 

 

The large-strain solution. 

Lin & Chen give a Finite Element solution of the problem of the contact between a rigid sphere 

and an elastic half-space, taking the material of the half-space to be an ideal rubber. They find 

that an excellent curve-fit to their load-radius equation is  

)/(
3

4
4

3

Ra
R

aE
P φ

′
=

 
 where  

)..exp()( 103
4 2750+2250= xxxφ

 

 If we again assume the punch stiffness in the large strain solution to be the standard  2E' a
  

rather than the incremental stiffness of their FE solution, the analysis above for the Maugis 

solution can be applied if we write 

 

)()( xxxFLC 4
3

3
4

= φ .  Again we may readily find )(xχ  and hence the pull-off force. 
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Appendix 3.  Rigid Sphere Analyses. 

As discussed in the text, the surface force between a half-space and a column of molecules 

extending from 1h  to 2h  will be  
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3
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0
3

2

0
9

1

0
3

1

0

0 h

z

h

z

h

z

h

z

z
h

γ
σ )( . It will be 

convenient to treat the two terms separately, in effect by first integrating round the front 

face of the sphere, which is precisely what is done in the 'Derjaguin approximation', but 

then subtracting the result of integrating round the back. 

Thus, the Derjaguin result is ∫00 2=
R

drhrhT )()( σπ  where 
22

0 −−+= rRRhh . Then 

2
0

22 −+=− )( hRhrR  and dhhRhdrr )( −+= 0  so that ∫
+0

0
00 −+2=

Rh

h
dhhRhhhT )()()( σπ . 

The greatest force, as in the Bradley and Derjaguin analyses, is when 00 = zh . Write 

0= zyh and recall that 0= zR ρ : then  

          { } { }[ ]∫
1+

1

8−9−9−3−
00 −−−+1

3
∆16

==
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Neglecting terms of order 
7−ρ  we get  

=maxT 
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γπ R  

For the round the back integration, we have 
22

0 −++= rRRhh , so that now 

2
0

22 +−=− ))(( RhhrR  and dhRhhdrr ))(( +−−= 0 , and the only change is the integration 

limits, which become )( Rh +0  to )( Rh 2+0 . Thus, taking 00 = zh , 
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Neglecting terms of order 
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Combining,  
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 2 

[More directly, we could use 

∫∫∫
2+

0

2+

+
0

+

0

0

0

0

0

0

0

−+2=−+2+−+2=
Rh

h

Rh

Rh

Rh

h

dhhRhhdhhRhhdhhRhhT )()()()()()( σπσπσπ    ] 
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Nomenclature. 

a  contact radius (location of maximum tensile stress 

d  minimum gap between two bodies 

)(rhh =  gap between two bodies 

m  (negative) power law exponent: here either 6 or 12 

)()( hrp σ−=   pressure applied to surface of half-space. 

( ) 312∗ ∆′≡
/

REpp γ   non-dimensional pressure. 

r  radial co-ordinate 

3/12
0 )/( ERr ′∆≡ γ   reference radius 

0
∗ = rrr /  non-dimensional radial co-ordinate 

0z  Qualitatively, range of action of surface forces. Specifically, equilibrium separation 

of two half-spaces in the Lennard-Jones surface force law 

( ) ))/()/((/)(
9

0

3

00 −3∆8= hzhzzh γσ . 

EE ′,  Young's modulus, plane strain modulus )(
2−1 νE  

∗E  "contact modulus"   [ ]EEhereEEEusually ′=−1+−1=1 ∗

2

2

11

2

1

∗
:)()( νν  

G  low-strain shear modulus for ideal rubber ( )3= /E . 

P  Load applied to contact 

R  Sphere radius, or for two spheres, 21 1+1=1 RRR /// . 

T  Tensile load   ( )PT −=  

maxT  maximum value of  ( )P− , ie pull-off force. 

( ) 312
0 ′∆=

/
/ ERr γ   reference radius for non-dimensionalising horizontal distances 

α  approach of centre of sphere: for a rigid sphere, maximum deflection of surface of 

half-space  

)/( E ′≡ 0σε    strength limit 

γ∆  Work of adhesion, also called the Dupré surface energy  

( ) 3/13
0

22
/ zER γµ ∆≡   Tabor parameter.  Originally used E : now usually E ′  

0≡ zR /ρ   size ratio 

0σ   maximum value of surface force, equal to ))(( 0∆3916 zγ  
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( ) ( ) ( )[ ]90

3

00 −3∆8= hzhzzr γσ )(      "Lennard-Jones" surface force law 

γχ ∆′= /RE 43= /
)/( µρ       parameter in Maugis' exact sphere analysis 
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Figure 1. Pressure distribution at pull-off. 
 

The inset shows that the pressure spike really was resolved.  
171x138mm (600 x 600 DPI)  
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Fig 2 Pull-off forces for a true finite sphere  
172x142mm (600 x 600 DPI)  
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Figure 3. Contact radii at zero load. 

For low µthe radius is independent of the size ratio, but for µ>5 the values for a finite sphere are 
lower.  

170x142mm (600 x 600 DPI)  
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Figure 4. Contact radii at zero load. 
Values of a/R greater than 0.4 are highly suspect.  

172x138mm (600 x 600 DPI)  
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Contact radii at pull-off  
172x138mm (600 x 600 DPI)  
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Pull-off forces according to Maugis' extension of the jkr theory. 
The Lin & Chen curve is discussed below.  

172x138mm (600 x 600 DPI)  
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Comparison of the two high-*mu* asymptotes  
173x138mm (600 x 600 DPI)  
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Comparison of exact rigid-sphere answer with value from the Derjaguin approximation  
173x140mm (600 x 600 DPI)  
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Figure 1.  Pressure distribution at pull-off. 

The inset shows that the pressure spike really was resolved 

 

Figure 2.  Pull-off forces for a true finite sphere. 

The green lines are the JKR sphere theory (highµ ), or the rigid  

hemisphere theory (lowµ ),  and are clearly excellent asymptotes. 

 

Figure 3.  Contact radii at zero load. 

For low µ the radius is independent of the size ratio, 

but for 5>µ  the values for a finite sphere are lower. 

 
Figure 4.  Contact radii at zero load. 
       Values of Ra /0  greater than 0.4 are highly suspect. 

 

Figure 5.  Contact radii at pull-off. 

 

Figure 6.  Pull-off forces according to Maugis' extended JKR theory. 

  The Lin & Chen curve is discussed below. 

 

Figure 7.  Comparison of the two high-µ  asymptotes. 

 

Figure 8.  Comparison between the exact rigid-sphere answer and the 

value based on the ‘Derjaguin approximation’. 

 
. 
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