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A new formulation for the equation of motion of interacting dislocations is derived. From
this solution it is shown that additional coupling forces, of kinetic and inertial origin, should
be considered in Dislocation Dynamics (DD) simulations at high strain rates. A heuristic
modification of this general equation of motion enables one to introduce retardation into
inertial and elastic forces, in accordance with a progressive rearrangement of fields through
wave propagation. The influence of the corresponding coupling terms and retardation effects
are then illustrated in the case of dislocation dipolar interaction and coplanar annihilation.
Finally, comparison is made between the modified equation of motion and a precise numerical
solution based on the Peierls-Nabarro Galerkin method. Good agreement is found between
the Peierls-Nabarro Galerkin method and the EoM including retardation effects for a dipolar
interaction. For coplanar annihilation, it is demonstrated that an unexpected mechanism,
involving a complex interplay between the core of the dislocations and kinetics energies, allows
a renucleation from the completely annihilated dislocations. A description of this phenomenon
that could break the most favourable reaction between dislocations is proposed.

Keywords: dislocation interactions, elastic waves, plasticity of metals, inertial effect

1. Introduction

During the last decade, the understanding of crystal plasticity has been consider-
ably improved with the rapid development of Dislocation Dynamics (DD) simu-
lations. These simulations have indeed the capacity to quantitatively predict the
behaviour of micrometric samples from the modelling of the motion of discrete
dislocations and interactions at the elementary scale [1–5]. Up to now, these sim-
ulations have been mainly devoted to low–strain rate deformations. In this case,
dislocations motion is well described as a steady–state motion, the inertial forces
being negligible. Recent extensions toward more dynamic loadings (e.g. shock load-
ings) pointed out that inertial effects can be important, notably to overcome ob-
stacles like other dislocations or defects [6–10]. This is why, to extend the capacity
of DD simulations to high–strain rates, works have been dedicated to the complex
problem of dynamic equation of motion [11–13].

Inertial effects for a single dislocation stem from the modification of the amount
of energy, both elastic and kinetic, that follows change in the dislocation velocity. To
balance such variations, supplementary work has to be done by the so-called inertial
force. A simple estimation of this force relies on the hypothesis of steady-state stress
and velocity fields around a dislocation [14]. However, rearrangement of the fields
through wave emission has been shown to be critical in order to quantitatively
describe the effect of inertia [11, 13].
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Wave propagation naturally leads to a retardation of the interaction between dis-
locations that may have a very strong influence on shock loadings. In conventional
DD simulations, the change of elastic forces due to dislocation motion is considered
instantaneous, without being limited by the speed of the sound waves. Therefore,
the dislocations moving behind a shock front artificially alter the stress in front of
it. To avoid such unphysical propagation, retardation effects have to be considered
in the dislocation-dislocation interaction forces.

In this paper, we propose a modelling for inertia and retardation effects in
the framework of the equations of motion developed for the Dislocation Dynamic
method. Two Equations of Motion (EoM) for interacting dislocations are proposed.
In a first section, the solution of instantaneously updated fields allows the definition
of all the terms appearing in the EoM. In this first equation, the overall kinetic en-
ergy does not reduce to the sum of the kinetic energies of each isolated dislocation.
This induces additional coupling terms between dislocations of kinetic and inertial
nature, the importance of which will be discussed. The second section is devoted to
a heuristic modification of the first EoM in which retardation effects are included
in the inertial and elastic interaction forces. In the third section, the results from
both EoMs are compared to the results of a full–dynamic and more fundamental
method, the Peierls-Nabarro Galerkin method. This method corresponds exactly
to the theoretical framework used for the proposed EoM, excepted for the treat-
ment of acoustic waves, now exactly resolved. This comparison is concluded by a
discussion on the influence of inertia, on retarded effects and on the coupling terms
accounted for in a dynamic EoM, for a dipolar interaction and a coplanar annihi-
lation. In the latter configuration, an unusual mechanism of renucleation from the
annihilated dislocations is depicted. A discussion of this phenomenon is proposed
in the last section and emphasizes the complex interaction between kinetic and
core energies of the dislocations.

2. Instant Equation of Motion

Many mechanisms involved during dislocations interactions can be investigated
with the simplistic problem of two attractive parallel dislocations of opposite signs
(noted α and β). In this model, fields around dislocations are supposed to be
modified everywhere in a time interval very short compared to the time needed by
the acoustic waves to propagate in the solid. Therefore, at each time, the fields are
close to stationary solutions and are only function of dislocation location (e.g. xα)
and velocity (e.g. vα) [15]. The total energy of the system E is obtained from the
overall velocity fields u̇ = u̇α + u̇β and stress fields σ = σ̇α + σ̇β, obtained by
summing up the contributions of the two dislocations :

E = eαα + eββ + 2eαβ + kαα + kββ + 2kαβ (1)

where e denotes an elastic energy and k stands for a kinetic one:

eαβ =
1

2

∫

Ω
σα(r − xα, vα) : C−1 : σβ(r − xβ , vβ)dr (2)

kαβ =
1

2
ρ

∫

Ω
u̇α(r − xα, vα) · u̇β(r − xβ, vβ)dr (3)

where C is the stiffness tensor. Terms noted by a double superscript �
αα or �

ββ

are related to isolated dislocations whereas mixed ones represent the cost of the
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interaction. With a hypothesis of instantaneous updated fields, the energy is only
function of locations xα and xβ and velocities vα and vβ. In the case of two dislo-
cations of opposite signs and of symmetrical trajectories, energy conservation leads
to the EoM (given in the following for the dislocation α):

−2
∂(eαβ + kαβ)

∂xα
=

v̇α

vα

∂

∂vα

[

eαα + kαα + 2eαβ + 2kαβ
]

(4)

Terms in the right-hand-side of equation (4) are proportional to acceleration and are
of inertial nature whereas terms in the left-hand-side represent interaction forces.
A brief description of each terms will be given now. We note F E

i = −2∂eαβ/∂xα

the classical elastic interaction force and F K
i = −2∂kαβ/∂xα a kinetic interaction

force (the subscript ‘i’ stands for “instantaneous”). Inertia is made of two terms,
the first one (termed self–inertial, SI) F SI

i characterizes the inertia of a single and
isolated dislocation, as already defined by Hirth et al. [14]:

F SI
i =

v̇α

vα

∂(eαα + kαα)

∂vα
= m [vα] v̇α (5)

where m(v) is termed the instant mass of a single dislocation. This mass is a com-
plex function of velocity and becomes unbounded for v approaching the shear wave
velocity due to the divergence of strain and velocity fields (given in the following
for an edge dislocation):

m(v) = ms,0

(cS

v

)4
[

−8γL − 20γ−1
L + 4γ−3

L + 7γS + 25γ−1
S − 11γ−3

S + 3γ−5
S

]

(6)

with the mass of a screw dislocation at rest ms,0 = µb2

4πc2

S

ln
[

R
r0

]

, depending on the

shear modulus µ and on the shear wave speed cS and γL,S =
(

1 − v2/c2
L,S

)1/2
, with

the longitudinal wave speed cL. The instant mass depends on the size R of the
domain in which the strain and velocity fields are supposed to be adapted to the
present dislocation velocity. The parameter r0 is a cut-off radius usually chosen to
be equal to b.

The second inertial term F II
i = 2(v̇α/vα) ∂(eαβ +kαβ)/∂vα, represents an “inter–

inertial” (II) force. It can be noted that the equation of motion (4) (termed in the
following as the “instant” EoM), which now reads

FE
i + FK

i = F SI
i + F II

i (7)

contains two coupling terms (F K
i and F II

i ), usually not considered in studies of
inertial effects for high velocity dislocations [10, 16, 17]. However, the influence of
these terms has not been shown to be negligible. In particular, when two disloca-
tions superimpose (for example when a junction is created), the overall energy is
not reduced to the sum of the individual energies. Coupling energies eαβ and kαβ ,
from which the forces F K

i and F II
i are derived, can not been neglected in general

and could a priori play a role.
An estimation of the kinetic and elastic interaction energies is obtained numer-

ically for two straight and parallel dislocations of opposite signs and velocities.
By noting that with the considered symmetries xα = −xβ, equations (2) and (3)
reduce to a simple convolution product performed with a fast Fourier transform.
Relativistic stationary fields for stress, strain, velocity of a finite core dislocation
are considered [15].
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The hypothesis of instantaneously updated fields is however a quite strong as-
sumption since any changes in the velocity of the dislocation cannot be propagated
more rapidly than the shear or longitudinal wave celerity. This is particularly true
for high strain rate loadings in which a significant dislocation motion can occur dur-
ing this propagation time. Hence, in the following section we construct a modified
EoM in which retarded effects are now considered.

3. Retarded Equation of Motion

In this section, we propose a heuristic modification of the elastic and self–inertial
forces in which retarded effects are included. The retarded forces F II

r and FK
r are

far much difficult to derive than F II
i and FK

i because of the hypothesis of unsteady
velocity and stress fields. For this reason no numerical estimation of these terms is
given here.

3.1. Retarded inertial force

To get rid of the assumption of the stationarity made in the first model, we use a
self–inertial force that takes into account emission and propagation of waves accom-
panying changes of velocity of the dislocation [13]. This solution is constructed by
using the retarded self–inertial force (F SI

r ) produced at time t by an instantaneous
velocity jump from 0 to v at time τ < t [12]:

F SI
r (t − τ, v) =

g
(

v
)

t − τ
. (8)

with g a function that depends on dislocation character. The work done by this
trailing force balances the increase of total energy due to the progressive updating
of strain and of velocity fields from the solution at v = 0 to the one at v >
0. The retarded inertial force for any function v(t) is constructed by summing
all the contributions of the trailing forces δF = [∂F (t − τ, v(τ))/∂v(τ)]δv(τ) due
to elementary velocity jumps δv at t = τ which we assume to be a reasonable
approximation of the trailing force due to a jump at τ from v to v + δv:

F SI
r =

∫ t

−∞

g′
(

v(τ)
)

t − τ
v̇(τ)dτ . (9)

This expression of the self-inertial force is singular at τ = t due to the assumption
of point dislocation done in the original work [12]. A regularization of the time–
kernel has been proposed by Pillon et al. [13] to account for a core-size for the
dislocation and the retarded-inertial force now reads:

F SI
r =

∫ t

−∞

g′
(

v(τ)
)

[(t − τ)2 + t20]
1/2

v̇(τ)dτ , (10)

where t0 = ζ0/cs and ζ0 the dislocation core width at rest. In [13] it has been
underlined that this expression leads to extremely small inertial force (compared
to the one given in equation (5)) when one focuses on short times scales, and
has a complex dependence with respect to time, according to the fact that the
zone experiencing an energy evolution is progressively expanding from the vicinity
of the dislocation to the whole solid. This non–local in time force represents the
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interaction of a dislocation with its own past motion. For interacting dislocations,
the construction of a retarded elastic interaction force is now proposed.

3.2. Retarded elastic force

The retarded elastic interaction force F E
r is due to stress around moving disloca-

tions that progressively rearrange by wave propagation. We propose a construction
of retarded elastic forces between moving dislocations. In the case of a single dis-
location that jumps from v to v + δv at instant t = τ , the stress field at a distance
|p−x(τ)| from the dislocation has been modified by the velocity jump δv, provided
that acoustic waves have been propagated up to this point, which is the case of
any point p satisfying the condition |p − x(τ)| ≤ c(t − τ). We suppose that the
stress at this point is equal to the stationary solution at velocity v + δv (this is
the case of the point “P1” in the figure 1-left). Conversely, the field at distance
|p − x(τ)| > c(t − τ) from the source of the waves is not modified by the jump. It
is therefore the field of a dislocation in stationary motion that ignores the velocity
jump, that is to say with a velocity v and located at x(τ)+(t−τ) ·v, different from
the present position x(t) = x(τ)+(t−τ) ·(v+δv). This second situation is the one
of the point “P2” of the figure 1-left. Therefore, two stationary solutions have to be
considered, depending on the relative location of the examination point (in “P1”
or in “P2”, see figure 1-left) where the stress is evaluated and of the dislocation
trajectory.

One can notice that the stress at P2 is produced by a virtual dislocation that,
from the time τ has conserved the same stationary velocity v(τ) (i.e. δv = 0) up
to the present time t. In the case of a constant velocity the virtual dislocation
is superposed to the real one and corresponds to the standard way to calculate
interaction forces between moving dislocations [10, 16].

For any dislocation motion, we suppose that a stationary solution is achieved at
each time step but is visible only after the propagation of the waves and before
any new change in the velocity, which will lead to a new stationary solution. Thus,
the stationary solution to be considered at time t and at the measurement point
p is given by the element of trajectory in the past time τ for which the relation
|p − x(τ)| = c(t − τ) is verified, as depicted in figure 1-right by the gray zone.

In the case of two interacting dislocations of circulation ξ, the Peach-Kohler

interaction forces (F E, β→α
r (t) coming from β to α and conversely F E, α→β

r (t) from
α to β) is

F E, β→α
r (t) =

{

σ
[

∆pαβ , vβ(τβ)
]

· bα
}

∧ ξα (11)

with ∧ is the cross product, ∆pαβ = xα(t)− [xβ(τβ)+vβ(τβ) · (t− τβ)] represents
the relative location between the dislocation α and the virtual dislocation β and
σ [∆p, v] the stress tensor at ∆p of a dislocation with a velocity v. The past time
τβ at which the stationary solution is considered is given by the intersection of the
trajectory xβ(τβ) with the space–time cone |xα(t) − xβ(τβ)| = c(t − τβ).

The force F E, α→β
r (t) is obtained by a similar way but may result in time τ α and

distance ∆pαβ that is distinct from τβ and ∆pβα. This is different to the standard
definition of interacting forces for which no propagation time are considered (that
is τβ = τα = t), leading to an equality of the distances between dislocations (i.e.
∆pαβ = ∆pβα).

In this simplified construction we use stationary solutions, which amount to the
neglect of transient waves accompanying any changes in velocity. Removing this
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t

Space

Dislocation
current location

τ

x(τ)

v(τ)
c

Virtual stationary dislocation
located at x(τ)+v(τ)(t-τ)

Updating waves

t

Ti
m

e
P1 P2

τ

Space

c

v(τ)

P

Figure 1. Definition of the retarded elastic force. The solid curve represents the trajectory in a space-
time diagram and the dashed-dots lines, the trajectory of the virtual dislocation which would have kept a
stationary velocity. On the left-hand side is shown the delay induced by a jump from a stationary velocity
v to another velocity v + δv and on the right-hand side, a general trajectory is illustrated.

hypothesis is made possible by considering exact solutions, as for example in the
method based on Green functions proposed by Mura [18] for expanding loops. These
exact solutions involve however an additional temporal integration of a prohibitive
computational cost for DD simulations.

4. Applications

The EoMs of the previous section have been implemented in a two dimensional
(point like) DD code for validation. Such validation is made by comparing the
results of the DD simulation and those of a more fundamental nature called Peierls-

Nabarro Galerkin (PNG) simulation [19, 20]. Indeed, the latter technique allows
for a full-dynamic description of dislocations interactions and has the advantage
to share the same set of hypothesis than the ones used for the definition of the
EoM, namely, an isotropic elasticity, a continuous representation of the solid and
a simplified microscopic viscosity.

A first simulation (a dipolar interaction), dedicated to the analysis of retardation
effects is proposed in which the coupling terms F K

i and F II
i are expected to play a

minor role. A second simulation (a coplanar annihilation), which can be seen as a
two-dimensional substitute for a more general study on junctions magnifies these
coupling terms, with however a non-negligible influence of retardation mechanisms.

For each configuration, the two dislocations are supposed to be parallel edge
dislocations of opposite signs. The line direction of the two dislocations are ori-
ented along the z-direction and they have opposite Burgers vectors of magnitude
b. They are separated along the y-direction by a distance h and are restricted to
glide in the x-direction. A viscosity is introduced on the glide plane for the PNG
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simulations and permits the existence a finite dislocations velocity for constant
applied stress. This “microscopic” viscosity brings to a “mesoscopic” dislocation
viscosity, following the model presented by Rosakis [21] and is implemented in the
DD technique. Since the aim of this paper is to analyse and to model retardation
and inertial effects, whatever the model of viscosity considered, no attempt was
made to introduce complex dissipation phenomena emerging from the interaction
of the dislocation core with the atomic lattice [22–24]. In the following subsection,
we briefly describe the PNG methods and some new improvements developed to
provide comparisons with DD simulations.

4.1. Reference PNG simulations

The Peierls-Nabarro Galerkin (PNG) method [19, 20] is a generalization of the
Peierls-Nabarro concept in which the displacement fields are represented by an
element–free Galerkin method, close conceptually to the finite elements method.
The non-linear behaviour is introduced by allowing a displacement jump η along
the glide plane at the cost of an additional energy γ isf (the inelastic stacking fault

energy) that is deduced from the γ−surface [19]. Incorporation of kinetic energy
allows for acoustic waves, which are essential for instationary dislocations motion
(see, for example the modelling of accelerated dislocations [13]). This method has
shown to reproduce very well the analytical solutions for a stationary–moving dis-
location, even in the high velocity (relativistic) regime and has been used by Pillon
et al. [13] to check the EoM defined by equation (10) for a single dislocation.

All the DD simulations are done in an unbounded domain Ω, naturally avoiding
dislocations images [25]. To prevent from dislocation images in the corresponding
PNG simulation, the displacement fields on the boundary ∂Ω is given by the con-
volution product of displacement field of a point dislocation in stationary motion
with the dislocation density ∇η(s)

uimp(r∂Ω) =

∫

L
∇η(s)ustat (r∂Ω − s, v(s)) ds , (12)

where L is the glide plane. The displacement field ustat (r, v) is the exact relativistic
displacement field [15] generated by stationary dislocation moving at the velocity
v(s). The straightforward choice for v in equation (12) should be the velocity of each
infinitesimal dislocation v = η̇/∇η. Nevertheless, this definition induces a noisy
measure of v(s) which is transmitted to the boundary conditions and may generate
acoustic waves. The interaction of these waves with the dislocation modifies the
velocity v(s) and can bring on increasing oscillations. To get rid of this possibly
resonating behaviour, the velocity v(s) is replaced by an average along the glide
plane of the velocity of each infinitesimal dislocations v = 〈η̇/∇η〉. This averaged
velocity v is then filtered in time with a first-order filter vfilt + τf v̇

filt = v and is
used to define the imposed displacement uimp. The characteristic time τf is set to
the time needed to accelerate the dislocation up to stationary motion.

To be comparable with the DD simulations, PNG simulations of the interaction
must be done with dislocations that are close to stationarity. To clean all the
instationary information due to the initial acceleration of the dislocations, a body
force proportional to the difference between a stationary velocity field u̇imp and
the present one u̇ is applied

div (σ) − ρü =
ρ

τc

[

u̇ − u̇imp(rΩ)
]

, (13)
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where τc is a characteristic time and u̇imp(rΩ) the field defined in equation (12) in
the whole volume Ω. The convergence time towards the stationary solution is of
the order of τc.

This convergence mechanism is set to zero (ie τc → ∞) at the beginning of the
interaction so that the instationary solution is no longer altered. Thanks to this
procedure, displacement and velocity fields are in accordance to stationary motion.
The comparison with DD simulations presented in the following begins after this
initialization step.

4.2. Dipolar interaction

The coupling terms F K
i and F II

i represent the difference of kinetic and inertial
energy between interacting dislocations and the same dislocations considered as
isolated ones. Preliminary simulations have shown these terms to decrease rapidly
when the distance between dislocation increases. A dipolar interaction with a dis-
tance between gliding planes of several Burgers vectors is therefore a good config-
uration to test retardation effects, with a weak influence of coupling terms. Conse-
quently, the kinetic interaction force and the inter-inertial force can be neglected
in the dipolar interaction problem.

The initial trajectories and boundary conditions used in the DD and PNG sim-
ulations are the same with a steady state motion at t = 0. The two dislocations
move symmetrically and at each time, the retarded elastic force is calculated by
searching in the past the element of trajectory defining the location and velocity
of the virtual dislocation, as already described in section 3. The distance h in the
y-direction has been fixed in PNG and DD simulations to 8b which corresponds
to an average value of minimum heights for dipole observed experimentally [26].
The cut off radius R = 500µm (or 2500b) in equation (6) corresponds to a typical
dislocation density of 1012/m2. The influence of retarded elastic force, and of re-
tarded inertial forces are analyzed by turning on and off F E

i /FE
r and F SI

i /F SI
r . In

FE
r , the velocity c is supposed to be the velocity of shear waves cS, in accordance

with observations of Pillon et al. [13] where cS brings the main contribution to
self–inertia.

Figure 2 shows results obtained by the PNG technique and the DD technique,
the retarded aspect for the F E and F SI being turned on and off. The simulations
are done for a constant applied stress σa. During the short-range interaction, DD
simulations show no influence of the retarded interaction force. This is consistent
with a propagation time of about 8b/c (or in dimensioned time ≈ 0.3 ps) short
compared to the characteristic time of the interaction (≈ 50b/c, or in dimensioned
time ≈ 1.7 ps), inducing negligible retardation effect. This similarity progressively
vanishes when the interaction distance increases, and the instant elastic force even-
tually gives a stable configuration (v = 0) whereas the retarded force predicts a
complete separation of the two dislocations. The corresponding PNG simulations
cannot be achieved up to this time but clearly follows the retarded interaction
simulation.

The difference between EoM with retarded self-inertial term and EoM with an
instant mass is more contrasted during the short–range interaction, the better
match with PNG simulations being obtained by the EoM with retarded self-inertial
term. This discrepancy is due to an overestimation of the characteristic size of the
zone playing a role in the instant mass. In the instant EoM, this size has been set
to R = 2500b. However, most of the variations of the velocity take place in a time
range of less than 50 b/cs, which limits the zone contributing to inertial effect to
50× b (see figure 2), leading to a strong overestimation of the inertial effect by the
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Figure 2. (Colour online). Velocities vs time for a dislocation interacting with another one in a dipole
of edge dislocations. We first consider EoM without retardation (F E

i
= FSI

i
), then we add the retarded

inertial force (FE
i

= FSI
r ) and finally we use fully retarded EoM (F E

r = FSI
r ).

instant self-inertial force. Finally, the critical stress that breaks the dipole is found
to be 0.66%µ without inertial effect and reduced to 0.42%µ by using the retarded
EoM whereas the instant mass gives only 0.37%µ.

Therefore, retarded inertia play a part mostly when two dislocations cross each
other (or, in a more general case when a junction forms) and cannot be modelled
accurately with an instant mass. The dipole formation occurs thus easier than
expected with an instant mass EoM, which promotes the crossing over between
dislocations by an overestimation of their kinetic energies. Conversely, the effect of
retarded elastic force influences mainly the long range interactions, and intensifies
as the distance between dislocations increases. This can potentially have a strong
influence for high strain rate since the adjustment of the dislocations location is
only perceived in their local environment. This is especially relevant for shock
loadings in which the stress modification induced by dislocations motion should be
confined behind the shock front.

4.3. Annihilation

The use of a coplanar annihilation in place of the dipolar interaction results in an
important increase of the relative influence of the coupling forces F K and F II. A
stiffer variation of the elastic forces (notably when the dislocations are superposed),
leads, furthermore, to a significant sensitivity to retardation effects. Surprisingly,
this reaction, which can be considered as the strongest possible one [2], is shown in
the following to be also breakable by inertial effects. This configuration is therefore
a more severe test of the proposed EoM than the dipolar one, with an additional
difficulty coming from the impossibility to separate the influence of each of the
forces, coupled and retarded.

An additional interaction force, specific to coplanar annihilation, comes from the
possibility to superpose the dislocation, by the way modifying the overall energy
stored into the dislocation core. Indeed, in the framework of the Peierls-Nabarro
Galerkin method, the energy of a single isolated dislocation contains a core energy
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∫

x γisf [η(x)] dx with γ isf a surface potential and η(x) the displacement jump along
the glide plane. This energy is constant for dislocation with a fixed core width and
its influence is usually neglected. However, this energy completely vanishes when
two dislocations of opposite sign superimpose. The corresponding potential energy
is obtained by summing the displacement jump of the two dislocations :

γαβ =

∫

S
γisf

[

η(x − xα) − η(x − xβ)
]

dS (14)

where γisf is the interplanar potential used in the PNG method and where xα and
xβ are the dislocation locations. A rough estimation of this interaction force consists
in taking for η(x) the quasi-static solution of the dislocation displacement jump.
An additional force F γ = −∂γαβ/∂xα derives from this potential, and appears
in the left-hand side of equation (7). Therefore, both influence of coupling forces,
retardation effects and core energy could have an influence in this configuration
and will be measured.

We extend the method used for dipoles to coplanar annihilation by fixing the
distance between glide planes to h = 0 and by introducing a finite core size to
avoid singularity in the elastic force when the two dislocations meet. Contrary
to the dipolar interaction, we measure the minimal applied stress above which
dislocations renucleate after annihilation. The overall result depends potentially on
coupling terms, retardation effects and core energy. The influence of the coupling
forces F K

i and F II
i is tested by using the “instant” EoM and by turning them on

and off. The role of retardation effects is estimated by comparing the retarded
EoM (in which no coupling forces are known) and the instant one, in which F K

i
and F II

i are switched off. The influence of core energy F γ will be studied in the
two equations of motion.

Results obtained in each cases are summarized in figure 3. The F γ is found to
modify only the retarded EoM. This is consistent with an evolution of this force
only when the dislocation cores are in contact. This force is therefore a very brief
signal that is felt only with the retarded EoM which is known to predict low inertia
for high frequency loadings [13].
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Figure 3. Summary of results obtained for the coplanar annihilation.

Contrary to the force F γ , the introduction of F K and F II in the “instant” EoM
decreases slightly the critical applied stress. Indeed, the energy kαβ is positive and
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has its maximum when eαβ is minimum. The kinetic interaction force partially com-
pensates the elastic interaction forces, which in turn decreases the critical stress.
The force F II has approximately the same influence as F K. Actually, for low veloc-
ity dislocation the derivative of eαα + eαβ with respect to the velocity is very low
(the elastic field weakly depends on velocity) and only the energy kαα + kαβ inter-
venes in the mass. For the same reason as before, kαα + kαβ is intensifying during
annihilation, by the way increasing the inertial energy which helps the crossing of
the dislocations.

The critical stresses given by the proposed EoMs are however far from the results
of PNG simulations that predict a crossing for applied stresses of 2.7%µ but a com-
plete annihilation for 2.4%µ. An explanation of this discrepancy is now proposed.

5. Discussion

Quasi-static reactions between dislocations are known to be correctly described as
lines in elastic interaction without any core contribution [2, 27]. It is striking to
notice that, in opposition to the quasi-static case, dynamic annihilation cannot be
quantitatively modelled by the proposed EoM, even by taking care of wave propa-
gation through retarded mechanisms. The dislocations energy is therefore damped
down by another mechanism that cannot be represented in terms of superimposi-
tion of two dislocations.

The difference between analytical modelling and PNG simulations can be ex-
plained by analyzing the role played by the interplanar potential γ isf during the
reaction (figures 4 and 5). In figure 4–a, the two dislocations are getting closer at a
velocity of ≈ 0.83cs and eventually superpose (figure 4–b). At this time, no dislo-
cation is present (i.e. η ≈ 0 everywhere) and the energy is mainly of kinetic nature.
The available amount of energy results in the creation of two dislocations of mag-
nitude half the initial Burgers vector in figure 4–c. This two “partial” dislocations,
separated by more than 4 b, are thus accumulating, as a staking fault, an important
amount of potential energy. This state is very different from the expected “ideal”
entire dislocations (half of each dislocations is missing) and changes dramatically
the displacement fields that induces an intense stress wave (figure 4–c). This state
is however unstable since the γ isf does not have any local minimum at b/2 (see
figure 5): the field η has to go through this potential barrier to achieve η = b or to
turn back to η = 0.

For an applied stress of 2.4%µ, kinetic energy is not high enough to allow the
dislocation to overcome the maximum of the inelastic stacking fault energy at
η = b/2. This is illustrated on figure 5, where the inelastic staking fault is plotted
with respect to the position on the slip plane and to the value of the displacement
jump η. Since the available kinetic energy is not sufficient to overcome the barrier,
the displacement field η minimizes the potential energy by decreasing to a homo-
geneous value of η = 0 along the slip plane. To compensate this decrease of the
inelastic stacking fault, a second wave is emitted in the solid (see figure 4–right-
e). Conversely, for an applied stress of 2.7%µ, kinetic energy is large enough to
overcome the potential maximum for η = b/2 and to create two dislocations (with
a displacement jump ranging from η = 0 to η = −b). The sudden change from
two half dislocations to two entire ones induces the emission of a wave in the solid
(figure 4–left–d and –e). The “renucleated” dislocations moves with a velocity of
≈ 0.78cs.

Therefore, most of the available energy is dissipated in a “two steps mechanism”.
A first step consists in storing an important part of the kinetic energy into staking
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Figure 4. (Color online). (Left) Snapshots of PNG simulations of a coplanar interaction with 2.7%µ as
applied stress. Pictures represent the equivalent stress in the whole space with in addition the corresponding
displacement jump on the glide plane. (Right) The same simulation with 2.4%µ as applied stress.

fault energy while another part is lost by an intense acoustic emission. The second
step results in a complete relief of the staking fault energy, leading one more time
to an important acoustic wave emission. This scheme, very different from a simple
superposition of dislocations, explains the discrepancy between PNG and the EoMs.
Such phenomenon could also a priori intervene during other contact reactions like
junctions formation, as far as junction breaking due to inertia can be invoked.

6. Concluding remarks

An equation of motion for interacting dislocations is proposed by using two de-
scriptions for stress and velocity fields, denoted “instant” and “retarded”. A com-
prehensive study of the forces acting during dislocations interaction shows that in
addition to the usual elastic and inertial terms, a kinetic interaction force and an
inter-inertial force should be considered in EoMs for fast interacting dislocations.

We show that inter–inertial force and inter–kinetic force does not play a signif-
icant role during short distance interaction like formation of dipoles, as far as an
“instant” EoM can be considered. The retarded effects introduced in the inertial
terms become important for contact reactions like annihilation and possibly for-
mation of junctions. For instance, the “retarded” EoM leads to critical stresses for
dislocation annihilation two times higher than the “instant” EoM.
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Figure 5. (Color online). Evolution of the inelastic stacking potential γ isf(η) along the displacement jump
η and along the slip plane for different times. The two configurations corresponding to an applied stress
of σ = 2.4%µ and σ = 2.7%µ have been represented.

In addition, we show that the elastic retarded force modifies long range interac-
tions and therefore is essential to model shock loadings. In such conditions, moving
dislocations will concentrate stress only behind the shock front and as a conse-
quence nucleate original plastic features.

The comparisons between DD and PNG simulations shows however that “in-
stant” as well as “retarded” EoMs, are both failing to reproduce quantitatively the
inertial effects observed at the limit case of coplanar annihilation. In such case,
an original mechanism of energy accumulation into the interplanar potential is
proven to be the reason for DD simulations deficiency. More generally, we show
that inertial effects can strongly influence contact reactions. As an example, two
dislocations with opposite Burgers vector can completely annihilate and renucle-
ate as a result of inertia. From this observation, related to the most energetically
favourable dislocation-dislocation reaction, one can conclude that inertia may be
determinant in many strain-hardening mechanisms involved during high-strain rate
loadings.
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Figure Captions

(1) Definition of the retarded elastic force. The solid curve represents the tra-
jectory in a space-time diagram and the dashed-dots lines, the trajectory
of the virtual dislocation which would have kept a stationary velocity. On
the left-hand side is shown the delay induced by a jump from a stationary
velocity v to another velocity v + δv and on the right-hand side, a general
trajectory is illustrated.

(2) Velocities vs time for a dislocation interacting with another one in a dipole
of edge dislocations. We first consider EoM without retardation (F E

i = F SI
i ),

then we add the retarded inertial force (F E
i = F SI

r ) and finally we use fully
retarded EoM (F E

r = F SI
r ).

(3) Summary of results obtained for the coplanar annihilation.
(4) (Left) Snapshots of PNG simulations of a coplanar interaction with 2.7%µ

as applied stress. Pictures represent the equivalent stress in the whole space
with in addition the corresponding displacement jump on the glide plane.
(Right) The same simulation with 2.4%µ as applied stress.

(5) Evolution of the inelastic stacking potential γ isf(η) along the displacement
jump η and along the slip plane for different times. The two configurations
corresponding to an applied stress of σ = 2.4%µ and σ = 2.7%µ have been
represented.
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