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A large scale Monte Carlo simulation study of the Ising model for the simple cubic lattice was recently performed by us. In this article we complement that study with the bcc, fcc and diamond lattices. Both the canonical and microcanonical ensembles are employed. We give estimates of the critical temperature and also other quantities in the critical region. An analysis of the critical behaviour points to distinct high-and low-temperature exponents, especially for the specific heat, as was obtained also for the simple cubic lattice, although the agreement is good between the different lattices. The source of this discrepancy is briefly discussed.

I. INTRODUCTION

The Ising model was formulated as a model for a uniaxial magnetic system and has become one of the most studied models in theoretical physics. It was solved by Ernst Ising in 1925 [START_REF] Ising | [END_REF] in the one-dimensional case, though the solution contained no finite-temperature phase transition. It took almost twenty years before Lars Onsager published the solution for the (infinite) two-dimensional case without an applied field [2]. Being one of the very few exactly solved models, it now serves as a proving ground for new theories, approximations, Since the 1960s it has become standard to assume that the scaling hypothesis holds for the free energy of several statistical physics models, among them the Ising model. This is not an unreasonable assumption since it actually is true for the very few cases where there are exact solutions, such as the two-dimensional Ising model. The hypothesis leads to the rather attractive consequence that the high-and low-temperature critical exponents are equal, ie α = α ′ and γ = γ ′ . With the advent of renormalization theory the scaling hypothesis received an underlying mechanism, see [3,4].

The Ising model has been studied using several theoretical approaches, such as highand low-temperature series expansions, Monte Carlo simulations, both infinite volume and renormalization group methods, and perturbative field theoretical methods, see eg [5][6][7][8][9][10][11]. A more extensive list of methods and references can be found in the exhaustive review article by Pelissetto and Vicari [12]. The results of our calculations are compared throughout the text to recent results obtained by some of these methods.

It is perhaps less well known that the model describes several physical systems, which belong to the Ising universality class, besides uniaxial magnetic systems. These include liquid-vapor transitions in simple fluids, binary mixtures of fluids, ionic fluids, and micellar systems. Also in high-energy physics the three-dimensional Ising model is expected to be of relevance. For more on these applications, again see [12].

In a recent review [13] the Ising model on the simple cubic lattice was studied by means of Monte Carlo simulations data of unprecedented size. In this article we complement this by a study of other three-dimensional lattices, namely the body-centred cubic lattice, the facecentred cubic lattice and the diamond lattice. We have used a sampling scheme presented in detail elsewhere [14] combined with the energy distribution reconstruction technique in [15].

We have estimated a great number of properties of the model in the critical region. The critical temperatures found in this study agree with earlier studies, possibly with the exception of the diamond lattice, references are given in the text.

Both the canonical ensemble and the microanonical ensemble were used in the present study. The microcanonical ensemble gives a considerably more detailed picture of the underlying properties for the different lattices, but requires also high-resolution data. For the diamond lattice it revealed a small but distinct extremum in the second derivative of as M (σ) = i σ i with the sum take over all the vertices. Often it is practical to use their normalised forms U = E/m and µ = M/n, so that -1 ≤ U, µ ≤ 1. The number of states σ having energy E is denoted a(E) while the number of states having energy E and magnetisation M is denoted a(E, M ).

There will be two classes of quantities; the combinatorial quantities from the microcanonical esemble which depend on the energy U , and the physical quantities from the canonical ensemble that depend on the coupling, or inverse temperature.

Regarding the definitions of the quantities and exponents we will be consistent with those in [13].

We will briefly state the definitions of the relevant quantities but the details are found in [13]. First the combinatorial quantities beginning with the entropy S, defined at U = E/m as S(U ) = log[a(E)]/n and the coupling defined as K(U ) = -(n/m)∂S(U )/∂U . How to obtain the coupling by sampling is described in detail in [14]. It is occasionally useful to write ǫ = (U -U c )/U c .

The average magnetisation is µ(U ) = M /n and the variance χ(U ) = Var(M )/n, while correspondingly for the absolute magnetisation, μ(U ) = |M | /n and χ(U ) = Var(|M |)/n.

We look at higher moments as well, denoting

φ(U ) = 1 n (|M | -|M | ) 3 ψ(U ) = 1 L 3 (|M | -|M | ) 4 -3 (|M | -|M | ) 2 2
For the physical quantities we start with the partition function

Z(K, H) = σ exp (K E(σ) + H M (σ))
for a coupling, or inverse temperature, K = J/k B T and external field H. Replacing the magnetisations with their absolute values gives

Z(K, H) = σ exp (K E(σ) + H |M (σ)|)
Of course, no one will be deceived when we write Z(K) instead of Z(K, 0), though we could also write Defining the standard quantities is now easy. The free energy is then F(K) =

Z(K) = E a(E) exp(K E).
(1/n) log Z(K), the internal energy U(K) = (n/m) ∂F(K)/∂K = E /m, the specific heat C(K) = ∂U(K)/∂K = Var(E)/m and the entropy S(K) = F(K) -(m/n) K U(K). Note that our definitions of internal energy and specific heat differ by a factor n/m from those usually found in the literature. The coupling (and external field) dependent versions of the magnetisation, susceptibility and higher moments are defined as above, though at a fixed coupling, instead as energy. Equivalently, we let μ(K), χ(K), φ(K) and ψ(K) denote respectively the first, second, third and fourth derivative of (1/n) log Z(K, H) with respect to

H evaluated at H = 0.
Occasionally we may need to subscript the various quantities with the linear size, as in C 16 to denote the specific heat for linear size 16. Using these definitions we expect that in the thermodynamical limit, as L → ∞, we will have for example

U(K(U )) → U , S(K(U )) → S(U ) and μ(K(U )) → μ(U ).
That is, the function K(U ) translates between the microcanonical and the canonical ensemble, the reader should consult [15] or [14] for more on this. Sometimes we may use the notation t = (K -K c )/K c .

The study was conducted by Monte Carlo sampling on many different lattice sizes, not entirely consistently chosen, and occasionally on exact data. For the bcc we have used data Let us begin by showing some plots of a few physical quantities near the critical coupling.

In Figure 1 we show the specific heat C(K) for the bcc and fcc lattice while Figure 2 shows it for the sc and d lattice. Next the magnetisation μ(K) is shown in Figures 3 and4 a rather similar behaviour near K c and we are soon going to see just how similar when we estimate the critical exponents.

However, the diamond lattice shows a curious local minimum in the specific heat in the high-temperature region. This minimum corresponds to a maximum in the function ∂K/∂U which we will study closer in Section IV A. For now we will just state that from a series expansion we receive the location K ≈ 0.128078 and the value 0.991791. 

B. Critical points

First we are going to locate a number of critical points with respect to some quantity and also the values at these points. Since the critical points are assumed to converge towards an asymptotic critical point we will of course estimate that point. The growth rate of the values are also estimated.

The critical points are denoted K * 1 , . . . , K * 15 and are the locations of, respectively, the maximum specific heat C, the maximum and minimum of ∂C/∂K, the maximum and minimum of ∂ 2 C/∂K 2 , the maximum of ∂ μ/∂K, ∂ log μ/∂K, ∂ log χ/∂K and χ, the maximum and minimum of φ, the minimum and maximum of ψ, the maximum of ∂Q/∂K and the crossing point

Q L = Q L/2 . Here Q L is the Binder cumulant Q = 1 -M 4 /3 M 2 2
for linear size L.

The bcc lattice

Beginning with the bcc lattice we list in Table I The asymptotic values in the tables were obtained by fitting points to the formula c 0 + c 1 L -λ , where c 0 then would be close to K c . For the bcc lattice data we fitted the five, six and seven largest cubes (L ≥ 32, L ≥ 48, L ≥ 64, respectively) to this formula. This gave very convincing fitted curves in all cases except for K * 2 and K * 15 which show some irregular behaviour. For K * 15 (only!) we used instead L ≥ 24, L ≥ 32, L ≥ 48. Thus each sequence of K * provides us with three measurements, or samplings, of K c and the medians of these are listed as the asymptotic value. The half-differences between the maxima and the minima can be used as error estimates and are also listed on the last line of the Tables. For K * 1 , for example, the table should then be read as K c = 0.157368(2) = 0.157368 ± 0.000002. We will work a little more on this in a moment. In Figure 7 these points and the fitted curves are shown.

We could of course have added a correction term and fitted a formula of the form c 0 + c 1 L -λ 1 + c 2 L -λ 2 to a larger selection of points. This often works very well but the formula can also be rather sensitive as to which points are included in the fit. Note also that when it does work well the resulting c 0 is extremely close to that obtained with the simpler formula for a smaller data set. The benefits of the extra correction term does not seem to add any precision to our estimates of K c . Thus it seemed wiser to keep it simple.

Looking at the 15 sequences of data we note that some of them are increasing toward some asymptotic value of K c while others are decreasing. However, some sequences, such as K * 9 , begins by increasing for L ≤ 16, before turning into a decreasing one. Nevertheless, they all show their true colours for big enough L. We can use these sequences to obtain upper and lower bounds of K c . Thus, we take the value at L = 256 for the decreasing sequences as an upper bound, and the value at L = 256 for the increasing sequences as a lower bound. Due to some irregularities in the data we have reason to be slightly suspicious of K * 2 and K * 15 so we will exclude them from this affair. The sequences for K * 7 and K * 9 gives us the lower and upper bound respectively

0.157370 ≤ K c ≤ 0.157382
The lower bound is very close to the asymptotic estimates but the upper bound is not very impressive. To improve on this interval we use the asymptotic values as estimates of K c . After removing the blemished 2nd and 15th sequence, the data set then consists of 13 points with the minimum 0.157368 and maximum 0.157374. Unfortunately, the minimum falls outside the previously stated interval. However, the median (and mean) of the data set is 0.157371 and taking the 25% and 75% quartile of the data set as lower and upper bounds of K c we get K c = 0.157371(1) which will be our final estimate of K c . In short, after excluding the bad, or at least suspicious, sequences, we take the median of the medians of the asymptotic estimates. Our estimated K c compares well with other recent estimates, such as [11] who gave K c = 0.1573725 (6), and [START_REF] Murase | [END_REF] who gave K c = 0.157374(3), both of which intersect our estimate.

We move on to the other critical constants U c , F c and S c . In [13] it proved beneficial to determine these constants by fitting a scaling formula such as above to (L ≥ 48), we note that the critical energy is U c = 0.27261(4). The same approach for the free energy brings us F c = 0.754006(1) and the critical entropy is then 3). Unfortunately, only the somewhat dated [START_REF] Domb | Phase transitions and critical phenomena[END_REF] (see detailed references therein) seem to collect these figures, and from it we extract U c = 0.2732(2) and S = 0.58203 (10).

U L (K c ).
S c = F c -4 K c U c = 0.58240 ( 
Considering how dated these figures are they compare fairly well to our data.

The fcc lattice

We will now simply repeat the above for the fcc lattice. The Tables IV, V and VI show the critical points with respect to each quantity for each linear order for the fcc lattice.

Again we use different data sets to obtain an estimate of K c with respect to each quantity.

We have used the four, five and six largest lattices when determining the asymptotic values. 

F

TABLE III: Critical points for bcc; location of, respectively, the minimum φ, the minimum and maximum ψ, the maximum ∂Q/∂K and the crossing point where

Q L = Q L/2 .
This deviates a little from the bcc case of course. Note however, that the seven largest lattices would span linear orders from 12 to 256 and this probably strains our simple scaling formula somewhat. Figure 8 shows these points versus 1/L together with the fitted curves.

The curves fit very well to their designated data sets with the exception of K * 15 which shows a slightly irregular behaviour. We will therefore exclude it from the rest of this discussion. We note that the sequence that provides us with the best lower bound is K * 2 and the best upper bound is given by K * 8 ; these say

0.102070 ≤ K c ≤ 0.102075
The lower bound is a little suspicious, and indeed the last point for K * 2 seems to lie ever so slightly above the fitted curves. The error is probably just one step in the last digit though.

We continue, as we did for the bcc case and take the median of the medians, using the first and third quartiles to provide us with error estimates. This gives K c = 0.102069 [START_REF] Ising | [END_REF].

Again this compares very well with recent estimates. In [START_REF] Murase | [END_REF] we find the estimate K c = 0.1020705(15) which we intersect.

We use the values from our estimated K c -interval to get sequences of the type U L (K c ).

Fitting on the five largest lattices gives asymptotic values in the interval U c = 0.24676 (6).

Analogously for the free energy F c = 0.741740(2) and thus the critical entropy is (4). Again, from [START_REF] Domb | Phase transitions and critical phenomena[END_REF] we get U c = 0.24742 (5) and S c = 0.59023 (3).

S c = F c -6 K c U c = 0.59062
These figures match our data acceptably well.

The diamond lattice

We move on to the diamond lattice. K * 6 seem well-behaved enough. The others have some irregularities but nothing too bad. It is somewhat ironic though that K * 8 and K * 15 , being so irregular, also have the lowest error estimates. When calculating the different scaling fits we could not use the same data set on all sequences. Adding a point sometimes wreck the scaling completely, while adding yet another give a reasonable fit again. However, the asymptotic estimates are medians of three different fits that all give acceptable parameters. In Figure 9 the points are shown with fitted curves.

A lower bound on K c is provided by the sequence K * 4 , and the upper bound by K * 2 since these two seem well-behaved for this purpose. This gives 0.369678 ≤ K c ≤ 0.369761 or K c = 0.36972 (4). Taking the median of the medians, after excluding sequences 7, 8, 12, 14 and 15 gives K c = 0.369722. Since the data set now is rather small and also have a bit of spread, merely taking quartiles to get error estimates is probably a little optimistic. We get a somewhat larger, but safer, error estimate if we instead take the half-width of the set remaining after excluding the extreme points. This gives K c = 0.369722 (7) which misses the remarkably precise estimate K c = 0.36973980(9) of [START_REF] Deng | [END_REF]. Another estimate is K c = 0.3697 (7) from [20]. The critical internal energy is determined as before. Fitting on the six largest lattices gave very convincing curves and resulted in U c = 0.43161 (9) and for the free energy F c = 0.833356 (6) which gives the entropy S c = F c -2 K c U c = 0.51421 (7). From [START_REF] Domb | Phase transitions and critical phenomena[END_REF] we cite K c = 0.369787 (15), U c = 0.437(3) and S c = 0.5103 [START_REF] Domb | Phase transitions and critical phenomena[END_REF].

C. Critical values

Next we wish to determine the growth of a number of quantities near K c . Though all the points in the Tables I to IX correspond to some critical value, not all of them are very important. We will focus on a small selection only, such as the maximum specific heat, susceptibility, Binder cumulant derivative, magnetisation derivative and the magnetisations at this critical point.

For the bcc lattice these values are listed in 

σ (1) (1) (1) (2) (1) 
TABLE VI: Critical points for fcc; location of, respectively, the minimum φ, the minimum and maximum ψ, the maximum ∂Q/∂K and the crossing point where

Q L = Q L/2 .
for the diamond lattice in Table XII.

We intend to compare the three lattices and see if the corresponding growth rates have any substantial differences. Indeed, only the simplest of scaling will be assumed, namely of the type c 0 + c 1 L λ , and it is only the exponent λ that we are interested in.

First, the specific heat maximum. Determining its growth rate turns out to be frustratingly hard to determine in a conclusive way. The result seems very dependent on which data points are included in a fitting procedure. In [13] the growth rate was estimated, and indeed conjectured, to be λ = 1/16. The procedure used there consisted in first determining the c 0 that gave the least varying slopes of a log-log fit for different data sets. Though useful for getting a quick estimate, it is somewhat too dependent on which of the present data points one uses, and it does not really help in comparing the lattices. Also, the data in [13] were gathered on considerably larger lattices and with a better precision at that, and thus depended less on the chosen data set. For the current lattices we can, simply put, choose data sets for each lattice and obtain more or less the same growth rate. Depending on the chosen data set we can get growth rates between 0.04 and 0.12, a rather wide interval. Any estimate would therefore rely too much on the method. However, we can at least test the conjecture λ = 1/16 and see how well the lattices fit to such a growth rate when forced.

In Figure 10 we have forced λ = 1/16 upon each lattice and let Mathematica choose the remaining parameters for L ≥ 12. The result is acceptable enough to fool the eye but of course in no way conclusive.

We move on to the growth rate of the maximum susceptibility, which is considerably easier to deal with. Here we may safely ignore the constant c 0 and therefore estimate λ by using the slope of linear fits to the logarithm of the data. We used data sets of the form 

L ≥ L
where the sc estimate is quoted from [13]. The estimates intersect in λ = 1.984 ± 0.003. In Figure 11 we show a log-log plot of the maxima for the bcc, fcc and d lattices together with linear fits.

Next, the growth rate of the maximum derivative of the Binder cumulant. 

and this time they do not intersect. The sc lattice seems to be the odd man here with a rather wide error estimate. Figure 12 shows a log-log plot of the maxima together with linear fits. 
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TABLE IX: Critical points for the diamond lattice; location of, respectively, the minimum φ, the minimum and maximum ψ, the maximum ∂Q/∂K and the crossing point where

Q L = Q L/2 .
The maximum derivative of the magnetisation gave the slopes sc λ = 1.096 ± 0.013 bcc λ = 1.095 ± 0.010 fcc λ = 1.091 ± 0.007

d λ = 1.092 ± 0.009 (3) 
which intersect in the interval 1.092 ± 0.007. See Figure 13 for a log-log plot of the points.

Finally, the value of the magnetisation at the point that gives maximum derivative. The and they intersect in the interval -0.501 ± 0.001. Admittedly, it is very tempting to conjecture that this should be -1/2. See Figure 14 for a log-log plot of the points.

D. Critical exponents

We intend here to give rough estimates of the critical exponents α, α ′ , β, γ, γ ′ and δ. It has become the order of the day to assume that α = α ′ and γ = γ ′ but one point of the present study is to test this hypothesis. First we ask the reader to recall the definition of the exponents. The growth of the specific heat near K c is determined by α, α ′ α = lim the susceptibility by γ, γ ′ γ = lim

K→K - c lim L→∞ -log C L (K) log |K -K c | α ′ = lim K→K + c lim L→∞ -log C L (K) log |K -K c | (5 
K→K - c lim L→∞ -log χL (K) log |K -K c | γ ′ = lim K→K + c lim L→∞ -log χL (K) log |K -K c | (6) 
the magnetisation by

β β = lim K→K + c lim L→∞ log μL (K) log |K -K c | (7) 
and at K c the exponent δ determines how the magnetisation depends on the external field

1 δ = lim H→0 + lim L→∞ log µ L (K c , H) log H (8) 
The reader should note the order of the limits, that is, first we need data for the asymptotic lattice, then we let K approach K c or H approach 0. Obviously we cannot do this so we have settled for the same approach as used in [13]. This means that we study the slopes of log-log plots of the quantities near, but not too near, K c . We have stopped at a distance and the right panel shows log µ L (K c , H) versus log H, so that the slope measures 1/δ. Also, we have not been able to gather data for this purpose for lattices of all linear orders since they require too much computer memory during sampling. Thus we only have these data for L ≤ 48 in the bcc case and for L ≤ 24 in the fcc and diamond case. Note that we use µ rather than μ when measuring δ. In passing, the magnetisation µ has the properties µ L (K, 0) = 0 for all K and µ L (K, H) = -µ L (K, -H) whereas μL (K, H) > 0 for all K, H and finite L but lim L→∞ μL (K, 0) = 0 for K < K c . We assume as an axiom that lim

H→0 + lim L→∞ µ L (K, H) = lim L→∞ μL (K)
As the attentive reader surely recognises, the order of the limits on the left-hand side matters. As is clearly seen in these pictures is that the curves line up in a rather convincing way, and the asymptotic slope of these curves is our desired exponent. Using only our eyes to fit a straight line we obtained the following rough estimates sc α = 0.22 ± 0.015 bcc α = 0.275 ± 0.025 fcc α = 0.27 ± 0.02 d α = 0.26 ± 0.02 (9) Clearly, our current estimates are considerably higher than the one for sc given in [13].

However, as can be seen in Figure 15, the curves are slow to straighten up into a line and this makes it particularly difficult to make a good estimate of this exponent. Again, our present data probably suffers from relying on too small lattices due to the very slow growth rate of the specific heat. However, the curves are better fitted with a straight line for α ′ though, which we estimate to be sc α ′ = 0.164 ± 0.007 bcc α ′ = 0.177 ± 0.012 fcc α ′ = 0.17 ± 0.02 d α ′ = 0.187 ± 0.013 (10) These compare rather well except possibly for the diamond lattice. Though the intervals do not intersect, their union is comparatively narrow, 0.175 ± 0.025. Traditional values of α (and α ′ ) are close to 0.11-0.12, see Table XX for comparison, though in [21] the authors obtained the value α ≈ 0.18. (12) and they also intersect, this time in 1.27 ± 0.01. Typically γ (and γ ′ ) are estimated to be close to 1.24, see Table XX. This is actually right between our estimates of γ and γ ′ . which intersect in 0.325 ± 0.002. This is actually very close to the traditional estimates of β, such as those listed in Table XX. Finally, for the exponent δ we estimated The intervals for sc, bcc and fcc overlap in 0.204 (corresponding to δ ≈ 4.90), though barely, but the diamond lattice remains faithful to its habit of being the odd one out.

However, this is more likely a result of that we cannot get very close to H = 0 for such small lattice orders. The authors of [10] give δ = 4.7893 (8) As the reader noticed in Figures 1 and2 there was no clear difference between the different lattices in the behaviour of the specific heat. The combinatorial quantities are a little more discriminating however. The function K(U ) does not have any interesting behaviour (in short, K(0) = 0 and K(U c ) → K c as L → ∞ and then K(U ) → ∞ as U → ∞) so let us first show the derivative ∂K/∂U for the different lattices. These are shown in Figures 18 and19. Roughly, this quantity's behaviour is the inverse of the specific heat's; near K c the specific heat goes to infinity and ∂K/∂U goes to zero near U c , this is all worked out in detail in [14]. Though the different lattices have a clearly different behaviour on a global scale, in this case for 0 ≤ U ≤ 2 U c , they do not differ particularly when observed very close to U c , as the inset pictures show for 0.9

U c ≤ U ≤ 1.1 U c .
However, the diamond lattice has a peculiar feature in that it displays a very small local maximum, as the second inset picture clearly demonstrates. The series expansion, obtained from [22], is included in the picture (red curve). From the expansion formula, a 16 degree polynomial, we find the maximum located at U ≈ 0.127588 with the value ∂K/∂U ≈ 1.00828. Since the series expansion of ∂K/∂U corresponds to the inverse specific heat of an infinite diamond lattice we can easily obtain the location and value of the minimum in the specific heat. These were stated in Section III A.

We move on to the next derivative, ∂ 2 K/∂U 2 , shown in Figures 20 and21. The data gets more noisy, but are fairly good where it matters, near U c . We wish only to demonstrate the general behaviour, so the figures only show plots for 12 ≤ L ≤ 64. It should be clear however, that near U c we first see a very sharp and quickly growing minimum followed by a rather slower growing maximum.

Note that K(U ) is an odd function for bipartite lattices. The fcc is not bipartite though.

This exception is clearly demonstrated by the second derivative for fcc, which is asymptotically -8 at U = 0, whereas the others are asymptotically 0. The second derivative for the bcc lattice also demonstrates other interesting features, such as a local minimum at U ≈ 0.1 followed by a local maximum at U ≈ 0.22; these are both absent from the sc lattice.

B. Critical points and values

In section III C we determined the growth rates for a number of quantities. Here we will do the same for their energy dependent counterparts. In Tables XIII, XIV and XV we list a few points and values of interest, related to the function K(U ). Note that the derivative of K(U ) corresponds roughly to the incerse of the specific heat, see [14]. The minimum should thus go to zero as L → ∞. The location of the minimum should approach U c and the value of K(U * ) should approach K c . It is far from clear however at what rate these points and values scale, but we will at least plot their behaviour. These properties generally require very large lattices for any scaling to be convincing. The finite size effects are at times rather large. Thus, we had to leave out L = 4 in the bcc case. Also, the second minimum of ∂ 2 K/∂U 2 does not even exist for L ≤ 8.

In the left plot of Figure 22 it is shown how log(U * -U c ) behaves for the three lattices.

Needless to say, the linear fit is not entirely convincing since the lattices are too small.

Possibly, one might claim that the fcc lattice deviates a little from the other two. A similar plot for the sc lattice would give a slightly steeper slope, but even for those considerably larger lattices the linearity is not entirely satisfactory yet. Alas, this quantity requires huge lattices. A similar statement holds for log(K(U * ) -K c ), see right plot of Figure 22.

The situation is largely the same for the minimum of ∂K/∂U . In the left picture of Figure 23 we see the logarithm of the minimum for the three lattices. have a slope of roughly 0.2, the same as for sc in [13], though the bcc and fcc suffer heavily from finite size effects. The diamond lattice does not seem to do that, however. This could perhaps be an effect of its helical boundary conditions. the diamond lattice seems to have a clearly greater slope, around 0.85 and the other two around 0.70. Actually, in [13] we learned that the sc lattice also seems to prefer a value near 0.85, though the error margins were rather large. We will return to the ∂K/∂U -function a little later.

We look instead at statistical moments of the magnetisation as a function of energy. Here scaling is convincing enough for us to make actual estimates. First the data. In Table XVI, XVII and XVIII some values of interest are listed.

Let us try to estimate the growth rates of these quantities as we did in Section III C. In the left part of Figure 24 we see that the log-log plot of the maximum susceptibility gives a very nice linear behaviour and we estimate the growth exponent as sc λ = 2.06 ± 0.03 bcc λ = 2.09 ± 0.02 fcc λ = 2.08 ± 0.02 d λ = 2.05 ± 0.02 (15) which intersect in λ = 2.07. As before the exponent for sc is taken from [13]. Next, the maximum derivative of the Binder cumulant Q = 1 -M 4 /3 M 2 2 . The right part of [START_REF] Domb | Phase transitions and critical phenomena[END_REF] which all intersects in the common point λ = -0.47.

C. Critical exponents

There are of course combinatorial counterparts to the exponents in Section III D. As we have mentioned earlier, the fact that the specific heat grows to infinity corresponds to ∂K/∂U going to zero. Thus, α and α ′ correponds to the exponents a and a ′ respectively, 

= lim U →U - c lim L→∞ log K ′ L (U ) log |U -U c | a ′ = lim U →U + c lim L→∞ log K ′ L (U ) log |U -U c | (19) 
The exponents can be translated directly through some elementary algebra as

a = α 1 -α , a ′ = α ′ 1 -α ′ (20) 
Analogously for the exponents γ and γ ′ there is a microcanonical version of these as well

g = lim U →U - c lim L→∞ -log χL (U ) log |U -U c | g ′ = lim U →U + c lim L→∞ -log χL (U ) log |U -U c | (21) 
and for these we have

g = γ 1 -α , g ′ = γ ′ 1 -α ′ (22) 
For the magnetisation we then have the exponent b defined as b = lim

U →U + c lim L→∞ log μL (U ) log |U -U c | (23) 
and it relates to β as

b = β 1 -α ′ (24) 
It is not neccesarily easier to study the microcanonical exponents rather than their canonical counterparts though. Especially exponent a seems difficult to estimate. In Figure 26 we plot the quotient part of the definition of a and a ′ . Since we do not wish to go too close to U c we have stopped at the points where ∂ 2 K/∂U 2 has a minimum (U → U - c ) or a maximum (U → U + c ). We would hope for them to have roughly the same slope but the diamond lattice seems to prefer it otherwise. Since none of the curves show any sign of having achived a linear behaviour yet we will refrain from guessing at a. However, the right part of the figure, where the slope of the curves estimate a ′ , seems better suited to the notion of them being equal. The estimates for the sc lattice were considerably lower, around 0.26 but were also based on larger lattices, which means that we may go even closer to U c . Strangely, the - V. DISCUSSION

We have followed the method described in [14] and [15], just as in [13], to obtain sampled data of the bcc, fcc and d lattice for comparison with the sc lattice. estimates of the critical temperatures and other parameters, see Table XIX. Especially for fcc and bcc they are of good quality, but somewhat less so for the d lattice. We have also tried to estimate the high-and low-temperature exponents separately, both the canonical ones (α, α ′ , etc) and the microcanonical ones (a, a ′ , etc), as well as the growth rate at local maxima/minima of various quantities, eg the maximum specific heat and susceptibility.

The 3-dimensional lattices indeed show a similar behaviour near the critical temperature.

What seems to be the characteristic behaviour here is that the exponents between the lattices are similar but also show different high-and low-temperature exponents, see Table XX.

Though the data suggest that α ′ , β, γ, γ ′ and δ have the same value for different lattices, at least up to the precision we can aspire to, there are also glaring problems with some estimates, such as α. Here the value for sc is smaller than for the other lattices. With some certainty this can be explained by the fact that the bcc, fcc and d lattices used here are smaller than those used for the sc lattice, especially so for the d lattice. The exponents can only be established with some accuracy when a clearly linear behaviour is shown in the log-log plots and this is not the case for our lattices when it comes to α. Accurate estimates may very well require quite large lattices, but the data lends no support to the claim that α and α ′ are equal. Exponents γ and γ ′ are rather well-behaved though and the data consistently tend to give us different values for each lattice, though fairly equal between lattices. However, taking into account the sometimes rather wide error estimates we can no longer be certain, since the intervals for γ and γ ′ intersects for bcc and fcc, but the sc and d lattice prefers to keep them apart. We have listed other estimates in field-theoretic methods and the standard scaling relations. For [11] and [10] the values were found through high-temperature series expansions of the bcc and sc lattice respectively. In [8] the Monte Carlo renormalization group was used. Finally, for [9] the authors used lowtemperature series expansion. In references [5,6,[8][9][10][11] it was assumed that the scaling hypothesis holds so that high-and low-temperature exponents are equal. Consequently, none of these references measure α and α ′ explicitly.

As we have seen throughout the paper the least-assumptions fit to our sampled data is most easily reconciled with a picture where high-and low-temperature exponents differ, but where any given exponent could very well have one and the same value for all the different lattices under consideration. If this picture is correct we have a scenario for the critical regime which is at the same time very familiar (ie the exponents agree between the lattices) and very different (ie different high-and low-temperature exponents) from the working assumption of statistical physics during the last 30 years. In the 1960's scaling relations were considered beautiful hypotheses, but with no motivating mechanism many considered them almost too good to be true [23]. This all changed with the arrival of Wilson's renormalisation theory [4]. Suddenly there was a widely applicable theory which provided an explanation for many scaling hypotheses and also made it plausible that there were in fact only a smaller number of distinct types of critical behaviour, the so called universality classes. See [START_REF] Cardy | Scaling and renormalization in statistical physics[END_REF] for an extensive survey. Motivated by this the scaling relations soon became important tools in the analysis of Monte Carlo data, even though some voiced important concerns about the practices of many standard simulations [21], and when adressing those concerns also began to see deviations from the mainstream results. Now, the scaling relations are both one of the principal predictions of standard renormalisations theory and in direct conflict with the existence of models where the high-and low-temperature exponents differ, ie exactly the scenario we may have found. On the other hand, the existence of universality classes has also to a large extent been motivated by renormalisation theory, and the existence of a common behaviour for the Ising model on the 3-dimensional lattices is also in agreement with our data. So we are faced with a situation where we either have to believe that finite-size corrections far beyond those usually assumed mask the asymptotic behaviour of the Ising even on the largest lattices used today [13], or standard renormalisation theory fails, due to the conflict between its scaling predictions and distinct low-and high-temperature behaviours. In the latter, and probably in the eyes of many, more extreme case, one would then suddenly need to find either a non-differentiable version of the renormalisation theory, which is consistent with the many caveats from [25],

or an entirely new mechanism explaining the persistence of the universality class concept.

Here all the options presented seem to offer bountiful opportunities for further investigation. 

  numerical algorithms. Despite many attempts the three-dimensional model has not been solved.

  . The logarithm of the susceptibility χ(K) is shown in Figures5 and 6. These plots seem to suggest

FIG. 3 :FIG. 4 :

 34 FIG.3: Magnetisation μ vs coupling K for the bcc (left) and fcc (right) lattice near K c , -0.5 ≤ t ≤ 0.5. Same lattice sizes as in Figure1.
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FIG. 7 :

 7 FIG. 7:The critical points K * 1 , . . . , K * 15 vs 1/L with fitted curves for the bcc lattice.

FIG. 8 :

 8 FIG.8: The critical points K * 1 , . . . , K * 15 vs 1/L with fitted curves for the fcc lattice.

were sc λ = 1 .

 1 610 ± 0.014 bcc λ = 1.5844 ± 0.0007 fcc λ = 1.593 ± 0.002 d λ = 1.590 ± 0.002

FIG. 9 :

 9 FIG. 9: The critical points K * 1 , . . . , K * 15 vs 1/L with fitted curves for the diamond lattice.

FIG. 10 :

 10 FIG. 10: Maximum specific heat C vs L for the fcc, bcc and diamond lattice (downwards). The fitted curves are of type c 0 + c 1 L 1/16 .

FIG. 11 :

 11 FIG.11: Logarithm of maximum susceptibility log χ vs log L for the diamond, fcc and bcc lattice (downwards).

FIG. 12 :

 12 FIG. 12: Logarithm of maximum derivative of the Binder cumulant log ∂Q/∂K vs log L for the fcc, diamond and bcc lattice (downwards).

FIG. 13 :

 13 FIG.13: Logarithm of maximum derivative of the magnetisation log ∂ μ/∂K vs log L for the fcc, diamond and bcc lattice (downwards).

For

  γ we get the estimates sc γ = 1.205 ± 0.025 bcc γ = 1.23 ± 0.015 fcc γ = 1.24 ± 0.02 d γ = 1.225 ± 0.025 (11) which actually agrees in the interval 1.225 ± 0.005. For γ ′ we get sc γ ′ = 1.265 ± 0.015 bcc γ ′ = 1.285 ± 0.04 fcc γ ′ = 1.26 ± 0.02 d γ ′ = 1.32 ± 0.06

5 FIG. 14 :

 514 FIG.14: Logarithm of the magnetisation log μ * vs log L at the critical point for the bcc, fcc and diamond lattice (downwards).

4 FIG. 15 : 8 FIG. 16 :FIG. 17 :

 41581617 FIG. 15: log C vs log |K -K c | for K < K c (left) and K > K c (right) for the fcc, bcc and diamond lattice (downwards) and all linear orders.

10 FIG. 18 :FIG. 19 :FIG. 20 :FIG. 21 :

 1018192021 FIG. 18: ∂K/∂U vs energy U , -1 ≤ ǫ ≤ 1 and inset -0.1 ≤ ǫ ≤ 0.1, for the bcc (left) and fcc (right) lattice. Lattice sizes 16 ≤ L ≤ 256 and 16 ≤ L ≤ 256 respectively.

5 FIG. 22 :

 522 FIG.22: Left: log(U * -U c ) vs log L for the bcc, fcc and diamond lattice (downwards), where U * is the location of the minimum ∂K/∂U . Right: log(K(U * ) -K c ) vs log L for the diamond, bcc and fcc lattice (downwards).

4 FIG. 23 :

 423 FIG. 23: Left: log min ∂K/∂U vs log L for the diamond, bcc and fcc lattice (downwards). Right: log | min ∂ 2 K/∂U 2 | vs log L for the diamond, bcc and fcc lattice (downwards).

Figure 24

 24 Figure 24 shows a log-log plot of this and goes well with a linear fit. Slopes were sc λ = 1.26 ± 0.02 bcc λ = 1.24 ± 0.02 fcc λ = 1.26 ± 0.03 d λ = 1.29 ± 0.01

5 FIG. 24 : 1 FIG. 25 :

 524125 FIG.24: Left: log max χ(U ) vs log L for the diamond, fcc and bcc lattice (downwards). Right: log max ∂Q/∂U vs log L for the diamond, fcc and bcc lattice (downwards).

5 FIG 8 FIG

 58 FIG. 26: log ∂K/∂U vs log |U -U c | for U < U c (left) and U > U c (right) for the diamond, bcc and fcc lattice (downwards) and all linear orders.

-0. 5 0

 5 FIG. 28: log μ vs log |U -U c | for U > U c for the diamond, bcc and fcc lattice (downwards) and all linear orders.

  Specific heat C vs coupling K for the bcc (left) and fcc (right) lattice near K c , -0.05 ≤ t ≤ 0.05. Lattice sizes are respectively L = 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256 and L = 4, 6, 8, 12, 16, 24, 32, 64, 128, 256. Specific heat C vs coupling K for the sc (left) and d (right) lattice near K c , -0.05 ≤ t ≤ 0.05. Lattice sizes are respectively L = 4, 6, 8, 12, 16, 32, 64, 128, 256, 512 and

	1.0								1.0					
	0.8								0.8					
	0.6								0.6					
	0.4								0.4					
	0.2								0.2					
	40 0.08 0.0	0.10	0.12	0.14	0.16	0.18	0.20	0.22	70 0.0	0.06	0.08	0.10	0.12		0.14
	20 30	F o r				30 40 50 60					
	0.150 FIG. 1: 0.215 0.152 0 10 20 30 40 0 10	0.154	0.156 0.220	0.158 P 0.160 e e 0.162 r 0.164 R e 0 20 10 10 15 v 0.098 0.00 0.05 0.10 0.15 0.100 0.992 0.994 0.996 0.998 1.000 i e w 0.225 0.230 0.355 0.360 0.365 0 5 O n 0.102 0.370 l	0.104 0.375	0.380	0.106 0.385
	FIG. 2: L = 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128. Inset shows L = 8, 12, 16, 24 and a curve (red) obtained y
	from high-temperature series expansion.							

  Logarithmic susceptibility log χ vs coupling K for the sc (left) and d (right) lattice near K c , -0.05 ≤ t ≤ 0.05. Lattice sizes are respectively L = 6, 8, 12, 16, 32, 64, 128, 256, 512 and L = 6, 8, 12, 16, 24, 32, 48, 64, 96, 128.
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TABLE I :

 I Critical points for bcc; location of, respectively, maximum C, maximum and minimum ∂C/∂K, maximum and minimum ∂ 2 C/∂K 2 .

TABLE II

 II 

: Critical points for bcc; location of the maximum of, respectively, ∂ μ/∂K, ∂ log μ/∂K, ∂ log χ/∂K, χ and φ.

  The critical points are listed in Tables VII, VIII and IX. The quality of these sequences vary and we can probably not aspire to the relatively high precision found in the case of bcc and fcc. Let us first simply note that sequences K * 7 , K
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	L	K * 1	K * 2	K * 3	K * 4	K * 5
	4 0.107845 0.0905415 0.124834 0.0782122 0.107248
	6 0.106912 0.097993		0.0917084 0.106496
	8 0.106446 0.100425		0.0964137 0.105555
	12 0.104785 0.101524 0.107327 0.0994292 0.104127
	16 0.103919 0.101814 0.105460 0.100490 0.103434
	24 0.103108 0.101979 0.103876 0.101284 0.102815
	32 0.102748 0.102025 0.103221 0.101586 0.102551 64 0.102305 0.102061 0.102456 0.101915 0.102234 o F r 128 0.102150 0.102068 0.102200 0.102019 0.102126
	256 0.102097 0.102070 0.102113 0.102054 0.102090 P ∞ 0.102065 0.102070 0.102069 0.102068 0.102069 e r e σ (6) (1) (2) (3) (3)
			R			
			e		
			v i e	
					w	
					O n l
						y

* 8 , K * 12 , K * 14 and K * 15 show some highly irregular behaviour, whereas K * 1 , K * 3 , K * 4 , K * 5 and 14 Page 14 of 46 http://mc.manuscriptcentral.com/pm-pml

TABLE IV

 IV 

: Critical points for fcc; location of, respectively, maximum C, maximum and minimum ∂C/∂K, maximum and minimum ∂ 2 C/∂K 2 .

  Table X, for the fcc lattice in Table XI and

	L K * 11	K * 12	K * 13	K * 14	K * 15
	4 0.113202 0.0952823 0.122254 0.0888639	
	6 0.108848 0.0995775		0.0966066	
	8 0.106628 0.100819 0.109308 0.0990016 0.103398
	12 0.104570 0.101552 0.105930 0.100644 0.102500
	16 0.103683 0.101781 0.104531 0.101218 0.102235
	24 0.102932 0.101937 0.103372 0.101648 0.102122
	32 0.102621 0.101992 0.102898 0.101810 0.102095 64 0.102256 0.102047 0.102347 0.101987 0.102075 o F r 128 0.102132 0.102063 0.102163 0.102043 0.102071
	256 0.102091 0.102069 0.102101 0.102061 0.102071 P e ∞ 0.102069 0.102070 0.102070 0.102068 0.102071
	e r			
		R			
		e		
		v i e	
				w	
				O n l
					y

  min and let L min = 12, 16, 24, 32 for all lattices. The resulting slopes ended up in the

	L	K * 1	K * 2	K * 3	K * 4	K * 5
	4 0.389786 0.359725		0.338343 0.389288
	6 0.384395 0.368236 0.399018 0.357310 0.382626
	8 0.380750 0.370275 0.389627 0.363365 0.379217
	12 0.375688 0.370076 0.379983 0.366493 0.374572
	16 0.373881 0.370220 0.376574 0.367902 0.373117
	24 0.371890 0.369965 0.373212 0.368777 0.371418
	32 0.371147 0.369920 0.371968 0.369167 0.370838 48 0.370478 0.369829 0.370897 0.369434 0.370309 o F r 64 0.370248 0.369831 0.370518 0.369576 0.370143
	96 0.369989 0.369771 0.370124 0.369640 0.369929 P 128 0.369900 0.369761 0.369987 0.369678 0.369861 e ∞ 0.369724 0.369717 0.369730 0.369733 0.369721 e r σ (25) (39) (34) (12) (34)
			R			
			e		
			v i e	
					w	
					O n l
						y

TABLE VII

 VII 

: Critical points for the diamond lattice; location of, respectively, maximum C, maximum and minimum ∂C/∂K, maximum and minimum ∂ 2 C/∂K 2 . following intervals sc λ = 1.988 ± 0.007 bcc λ = 1.985 ± 0.006 fcc λ = 1.983 ± 0.004 d λ = 1.979 ± 0.007

TABLE VIII

 VIII 

: Critical points for the diamond lattice; location of the maximum of, respectively, ∂ μ/∂K, ∂ log μ/∂K, ∂ log χ/∂K, χ and φ.

  from which we then deviate in the first

	decimal, see also Table XX.
	IV. COMBINATORIAL QUANTITIES
	A. Plots
	F o r
	P
	e
	e r
	R
	e
	v i e
	w
	O n l
	y

TABLE XV :

 XV Critical points and values for the diamond lattice; location U * of the minimum of ∂K/∂U , value of the minimum ∂K/∂U , value of K at U * , minimum of ∂ 2 K/∂U 2 .

								L U *	K ′	K	-K ′′							
								4 0.55647 0.1024 0.385308 4.713							
								6 0.50739 0.09248 0.378986 4.889							
								8 0.49425 0.09195 0.377049 5.295							
								12 0.46904 0.08259 0.373450 6.814							
								16 0.46225 0.08149 0.372573 7.862							
								24 0.44853 0.07157 0.371108 10.37							
			F o r F o r		32 0.44373 0.06768 0.370649 12.41 48 0.43909 0.06210 0.370233 16.69 64 0.43754 0.05917 0.370112 20.19							
						P e 96 0.43471 0.05361 0.369905 30.16 P e 128 0.43378 0.05047 0.369845 40.93							
							e r e r											
	8	12	16	24	32	48	64	96	R R 256 192 128	8	12	16	24	32	48	64	96	128	192	256
	-3								e e										
	-5 -4									v i e e i v								
	-6										w w							
	-7											O n l l n O				
															y y			
																The fitted lines all

TABLE XVI :

 XVI Critical values for the bcc lattice; maximum of χ(U ), ∂Q/∂U , ∂ μ/∂U and the value that μ takes at this point.

		L L χ χ	Q ′ Q ′	μ′ μ′	μ * μ *
		6 0.7455 2.386 1.886 0.3350 4 3.109 1.880 1.964 0.4638
		8 1.687 2.541 2.050 0.3292 6 7.776 2.883 2.687 0.3848
		12 4.720 3.508 2.536 0.2968 8 15.46 3.877 3.276 0.3491
		16 9.346 4.646 3.020 0.2694 12 35.76 6.486 4.432 0.2863
		24 23.51 7.136 3.939 0.2316 16 71.62 8.672 5.312 0.2626
		32 44.43 9.900 4.821 0.2055 24 156.1 15.21 7.500 0.2094
	F o r F o r	48 105.9 15.95 6.462 0.1721 64 195.3 22.68 8.103 0.1516 96 455.0 37.01 11.07 0.1258 32 287.0 21.78 9.440 0.1834 48 651.8 36.72 13.06 0.1506 64 1287. 50.25 16.02 0.1369
	P e e r 128 828.0 53.94 13.75 0.1099 192 1915. 86.93 18.99 0.09170 r e 256 3458. 130.8 24.10 0.07835 96 2654. 91.41 22.85 0.1072 P e 128 4823. 130.4 29.25 0.09321
		R R	
			e e	
		v i e Q ′ μ′ μ * 6 1.390 2.341 1.929 0.3286 L χ v i e
		w 8 2.962 2.924 2.226 0.3081 12 7.947 4.315 2.839 0.2710 w
		O n l 16 15.44 5.824 3.415 0.2443 24 38.18 9.190 4.532 0.2074 32 71.40 12.80 5.557 0.1837 O n l
		64 309.1 29.65 9.373 0.1345	y y
		128 1297. 71.36 16.09 0.09695
		256 5399. 178.2 28.34 0.06936
	TABLE XVII: Critical values for the fcc lattice; maximum of χ(U ), ∂Q/∂U , ∂ μ/∂U and the value
	that μ takes at this point.				(16)
				± 0.01

TABLE XVIII :

 XVIII Critical values for the diamond lattice; maximum of χ(U ), ∂Q/∂U , ∂ μ/∂U and the value that μ takes at this point.

	8																							
	6																							
	4																							
	2																							
	6	8	12	16	24	32	48	64	96	128	192	256	6	8	12	16	24	32	48	64	96	128	192	256

TABLE XIX :

 XIX Critical parameters for the different lattices. The values for sc are taken from[13].

	K c	U c	F c	S c
	sc 0.2216546(3) 0.33021(1) 0.7778503(2) 0.55827(1)
	bcc 0.157371(1) 0.27261(4) 0.754006(1) 0.58240(3)
	fcc 0.102069(1) 0.24676(6) 0.741740(2) 0.59062(4)
	d 0.369722(7) 0.43161(9) 0.833356(6) 0.51421(7)
	F o r			
	P			
	e			
	e r		
		R		
		e	
		v i e	
			w	
			O n l
				y
				The data gave us

TABLE XX :

 XX Table XX obtained through different methods. The values from[5] are obtained through merged Monte Carlo results for ν and η from spin-1 Ising model and the φ 4 theory. The listed exponents are then obtained using the standard scaling relations. The exponents from[6] were obtained through Critical exponents for the different lattices. The values for sc are taken from[13].

		α	α ′	β	γ	γ ′	δ
	φ 4 [5]	0.1109(15)		0.3262(4) 1.2366(15)		4.791(9)
	FT [6]	0.1091(24)		0.3257(5) 1.2403(8)		4.808(8)
	HT [11]	0.1094(12)		0.3265(7) 1.2375(6)		4.79(1)
	HT [10]	0.1096(5)		0.32653(10) 1.2373(2)		4.7893(8)
	MCRG [8] 0.1073(36)		0.3274(9) 1.2378(27)		4.78(2)
	LT [9]		0.112(11) 0.324(2)		1.24(1) 4.83(5)
	sc F bcc o 0.220(15) 0.164(7) 0.323(8) 0.275(25) 0.177(12) 0.325(8) r fcc 0.27(2) 0.17(2) 0.325(2)	1.205(25) 1.265(15) 4.88(3) 1.230(15) 1.285(40) 4.9(1) 1.24(2) 1.26(2) 5.0(1)
	d	P 0.26(2)	0.187(13) 0.33(1)	1.225(25) 1.32(6) 5.1(1)
		e			
		e r			
			R		
			e		
				v i e	
					w	
					O n l
							y
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