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Domain walls and domain wall resistivities in

CoxPd1-x(111) and CoxPt1-x(111)

Introduction

The (bulk) phase diagram of Co x Pd 1-x [1] shows no ordered phases: Co and Pd form a continuous series of fcc solid solutions with complete solubility at all compositions. The phase diagram of Co x Pt 1-x [1] on the other hand exhibits two superstructures, namely at x = 0.25 and 0.5, but otherwise seems to be statistically disordered on an fcc lattice. Co/Pd and Co/Pt are well-studied systems in the literature with available investigations ranging from typical bulk studies [2] - [5], fee surfaces of Co on Pd and Pt [6], (phenomenological) micromagnetic studies of magnetization switching [7] - [10], ab initio attempts thereof [11], small Co clusters or nanostructures on top of Pt [13] - [15], ab initio descriptions of magneto-optical properties [16] - [17], to attempts to measure and characterize domain wall resistivities [18].

Studies of domain walls in nano-wires and their resistivities suddenly became very prominent once the idea of race track memories was coined, namely the suggestion to use current driven domain wall motions as an underlying physical principle for a completely new type of solid state memory devices [19] - [24]. This idea caused a series of theoretical investigations dealing with exactly the set-up used in the experimental studies [25] - [28], partially performed in the hope to suggest other systems [START_REF] Weinberger | [END_REF]28] than permalloy [25,26]. In this context also the present paper has to be seen, namely as an attempt to learn more about domain wall formation in Co x Pd 1-x and Co x Pt 1-x and to find out whether at least one of these systems could serve as a race track material.

2 Formal concepts and computational details

Magnetic configurations and domain wall formation energies

In principle the orientations of the magnetization in an infinite layered system characterized by two-dimensional translational invariance (one atom per unit cell), see Fig. 1, are defined by the following set of unit vectors where n l refers to the uniform direction of the magnetization in the left domain (semi-infinite system), n r to that in the right domain (semi-infinite system) and the n i to those in the L atomic layers forming the domain wall. Eq. ( 1) specifies a typical non-collinear magnetic configuration in layered system corresponding to a simple parent lattice. There are two special cases, namely C 0 ,

C = { n l , n 1 , n 2 , . . . , n i, . . . , n L , n r } , (1) 2 F 
C 0 : n l = n r = n i = z , i = 1, L , (2) 
in which the magnetization in all atomic layers of the system points along the surface normal ( z), and C 1 ,

C 1 : n l = n r = n i = x , i = 1, L , (3) 
referring to a uniform orientation of the magnetization along the in-plane x axis. C 0 and C 1 are of course so-called collinear magnetic configurations. In principle in the domain wall the n i can vary in an arbitrary manner implying that for a given L the total energy of the whole system has to be minimized with respect to all possible non-collinear arrangement in the domain wall in order to determine the most favorable configuration. Since such a procedure usually is computationally not feasible, a model for the orientations in the various atomic layers in the domain wall is adopted. Here the below scheme for a 180 • domain wall is applied

C d : n l = z , n r = -z , n i = D(Φ i ) y , (4) 
Φ i = 180i/L , i = 1, L ,
that describes a quasi-continuous change of the orientation of the magnetization from z toz. In Eq. ( 4) D(Φ i ) is the three-dimensional representative of a rotation around the y axis (perpendicular to x and z) by an angle Φ i .

In using the so-called magnetic force theorem the domain wall formation energy at a given value of L is then defined by the difference in the grand potentials between configurations C d and C 0 ,

E(L, x) = E(L, x, C d ) -E(L, x, C 0 ) (5) = N X p=1 (E p (L, x, C d ) -E p (L, x, C 0 )) , (6) 
where x is the concentration, p denotes atomic layers, and N includes a sufficient number m of "buffer" atomic layers in the left and right domain in order to guarantee a smooth transition between the domain wall and its adjacent domains,

N = L + 2m . (7) 
The layer-resolved contributions E p (L, x, C i ) to the grand potential are given by where n p (L, x, C i , z) is the density-of-states of the p-th atomic layer in a domain wall of width L corresponding to a magnetic configuration

E p (L, x, C i ) = E F Z E b n p (L, x, C i , z)(z -E F )dz , (8) 3 
C i = C 0 , C 1 or C d .
In Eq. ( 8) z = + iδ is a in general complex energy, E b the valence band bottom and E F the Fermi energy. It should be noted that Eq. ( 5) implies that for E(L, x) > 0 configuration C d (domain wall formation) is preferred, while for E(L, x) ≤ 0 configuration C 0 is the stable one (the system forms a single domain with the direction of the magnetization pointing uniformly along z).

Since the minimum in E(L, x) with respect to L,

dE(L, x) dL ¯L0 = 0 , (9) 
usually occurs at rather large values of L, it was suggested [29] to cast the Ginzburg-Landau expansion of the (generalized) free-energy as a functional the magnetization density into a multi-scale approach, since then the E(L, x) can be formulated in terms of two constants a(x) and b(x),

E(L, x) = A(x) µ a(x) L + b(x)L ¶ , (10) 
the first one being the so-called exchange, the second one the anisotropy energy parameter. The equilibrium width of the domain wall for a given concentration x is then simply given by

L 0 (x) = + p a(x)/b(x) . (11) 
It should be noted that since E(L, x) is quadratic in L, in principle the value of E(L, x) needs to be determined only at two (large enough) values of L in order to evaluate L 0 (x). The above described multi-scale approach was rigorously tested [29] and successfully applied to permalloy [25,[START_REF] Weinberger | [END_REF], [28] and Co x Fe 1-x and Co x Ni 1-x [26].

Sheet resistances and resistivities

In principle for a particular magnetic configuration C i the current perpendicular to the planes of atoms (CP P ) defined over a certain length L is given by [START_REF] Levy | Theory of Giant Magnetoresistance[END_REF] ρ

CP P (L, x, C i ) = 1 L ∞ ZZ -∞ ρ(z, z 0 ; x, C i )dzdz 0 , (12) 
and the corresponding sheet resistance by

r(L, x, C i ) = Lρ CP P (L, x, C i ) . ( 13 
)
For large enough L the resistivity ρ CP P (L, x, C i ) can be obtained from the zzcomponent of the conductivity tensor, σ zz (L, x, C i ), As it is virtually impossible to calculate the conductivity tensor by means of ab initio methods for very large L one can make use of the fact that r(L, x,

ρ CP P (L, x, C i ) ∼ ρ zz (L, x, C i ) = σ -1 zz (L, x, C i ) . (14) 4 
C i ) is linear in L, r(L, x, C i ) = Lρ zz (L, x, C i ) = α(x, C i ) + β(x, C i )L , (15) 
which, furthermore, has the useful limiting properties

0 < c < 1 : lim L→∞ ρ zz (L, x, C d ) = β(x, C d , c) = ρ zz (x, C 0 ) , (16) 
c = 0, 1 : lim L→∞ ρ zz (L, x, C d ) = ρ zz (C 0 ) = 0 . (17) 
In Eq. 16 ρ zz (x, C 0 ), 0 < x < 1, is the zz-component of the residual ("bulk") resistivity corresponding to configuration C 0 , see Eq. ( 2). As is well-known for pure systems (c = 0, 1) the constant β(C, c) has to be exactly zero. Eq. ( 17) can therefore be used to check the accuracy of the applied numerical procedure, in particular, since ρ zz (L, x, C i ) is evaluated by means of an analytical continuation of resistivities defined for complex Fermi energies. [START_REF] Weinberger | [END_REF] 3 Numerical details

All ab initio calculations for Co x Pd 1-x (111) and Co x Pt 1-x (111) were performed at the experimental lattice constant using Vegard's law, e.g.,

a 0 (x) = xa 0 (Co) + (1 -x)a 0 (P d)
(Co: 6.5509, Pd: 7.3530, Pt: 7.4137 [a.u.]) in terms of the spin-polarized (fully) relativistic screened Korringa-Kohn-Rostoker (SPR-KKR) method within the frame-work of the inhomogeneous Coherent Potential Approximation. [START_REF] Zabloudil | Electron Scattering in Solid Matter[END_REF] It should be noted that Vegard's law describes rather very well the variation of the experimental lattice parameter of Co x Pd 1-x and Co x Pt 1-x with respect to the concentration. [1] In using the selfconsistent potentials and exchange fields corresponding to configuration C 0 the grand potentials E(L, x), see Eq. ( 5), were evaluated by means of a contour integration along a semi-circle using a 16 point Gaussianquadrature and 1830 k points per irreducible part of the surface Brillouin zone (ISBZ). The equilibrium domain wall width was then determined at L = 222 and 324 [ML]. For an extensive discussion of the accuracy of the fit based on Eq. (10) using the same numerical parameters, see Ref. [25].

The electric transport properties were evaluated at complex Fermi energies by means of the fully relativistic Kubo-Greenwood equation [START_REF] Weinberger | [END_REF] using also 1830 k points per ISBZ and then analytically continued to the real axis. All resistivities at L 0 and L = ∞ (bulk) were determined via Eq. ( 15) using the calculated values of r(L, x, C i ) at L = 60 and 120 [ML]. A detailed study of the numerical properties of Eq. ( 15) is to be found in Ref. [33], in which not only the L dependence is discussed but also the accuracy of the analytical continuation to the real axsis. It should be noted that for both fits, namely employing Eqs. (10) and (15), sufficiently large values of L, well separated from each other, were used in order to exclude any kind of "neighborhood effects". For computational reasons the two values had to be smaller in the case of the electric properties. However, in principle -as was already mentioned and was amply discussed in Refs. [25,33] -for these fits an arbitray pair of values of L can be chosen. In both types of calculations the number of "buffer layers", see Eq. ( 7), was three.

Since a (111) stacking sequence was chosen for both systems, the equilibrium domain wall width in [nm] and the unit area in [nm] 2 is defined by

L 0 [nm] = a 0 (x) √ 3 L , A(x) = √ 3a 2 0 (x) 4 [nm] 2
where L is the number of atomic layers at which Eq. ( 9) is fullfilled.

4 Discussion of results

Spin and orbital moments

As already stated in the introduction, the bulk systems Co x Pd 1-x and Co x Pt 1-x are well-studied in the literature, and yet surprising features are found when they are directly compared to each other. In Fig. 2 This per se is quite a big value for an orbital moment! Also the induced orbital moments at Pd or Pt sites are remarkably different. For large Co concentrations they differ by nearly a factor two.

Domain wall formation energies & domain wall widths

Turning now to the domain wall formation energies, see Eq. ( 5), displayed in Fig. 3 for L = 222 and L = 324, it seems that two completely different systems are dealt with, in particular since in the case of Co x Pt 1-x the domain wall energy for L = 324 is negative for x < 0.4 and 0.6 < x < 0.9. From Eq. ( 5) -as should be recalled -follows directly that in these concentration ranges the magnetic configuration C 0 is preferred, i.e., the magnetization is uniformly aligned in all atomic layers of the system along the surface normal. This of course implies that no domains and therefore domain walls are formed.

It is interesting to explore from which parts in a domain wall of given width the main contributions to the domain wall formation energy arise. In order to 6 illustrate corresponding changes with respect to the concentration in Fig. 4 the layer-resolved quantities, see Eqs. ( 5) and ( 6), are displayed for L = 324 and x = 0.1, 0.3 and 0.5 in the case of Co x Pd 1-x . Quite obviously these layerresolved domain wall energies vary rapidly at the very beginning and end of the domain wall. In the lower part of this figure this particular feature is shown for the first 10 atomic layers. As can be seen the rise to a certain value occurs within the first five layers.

In the interior of a domain wall the layer-resolved domain wall formation energies vary differently for different concentrations. For example at x = 0.5 there is a minimum in the middle of the domain wall, while for x = 0.3 a maximum is present. In the middle of a domain wall the orientation of the magnetization is perpendicular to the ones in the adjacent domains, indicating a higher (Co 30 Pd 70 ) or lower (Co 50 Pd 50 ) contribution to the in-plane anisotropy of the respective atomic layers. In the case of Co 10 Pd 90 even two maxima, occur separated symmetrically by a minimum in the middle of the wall. From Fig. 4 follows that obviously the "interface" of the domain wall with its adjacent domains is of crucial importance, a fact that most likely will have to enter an ab initio description of domain wall motions. In Fig. 5 for Co 50 Pd 50 , L = 324, the contributions of the components Co and Pd to the domain wall formation energy are depicted. As can be seen the contribution from Pd is surprisingly large in particular in the middle of the domain wall.

To illustrate the variation of E(x, L) with L, in Fig. 6 a few characteristic cases are shown for Co x Pd 1-x . It should be noted that in this figure deliberately L is given in units of [ML] in order to prove the usefulness of Eq. (10). From this figure it can be seen that for x = 0.9 the minimum is very shallow, while for x = 0.1 it is reasonably deep. In all cases the actual equilibrium domain wall formation energy is rather small, namely less than about 50 [μeV]. The parameters for the fit, the exchange and the anisotropy energy, are displayed together with the equilibrium domain wall width in Fig. 7. In particular from this figure the enormous differences between Co x Pd 1-x and Co x Pt 1-x become transparent that were already present when discussing the orbital moments. With the exception of very dilute alloys of Co with Pd, over the whole concentration range in Co x Pd 1-x 180 0 domains are formed. The width of these domain walls is surprisingly small for x < 0.3 and 0.5 < x < 0.7. Because of the minimum in the anisotropy parameter at about x = 0.4 the domain wall width at this concentration becomes rather large, in the same manner as a decreasing anisotropy for high Co concentrations causes a steady increase of the domain wall width. This behavior follows directly from Eq. ( 11) since the anisotropy parameter serves as denominator.

For Co x Pt 1-x the situation is completely different, since, as was already said, for x < 0.4 and 0.6 < x < 0.9 the domain wall formation energies are negative causing the exchange parameter in Eq. ( 11) to vanish. These are the concentration regimes in which no domain wall formation occurs. For x > 0.9 both the exchange as well as the anisotropy parameter vary rapidly. It seems that the anisotropy parameter is increasing in order to overcome the fast decline in the exchange parameter. Consequently in this concentration regime the equilibrium width changes very fast with the concentration, being very small indeed for x = 0.9.

Domain wall resistivities

Nowadays the main interest in domain walls is of course directed to their resistivities, in particular to the change in the anisotropic magnetoresistance (AMR) of statistically disordered system in the presence

AM R(L 0 , x) = ρ zz (L 0 , x, C d ) -ρ zz (L 0 , x, C 1 ) ρ zz (L 0 , x, C d ) (18) 
and absence

AM R(x) = ρ zz (x, C 0 ) -ρ zz (x, C 1 ) ρ zz (x, C 0 ) (19) 
of a domain wall. Race track memories, for example, are based on the fact that AM R(L 0 , x) -AM R(x) < 0.

Clearly, in order to evaluate such a difference, it is necessary to evaluate first the equilibrium domain wall width L 0 via Eq. ( 10) and only then ρ zz (L 0 , x, C d ) and ρ zz (L 0 , x, C 1 ) by making use of Eqs. ( 13) -( 16). In Fig. 8 ρ zz (L 0 , x, C d ), ρ zz (L 0 , x, C 1 ), ρ zz (x, C 0 ) and ρ zz (x, C 1 ) in Co x Pd 1-x and Co x Pt 1-x are displayed versus the concentration x. As one can see, although in the presence of a domain wall (whenever it exists) the resistivity is increased, however, the differences between ρ zz (L 0 , x, C d ) and ρ zz (L 0 , x, C 1 ) are just as small as in the "bulk" case, i.e., between ρ zz (x, C 0 ) and ρ zz (x, C 1 ). In terms of race track memories these two system are therefore totally uninteresting, since the AMR is of the order of 1 -2% and therefore the difference AM R(L 0 , x) -AM R(x) becomes uninteresting. Only in those cases in which the domain wall width is rather small such as for example in Co 25 Pd 75 a reduction of the AMR of about 2% caused by the presence of a domain wall might turn out to be sufficient because of the possibility of a substantial miniaturization of devices, or because other materials properties become relevant in technological applications.

The results for ρ zz (x, C 0 ) and ρ zz (x, C 1 ) (absence of a domain wall) are very similar indeed to those obtained by Ebert et al. [34] using also the relativistic Kubo-Greenwood equation, however, in the context of three-dimensional cyclic boundary conditions and by integrating along the real axis. They also found a bulk anisotropic magnetoresistance ratio, see Eq. ( 19), of about 1%, implying that there is almost no difference in the resistivity whether the orientation of the magnetization is parallel or perpendicular to the direction of the current. In their calculations as well as in the present ones there is a peak in the resistivity at about 20% Co in Co x Pd 1-x and at about 30% in Co x Pt Coming finally back to the phase diagrams for Co x Pd 1-x and Co x Pt 1-x it is perhaps not surprising that in the case of Co x Pd 1-x , for which no ordered phases have been found, domain wall formation takes place over the whole concentration range. Only around 40% Co the system tends to large domain wall widths, since the anisotropy energy is sufficiently small. In Co x Pt 1-x the two ordered phases behave differently: at about 50% Co, almost as sharp as in the phase diagram (40% -about 65%), a domain wall of width equal to that in pure Co is formed. On the other hand the ordered phase at 25% Co seems to form single domains. It should be noted that also around 75% the phase diagram indicates traces of an ordered phase. In that concentration regime once again only single domains appear to exist.

As far as the resistivity results are concerned, they did not offer new possiblilities in direction of race track memories. Interestingly enough, in the series Co x Ni 1-x , Co x Pd 1-x and Co x Pt 1-x only Co x Ni 1-x [START_REF] Weinberger | [END_REF] showed a reasonable reduction in the AMR. It seems therefore that for the time being permalloy, Ni x Fe 1-x , x ∼ 0.85, is the best possible choice for race track memories. The only improvement that possibly can be made is perhaps the use 90 • domains instead of 180 • domains. 
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 1 Figure 1: Schematic view of a 180 • domain wall.
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  the spin and orbital moments of Co and Pd (Pt) are shown versus the concentration x. As can be seen the spin moments in the two substitutionally disordered systems are very much alike. There are hardly any differences in the Co spin moment whether Co is alloyed with Pd or Pt. Also the induced spin moments for Pd and Pt are very similar in value through the whole studied concentration range. However, the orbital moments behave completely different: with decreasing Co content in Co x Pd 1-x the Co orbital moments increase substantially while in Co x Pt 1-x they decrease. Taking for example the values at x = 0.25 the difference is about 0.07 [μ B ].
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 2 Figure 2: Spin and orbital moments in fcc Co x Pd 1-x (111) and fcc Co x Pt 1-x (111).

Figure 3 :

 3 Figure 3: Domain wall formation energies in fcc Co x Pd 1-x (111) and fcc Co x Pt 1-x (111).
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 411 Figure 4: Layer-resolved domain wall formation energies in fcc Co x Pd 1-x (111).
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 512 Figure 5: Component and layer-resolved domain wall formation energies in fcc Co 50 Pd 50 (111).

Figure 6 :

 6 Figure 6: Fitted domain wall formation energies in fcc Co x Pd 1-x (111).
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 714 Figure 7: Exchange energy parameter (top), anisotropy parameter (middle) and equilibrium domain wall width in fcc Co x Pd 1-x (111) and fcc Co x Pt 1-x (111).

Figure 8 :

 8 Figure 8: Domain wall and "bulk" resistivities ρ zz in fcc Co x Pd 1-x (111) and fcc Co x Pt 1-x (111).

  

  1-x . The peak values of 14 -15 [μΩ cm] in Co x Pd 1-x and about 40 [μΩ cm] in Co x Pt 1-x agree rather well with existing experimental data, namely 16 [μΩ cm] and 35 [μΩ cm], respectively. For further details, see Ref. [34].
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