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Plane strain indentation of single crystals by a periodic array of flat rigid contacts is analyzed. The calculations are carried out with the
mechanical response of the crystal characterized by conventional continuum crystal plasticity or by discrete dislocation plasticity. The
properties used in the conventional crystal plasticity description are chosen so that both theories give essentially the same response in
plane strain compression. The indentation predictions are then compared, focusing in particular on the effect of contact size and spacing.
The limiting cases of frictionless contacts and of perfectly sticking contacts are analyzed. Conventional continuum plasticity predicts a
size-independent response. Unless the contact spacing to size ratio is very small, the predicted deformation mode under the contacts
is a wedging mechanism of the type described by slip line theory, which is only weakly sensitive to friction conditions. For the micron
scale contacts analyzed, discrete dislocation plasticity predicts a response that depends on the contact size as well as on the contact
spacing to size ratio. When contacts are spaced sufficiently far apart, discrete dislocation plasticity predicts that the deformation is
localized beneath the contacts whereas for more closely spaced contacts deformation occurs by shear bands extending relatively far into
the crystal. Unless the contacts are sufficiently close together so that the response is essentially one of plane strain compression, the
mean contact pressure predicted by discrete dislocation plasticity is substantially greater than that predicted by conventional continuum
crystal plasticity and is more sensitive to the friction conditions.

1 Introduction

Contact between rough surfaces can play a key role in a variety of phenomena of both scientific and
technological interest, for example, friction and wear. One of the major sources of dissipation in machines
is the plastic deformation that occurs in the vicinity of the contact surface which can control the ensuing
response. Hence, there is much interest in the development of models that can predict the local stress
and deformation state near the asperities of rough surfaces. Asperity sizes typically range from a few
nanometers to several microns. This is precisely the range in which plastic deformation of crystalline solids
is known to be size dependent and thus not adequately described by conventional continuum plasticity
theory. Discrete dislocation plasticity simulations have proven to be capable of capturing size-dependent
plasticity in various situations, including (sub)micron-indentation with single indenters [1–4].

Recent models of contact between elastic-plastic rough surfaces have shown that interactions between
neighboring asperity contacts play a critical role in determining the true area of contact between the sur-
faces [5–7]. Asperity interactions increase the apparent hardness of the solid, and so reduce the true contact
area. These predictions are based on classical plasticity theory, and so neglect any additional strengthening
due to indentation size effects. Size effects for isolated contacts have been extensively studied both com-
putationally [1–3] and experimentally [8, 9]. Kim and co-workers have recently undertaken experimental
studies on the evolution of multiasperity contact [10]. In [10] the rough surface of a gold single crystal
was compressed by mica under dry and lubricated contact. The deformed surface deviates from classical
plasticity predictions, especially under dry contact loading. The extent to which the deviation from the
predictions of conventional continuum plasticity can be attributed to the size dependent response of single
asperities, as in [9], or to asperity interactions remains to be determined. On the other hand, the relevance
of asperity interactions in forming contact is widely recognized and has been recently emphasized, among
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others, by Zhao and Chang [11] and Ciavarella [12]. This paper aims at investigating the influence of size
effects on asperity interactions.

We recently carried out a study of asperity contact effects, in [13], that focused on the competing roles
of surface and subsurface dislocation sources on the plastic flow under a rough surface. These discrete
dislocation plasticity results showed that nucleation from subsurface dislocation sources could account
for the apparently paradoxical experimental observation [14] of a tensile residual stress near the contact
surface. Conventional crystal plasticity and discrete dislocation plasticity with bulk dislocation sources
predict a corresponding compressive residual stress. This study also showed that the plastic zone under
the contacts predicted by discrete dislocation plasticity was much larger than that occurring according to
conventional continuum crystal plasticity.

In the present paper we address in detail the influence of asperity interactions on hardness, ignoring
surface nucleation. To this end we carry out simulations for values of contact size to contact spacing
varying by nearly an order of magnitude, from 1/1.5 to 1/12. The predictions of discrete dislocation
plasticity are compared with those of conventional continuum plasticity for the mean indentation pressure
versus indentation depth response as well as for the stress and deformation states. Such a comparison
aims at revealing limits on the accuracy of conventional crystal plasticity analyses, as well as at providing
an understanding of the origin of the discrepancy with discrete dislocation plasticity predictions. Also, in
contrast to conventional continuum crystal plasticity, discrete dislocation plasticity predicts the occurrence
of two distinct modes of deformation depending on the contact fraction and the size of the asperities.

Discrete dislocation plasticity is a method for solving problems where plastic flow is represented in terms
of the collective motion of discrete dislocations. The formulation was presented by Van der Giessen and
Needleman in [15] and has been used to solve a variety of two and three dimensional boundary value
problems, for example, [16–21]. In the calculations here a two dimensional discrete dislocation plasticity
formulation is used with the dislocations all of edge character and modeled as line singularities in an
isotropic linear elastic solid. Constitutive rules are specified for dislocation nucleation, dislocation glide,
interaction with obstacles and dislocation annihilation. There are aspects of dislocation plasticity that
cannot be modeled within the two-dimensional framework used here, such as cross-slip and the dynamic
evolution of dislocation sources and obstacles, that play an important role in the evolution of work harden-
ing. Although improvements have been proposed [22], the range of phenomena the framework used here can
model is limited. However, there are circumstances involving plastic deformation in small volumes where
long-range elastic dislocation interactions dominate which permits a wide range of complex phenomena
involving plastic deformation to be represented qualitatively, e.g. [4, 17, 23], and, to a remarkable extent
even quantitatively, e.g. [16, 24]. In such circumstances, the dislocation–dislocation interactions that are
so important for work hardening do not play a major role. Indeed, the experiments in [10] show that the
main mechanism responsible for the evolution of the surface roughness under compression is easy glide
occuring along either the < 100 > or < 110 > directions in the gold crystal.

Plane strain indentation problems are analyzed with the analyses carried out within a small deformation
gradient context. The material properties used in the continuum crystal plasticity calculations are chosen
so that the plane strain compression (or tension) response is nearly the same as that obtained from a
corresponding discrete dislocation plasticity calculation.

2 Formulation

2.1 Boundary value problem

The boundary value problem analyzed is the same as in [13] and, for completeness, is briefly specified
here. As sketched in Fig. 1, the indentation of a planar single crystal of height h is subject to indentation
by a rigid indenter having a rectangular wave profile with period w. The contact width is a and plane
strain conditions are assumed. The material is assumed to possess the same periodicity as the indenter,
and attention is therefore confined to a unit cell −w/2 ≤ x1 ≤ w/2. Indentation is imposed by applying a
constant displacement rate of the rigid contacts, u̇, in the negative x2-direction. We analyze two limiting
cases: (i) frictionless contacts and (ii) perfectly sticking contacts.
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The computations are carried out for a unit cell and the contact with the crystal occurs on −a/2 ≤ x1 ≤
a/2. Indentation is prescribed by specifying the normal displacement rate along the contact surface,

u̇2(x1, h) = −u̇, −
a

2
≤ x1 ≤

a

2
. (1)

with one of the following two tangential conditions prescribed between the contact and the crystal,

(i) Frictionless: σ12(x1, h) = 0, −
a

2
≤ x1 ≤

a

2
, (2)

(ii) Perfectly sticking: u1(x1, h) = 0, −
a

2
≤ x1 ≤

a

2
. (3)

The remainder of the top surface of the unit cell (see Fig. 1) is traction-free, i.e.

σ12(x1, h) = σ22(x1, h) = 0, ±x1 ∈
[a

2
,
w

2

]

. (4)

The boundary conditions along the bottom of the unit cell, x2 = 0, are taken to be

u2(x1, 0) = 0, σ12(x1, 0) = 0. (5)

The resulting indentation force is computed from the normal traction along the contact surface as

f =

a/2
∫

−a/2

σ22dx1. (6)

Periodic boundary conditions are imposed on the sides of the unit cell by requiring

u1

(w

2
, x2

)

= u1

(

−
w

2
, x2

)

+ V (7)

u2

(

−
w

2
, x2

)

= u2

(w

2
, x2

)

. (8)

x2

1x

a

h ~~~ ~
φ

uu

w

Figure 1. Two-dimensional model of a single crystal indented by a rough surface with flat contacts of width a at a center-to-center
spacing w. Calculations are carried out for a periodic unit cell of width w.
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In addition, we impose

u1

(

−
w

2
, 0

)

= 0 (9)

which, for frictionless contacts, prevents rigid body translation parallel to the x1–axis.
The value of the uniform expansion V depends on the friction between the contacting surfaces. For

perfectly sticking contacts, the unit cell cannot expand or contract because the indenter is rigid so that
V = 0. On the other hand, for frictionless contacts, the unit cell can expand in the x1–direction. We
assume that there is no remotely imposed loading parallel to the surface, so the resultant x1–component of
force acting on any plane x1 = constant vanishes. Hence, the value of V is determined from the condition

1

h

∫ h

0
σ11(x1, x2)dx2 = 0 . (10)

2.2 Discrete dislocation plasticity

Following [15], the solution to the boundary value problem formulated in Section 2.1 is obtained by
decomposing all fields into a (̃ )-field governed by the singular fields of the individual dislocations in
infinite space and an image part (̂ ) that corrects for the boundary conditions. The (̃ )-field for a given
distribution of dislocations that is periodic in the x1-direction are known analytically [25]. The (̂ )-field is
obtained as the solution of an elasticity boundary value problem for the unit cell, with boundary conditions
affected by the current dislocation distribution, which we solve by the finite element method. Since the
(̃ )-fields used satisfy periodicity in the x1-direction, the periodicity condition Eq. (8) needs to be imposed
on the (̂ )-field. This condition is enforced by a penalty function approach.

For frictionless contacts an additional boundary condition is imposed for the discrete dislocation solu-
tions, namely,

u1(0, h) = u1(0, 0). (11)

This condition prevents overall shearing of the unit cell which can occur in some calculations due to the
lack of symmetry of the dislocation distribution. This condition is not required in the crystal plasticity
calculations because they maintain symmetry about x1 = 0.

The connection between the stress state in the body and the evolution of the dislocation structure is
given through a set of constitutive equations, similar to the ones proposed in [26] and used previously
in [13] as well as in related investigations, [3, 4, 27]. These rules control the nucleation, glide, annihilation
of dislocations as well as their pinning at obstacles.

Nucleation occurs by activation of Frank-Read sources, which are taken to be initially present in the
material. The dislocation sources are positioned on the slip planes and their density is taken to be constant
during the simulation. A critical shear stress must act on a source to make it operate by bowing out the
Frank-Read segment and form a new dislocation loop. Three parameters are associated with each source:
a critical strength necessary to create the new dislocation loop, the critical time tnuc required for its
formation and the diameter of the loop at nucleation, Lnuc.

After nucleation, the glide velocity vI of the Ith dislocation is proportional to the Peach-Koehler force
f I according to f I = BvI with B the drag coefficient.

Dislocation glide can be stopped by the presence on the slip planes of point obstacles, each characterized
by a critical strength, τobs. As long as the resolved shear stress acting on the pinned dislocation is lower
than the obstacle strength, the dislocation stays pinned at the obstacle.

Dislocation annihilation occurs when opposite-signed dislocations meet. This is modeled by removing
dislocations of opposite sign from the simulation when they are on the same slip plane closer to each
other than the critical material-dependent distance Lann. Dislocations can exit the crystal through the top
(x2 = h) free surface, ±x1 ∈ [a/2, w/2]. Along the parts of the surface that are in contact with the rigid
indenter, dislocations do not cross the interface. No special algorithm is required for this; it is ensured
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by the incompatibility of the disclocation displacement fields with the prescribed displacement boundary
conditions in Eqs. (1)–(4). Dislocations do escape from the crystal along the free surface.

2.3 Crystal plasticity

The formulation and numerical implementation of conventional (size-independent) viscoplastic continuum
crystal plasticity model follow that in [28]. However, here attention is confined to small displacement
gradients. The total strain rate is written as the sum of an elastic part and a viscoplastic part

ε̇ij = ε̇e
ij + ε̇p

ij . (12)

The plastic part of the strain rate is given by

ε̇p
ij =

∑

α

γ̇αµ
(α)
ij , µ

(α)
ij =

1

2

[

si
(α)mj

(α) + sj
(α)mi

(α)
]

, (13)

where mi
(α) and s

(α)
i are, respectively, the components of the slip plane normal and the slip direction of

slip systems α and γ̇α is the intrinsic slip rate. The elastic part of the strain rate is specified by Hooke’s
law,

σ̇ij = Lijklε̇
e
kl. (14)

Here, Lijkl is the tensor of isotropic elastic moduli with shear modulus µ and Poisson’s ratio ν.
The slip rate is given by the power law relation

γ̇α = γ̇0
τα

gα

∣

∣

∣

∣

τα

gα

∣

∣

∣

∣

( 1

m

−1)

, (15)

with τα = m
(α)
i σijs

(α)
j the resolved shear stress on slip system α; γ̇0 is a reference slip rate, m is the strain

rate sensitivity exponent and gα is the hardness of slip system α which has initial value τ0 for all α and
evolves according to

ġα = h0

∑

α

|γ̇(α)| . (16)

The finite element discretization uses a mesh of rectangular elements, each consisting of four triangles
to avoid locking problems associated with near incompressibility.

3 Choice of parameters

The elastic constants are taken to be representative of an FCC metal: the shear modulus is taken to
be µ = 26GPa and Poisson’s ratio ν = 0.33 as in aluminum. The three slip systems have slip plane
orientations: φ(1) = 0◦; φ(2) = 60◦; φ(3) = 120◦ and have the same initial strength τ0 = 20MPa. In plane
strain compression (or tension), the discrete dislocation plasticity response is essentially non-hardening.
For a fair comparison between the two models, the crystal plasticity parameters are taken such that in
plane strain compression the two responses are similar. Discrete dislocation plasticity simulations of (plane
strain) compression or tension of single crystals with the parameters as specified below reveal essentially
no hardening, yet, in order to avoid numerical difficulties associated with non-hardening behavior in the
continuum plasticity calculations, a small hardening rate, h0/µ = 2.5 × 10−6, is specified. A reference slip
rate of γ̇0 = 2 · 103 is used and the rate sensitivity exponent in Eq. (15) is taken to be m = 0.005, which
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is a representative value for most FCC metals at room temperature and which corresponds to essentially
rate independent behavior.

In the discrete dislocation calculations, the crystal contains a set of discrete slip planes at (0◦, 60◦, 120◦)
spaced at 200b, the magnitude of the Burgers vector being b = 0.25nm. Initially, the crystal is dislocation
free, but contains a density ρnuc = 30/µm2 of dislocation sources. The strength of the sources is taken
randomly from a Gaussian distribution with mean strength τ̄nuc = 50MPa and standard deviation of
10MPa. The critical time for nucleation is tnuc = 0.1ns. The sources are located at random positions on
randomly selected slip planes; some of the slip planes contain no source and are therefore inactive during
the simulation. A density ρobs = 30/µm2 of point obstacles with strength τobs = 150MPa is taken to be
present throughout the crystal. Dislocation obstacles are positioned only on slip planes containing at least
one dislocation source. The annihilation distance, Lann, is taken to be 6b.

Both in the continuum crystal plasticity and in the discrete dislocation plasticity calculations, the loading
is applied by prescribing a constant displacement rate u̇ = 4 × 104µm/s in Eq. (1).

4 Results

4.1 Evolution of the mean contact pressure

Calculations are carried out for crystals having contact fractions a/w = 1/1.5, 1/3, 1/6, 1/9 and 1/12.
The contact fraction is varied by changing the period w and keeping the contact size fixed at a = 1µm,
while h = 50µm.

Figure 2 shows results for the variation of the mean contact pressure, Pm = f/a, with indentation depth
u for both frictionless and perfectly sticking contacts. The solid curves show the predictions of discrete
dislocation plasticity while the corresponding dashed curves show the predictions of continuum crystal
plasticity. Note that, as with all plane contact problems, the elastic compliance of the contact is sensitive
to the remote boundary conditions, and would increase in proportion to log(h/a) as h/a → ∞. However,
the values of the mean contact pressure Pm required to initiate plastic deformation or plastic collapse
in continuum plasticity (when it occurs) are not sensitive to the cell height, although the corresponding
indentation depth values are.

u (µm)

P
m

(M
P

a)

0 0.025 0.05 0.075 0.1 0.125 0.15
0

100

200

300

400

500

600

700 a/w=1/1.5
a/w=1/3
a/w=1/6
a/w=1/9
a/w=1/12

u (µm)

P
m

(M
P

a)

0 0.025 0.05 0.075 0.1 0.125 0.15
0

100

200

300

400

500

600

700 a/w=1/1.5
a/w=1/3
a/w=1/6
a/w=1/9
a/w=1/12

(a) (b)

Figure 2. Mean contact pressure, Pm, versus indentation depth, u, for crystals having contact size a = 1µm and various contact
fractions for (a) frictionless and (b) perfectly sticking contacts. Dashed lines indicate continuum crystal plasticity simulations, solid

lines discrete dislocation plasticity simulations.

For frictionless contacts (Fig. 2a), there is good agreement between the crystal plasticity and the discrete
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dislocation plasticity results when the contacts are closely spaced, i.e. for contact fractions of a/w = 1/1.5
and a/w = 1/3 (recall that the crystal plasticity material parameters were chosen to give the same plane
strain compression response as given by discrete dislocation plasticity). However, the predictions of these
two material characterizations differ substantially when the contacts are widely spaced, i.e. for a/w = 1/9
and a/w = 1/12, with discrete dislocation plasticity predicting a harder response.

The discrete dislocation plasticity calculations show a transition between the behavior for a small contact
fraction and that for a large contact fraction. For a/w < 1/6, yielding, defined as the mean pressure at a
0.002µm displacement offset, occurs at a significantly higher mean contact pressure, Pm, than predicted
by continuum crystal plasticity. For small indentation depths, the mean contact pressure, Pm, increases
rapidly with indentation depth u but eventually a plateau value of Pm is reached, albeit one that is
significantly higher than that obtained in the crystal plasticity calculations. In the discrete dislocation
plasticity calculations, attainment of the plateau is associated with bulk yield in the sense that plastic
deformation is not confined to the vicinity of the contact region, as will be discussed in more detail in the
subsequent section.

The crystal with contact fraction a/w = 1/6 shows intermediate behavior: the yield point is much higher
than the one according to continuum crystal plasticity, as is typical of widely spaced contacts; on the other
hand, the plateau value of Pm is attained shortly after yielding which is characteristic of closely spaced
contacts.

When perfectly sticking conditions prevail (Fig. 2b), the unit cell cannot expand because the indenter is
rigid and this precludes bulk yielding. The continuum crystal plasticity curves underestimate (compared
to discrete dislocation plasticity) the hardening at contact fractions greater than 1/1.5. Crystals with
a/w ≤ 1/3 deform only in the vicinity of the contact surface by a wedging mechanism similar to what
would be described by slip line field theory: the material is squeezed out from below the indenter to pile
up beside the indenter (as discussed in more detail in the subsequent section). When the spacing between
indents is smaller than twice the contact size this mechanism is hindered and plastic flow is inhibited. On
the other hand, the unit cell can expand if the contacts are frictionless, thus allowing for the plastic flow to
occur even for very closely spaced contacts (i.e. a/w=1/1.5). For sticking contacts, the discrete dislocation
plasticity calculations show a similar trend for all contact fractions: the mean contact pressure, Pm, is
greater than that predicted by conventional crystal plasticity and a significantly higher strain hardening
occurs. The only exception to the general trend is again the crystal with a/w = 1/1.5, for which crystal
plasticity gives an elastic response and discrete dislocation plasticity predicts little local stress relaxation.

Comparison of Figs. 2a and 2b reveals that the value Pm, at a given indentation depth, predicted
by conventional crystal plasticity is not particularly sensitive to whether the contacts are frictionless or
perfectly sticking for contact fractions greater than 1/6. In contrast, the discrete dislocation plasticity
predictions of Pm are increasingly sensitive to the friction condition with increasing contact fraction. With
a contact size a = 1µm and for small contact fractions the the discrete dislocation plasticity predictions
are basically independent of the friction condition when the indentation depth is small. The difference
between the two friction conditions appears at indentation depths greater than u ≃ 0.11µm. Then bulk
yielding occurs for the frictionless contacts and the value of Pm reaches a plateau contacts whereas Pm

continues to increase for the perfectly sticking contacts.

4.2 Deformation patterns

The predicted distortion of the crystals at u = 0.1µm is shown in terms of deformed meshes for three unit
cells for the two contact fractions a/w = 1/3 and a/w = 1/12 under frictionless contacts. The deformed
meshes for sticking contacts at the same indentation depth are very similar to those for frictionless contacts
and therefore not shown. For discrete dislocation plasticity simulations the deformed meshes are plotted in
Fig. 3. The crystal with the larger contact fraction, a/w = 1/3 in Fig. 3a, has undergone a much larger bulk
compression than the crystal with a/w = 1/12. With more widely spaced contacts, a/w = 1/12 in Fig. 3b,
plastic deformation is mainly confined to the contact vicinity, with material sink-in at the free surface close
to the contact. A convenient measure for the extent of plasticity is the average strain in the x1–direction,
ε11 = V/w: small values indicate localized plasticity while bulk plasticity gives rise to large values. For the
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Figure 3. Deformed meshes obtained from discrete dislocation plasticity for contacts with a = 1µm and (a) a/w = 1/3 and (b)
a/w = 1/12 at u = 0.1µm. Displacements are magnified by a factor of 10.

results in Fig. 3, ε11 is largest for a/w = 1/3 (ε11(a/w = 1/3) = 0.0047) while ε11(a/w = 1/12) = 0.0013.
For deformed meshes obtained from the conventional crystal plasticity computations shown in Fig. 4

the average lateral strain is also smaller for a/w = 1/12 (ε11(a/w = 1/3) = 0.0027) than for the more
closely spaced contacts (ε11(a/w = 1/12) = 0.00021). However, when compared to the discrete dislocation
plasticity results, the value of the average strain ε11 is smaller for all contact fractions.

This difference in average strain of the unit cell between conventional crystal plasticity and discrete dis-
location plasticity is related to the way in which the development of a density of geometrically necessary
dislocations in the contact vicinity affect the material behavior. In discrete dislocation plasticity, geomet-
rically necessary dislocations induce a size-dependent increase of the flow strength in the calculations.
The increased strength promotes sink-in rather than pile-up, as opposed to the size-independent response
according to conventional plasticity. Pile-ups and sink-ins are more pronounced when contacts are more
isolated and the deformation more localized. If we define the pile-up height as max((u2(x1, h)−u2(w/2, h))
along the indented surface, we find that in the crystal plasticity predictions the pile-up height ranges from
4nm for a/w = 1/3 to 26nm for a/w = 1/12. For closely spaced contacts the pile-ups generated by the
wedging mechanism of neighboring contacts overlap (see Fig. 4a). For such contacts it is impossible to
identify a non piled-up region and therefore to give a measure of the material pile-up that compares with
the measure obtained for more separated contacts.

µm

µm

0 3 6 9
40

45

50

µm

µm

0 5 10 15 20 25 30 35
40

45

50

(a) (b)

Figure 4. Deformed mesh according to conventional crystal plasticity for (a) a/w = 1/3 and (b) a/w = 1/12 at u = 0.1µm.
Displacements are magnified by a factor of 10.

The deformation modes can also be visualized through the distribution of the lattice rotation as given
in Fig. 5. The lattice rotation (positive in the counter-clockwise direction) is computed from the discrete
dislocation plasticity displacement field according to

Ω =
1

2
[(û2,1 + ũ2,1) − (û1,2 + ũ1,2)] , (17)

where the spatial differentiation of ũi (denoted by ,j) is performed analytically. The lattice rotations for
rather isolated contacts, Fig. 5b, are concentrated in the regions next to the contacts where sink-in takes
place and the rotations are largely geometrically necessary; directly below the indenter the rotation is
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Figure 5. Lattice rotation Ω (in degrees) according to discrete dislocation plasticity at u = 0.1µm for contact fractions of (a)
a/w = 1/3 and (b) 1/12 under frictionless conditions.

much smaller. Inside the sink-in regions, the lattice rotation is similar to that found in discrete dislocation
simulations of wedge indentation [4], both in terms of the distribution and the magnitude (for a given
indentation depth). For closely spaced contacts, Fig. 5a, the distribution is very different: rotation is
confined to shear bands that extend well into the crystal.

4.3 Internal stress state

In this section we present stress distributions and, for the discrete dislocation calculations, dislocation dis-
tributions at an indentation depth of u = 0.1µm. Figure 6 presents the stress distributions computed using
discrete dislocation plasticity in crystals with frictionless contacts (as in Fig. 2a) and the corresponding
dislocation structures. The stress σ22 is normalized by the average nucleation strength of the dislocation
sources, τnuc = 50MPa. At u = 0.1µm several dislocations are present far away from the contacts for all
contact fractions shown in Fig. 6. However, while the dislocation density is almost independent of x2 for
a/w = 1/3 and a/w = 1/6 (Figs. 6a, b), the dislocations are concentrated in a region near the contact for
a/w = 1/9 and a/w = 1/12 (Figs. 6c, d). For the largest contact fraction, a/w = 1/3, plastic deformation
occurs primarily on one set of slip planes (φ = 120◦) throughout the unit cell. Plasticity underneath the
well-separated contacts, a/w = 1/9 and a/w = 1/12, is mainly confined to the contact region. Contacts
with a/w = 1/6, as noted in the previous section, appear to have an intermediate behavior: combining a
relatively high dislocation density in the bulk with an increased dislocation density in the contact vicinity.

Figure 7 shows stress and dislocation distributions in a region near the contact surface for the contacts
with contact fractions a/w = 1/3 and 1/12. A highly stressed zone can be seen under the indenter in the
crystal with a/w = 1/12, while there is only a very small highly stressed zone under one of the indenter
corners when a/w = 1/3. The crystal under the more widely spaced contacts, Fig. 7b, shows a highly
stressed zone that starts underneath the contact and propagates for several micrometers inside the crystal.
The width of the region where stresses are at least 100MPa in magnitude is quite extended, up to eight
times larger than the contact area. The dislocation activity on intersecting slip planes leads to dislocation
junctions at the intersection which act as obstacles for dislocation glide. When a dislocation junction forms
at the intersection between slip planes, other slip planes are likely to become active to accommodate the
deformation at a higher imposed load.

Figure 8 shows σ22 stress distributions at the same relative indentation depth obtained from the contin-
uum crystal plasticity calculations (here stress is normalized by the slip system strength τ0 = 20MPa). The
crystal with the largest contact fraction, a/w = 1/3 (Fig. 8), has the highest stress, σ22 = 40MPa, in the
crystal bulk, which corresponds to bulk yield. This is the same average stress obtained from the discrete
dislocation plasticity simulations. The crystals with smaller contact fractions exhibit high stresses only
in the vicinity of the contact, but the highly stressed regions are smaller than in the discrete dislocation
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Figure 6. Combined dislocation and stress (σ22) distributions at u = 0.1µm for frictionless contacts with contact size a = 1µm and
contact fractions: (a) a/w = 1/3 , (b) a/w = 1/6 and (c) a/w = 1/9 and (d) a/w = 1/12.
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Figure 7. Zoomed-in distribution of σ22 and dislocation structure for the contacts with (a) a/w = 1/3 and (b) a/w = 1/12 in Fig. 6.

plasticity simulations shown in Figs. 6 and 7.
The discrete dislocation plasticity results for perfectly sticking contacts, Fig. 9, differ from the corre-

sponding results for frictionless contacts (Fig. 6), especially for large contact fractions, i.e. a/w = 1/3 and
a/w = 1/6 in Figs. 9a,b. For frictionless contacts the average value of σ11 in the unit cell is zero. On the
other hand, with perfectly sticking contacts the lateral deformation of the unit cell is constrained thus
building up a negative lateral stress. This results in a stress state that is largely hydrostatic stress away
from the contact surface thus inhibiting dislocation activity.

5 Size effect

In this section, results are presented showing the effect of varying all geometric lengths, i.e. the contact
size a, the contact spacing w and the crystal height h. Material lengths, such as the Burgers vector and
the average source and obstacle spacing, are kept constant.
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Figure 8. Continuum crystal plasticity predictions of the distribution of σ22 at u = 0.1µm for crystals with a = 1µm and (a)
a/w = 1/3, (b) a/w = 1/6, (c) a/w = 1/9 and (d) a/w = 1/12.
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Figure 9. Discrete dislocation plasticity predictions for the distribution of σ22 and the dislocation structure at u = 0.1µm for crystals
having contact size a = 1µm and contact fraction (a) a/w = 1/3, (b) a/w = 1/6 and (c) a/w = 1/9 and (d) a/w = 1/12.

To make contact with Nicola et al. [13], we first consider cases with fixed contact fraction a/w = 1/9
and with the contact size a ranging from 0.125µm to 1µm. Plots of mean contact pressure Pm versus
indentation depth are shown in Fig. 10. The indentation depth u is normalized by the contact spacing
so that the responses are self-similar when the material behavior is size independent, as in the elastic
regime and as predicted by continuum crystal plasticity. By contrast, the discrete dislocation plasticity
curves reveal a size dependent response, with smaller contacts being harder than larger contacts, both
for perfectly sticking and frictionless contacts. Results are also shown in Fig. 10 for crystal plasticity
simulations using a hardening coefficient h0/µ = 2.5×10−3 which is three orders of magnitude larger than
the value h0/µ = 2.5 × 10−6 used in all other calculations. With this hardening coefficient, the crystal
plasticity predictions give a better fit to the discrete dislocation plasticity results for this particular contact
fraction, but the size effect obviously cannot be captured.

From Fig. 2 with the contact size a fixed at 1µm it was found that for small indentation depths u the
friction condition had an effect on the indentation pressure Pm only for closely spaced contacts. For a
contact fraction of a/w = 1/9 the friction condition did not affect the value of Pm for small indentation
depths. However, the results in Fig. 10 show that friction conditions do matter for a contact fraction
1/9 when the contacts are sufficiently small even at small indentation depth u. When the contact size is
a = 0.5µm the mean contact pressure at u/w = 0.02 is 400MPa for frictionless contacts and 800MPa for
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Figure 10. Mean contact pressure, Pm, versus indentation depth, u, normalized by cell width for crystals with the same value of the
contact fraction a/w = 1/9 and contact size ranging from a = 0.125µm to 1µm. (a) Frictionless contacts. (b) Perfectly sticking contacts.

sticking contacts.
The crystal under frictionless contacts with a = 0.5µm and w = 4.5µm deforms by bulk yield according

to the same mechanism typical of closely spaced, but larger contacts. Thus, at the micron scale, the contact
fraction alone is not sufficient to establish the deformation mode of a crystal under multi-asperity contacts;
the actual size of the contacts matters (and of course the material properties). The smaller the contact
size, the smaller the contact fraction needed for the contact to behave as isolated; i.e. having the following
characteristics: (i) localized deformations; (ii) overall hardening in the Pm versus u response; and (iii) the
response independent of friction conditions.
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Figure 11. Mean contact pressure, Pm, versus indentation depth normalized by cell width for crystals with the same value of the
contact fraction a/w = 1/3 and contact size ranging from a = 1.5µm to 4µm. (a) Frictionless contacts. (b) Perfectly sticking contacts.

Figure 11 shows corresponding results for closely spaced contacts, a/w = 1/3, with a contact size ranging
from a = 0.5µm to 4µm. Here too discrete dislocation plasticity gives a size dependent response. With
frictionless contacts, Fig. 11a, the size dependence is mainly in the yield point, with crystals under smaller
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contacts yielding later than the ones under large contacts. This size effect can be attributed to limited
source availability: if there are no sources available in the region where stresses are sufficiently high, plastic
flow will not take place. Once yielding occurs, dislocation activity appears to be relatively independent of
contact size and the evolution of the mean contact pressure is essentially size independent. In contrast, for
perfectly sticking contacts, Fig. 11b, the evolution of the mean contact pressure after yielding is influenced
by contact size; for a contact size of 0.5µm the crystal exhibits nearly elastic behavior.

The size effects in Figs. 10 and 11 are not captured by conventional crystal plasticity. Also currently
available strain gradient plasticity theories cannot capture all size effects seen in the discrete dislocation
plasticity calculations. Indentation analyses based on size-dependent phenomenological plasticity theories
related to the concept of geometrically necessary dislocations, as for example in [29–31], predict a size
effect arising from plastic strain gradients. However, a size dependent onset of yielding related to the
discreteness of dislocation sources (source limited plasticity) is not modeled in such analyses. Models
based on statistical mechanics considerations that are currently under development by Groma, Zaiser and
others [32–34] appear promising for capturing both gradient related and source limitation related size
depenendence.

6 Conclusions

We have presented a numerical study of plane strain multi-asperity contact between a rigid indenter and
a single crystal. Conventional crystal plasticity and discrete dislocation plasticity computations have been
carried out for the limiting cases of perfectly frictionless and perfectly sticking contacts. The results show
the following general features:

• According to conventional crystal plasticity, except for very closely spaced contacts, deformation of a
single crystal under equispaced asperities occurs by a wedging mechanism of the type described by slip
line theory with plastic flow confined to a region beneath the contacts.
– The evolution of the mean contact pressure is nearly independent of the friction condition. Friction

plays an important role only when the spacing between individual contacts is smaller than twice the
contact size in which case the wedging mechanism is suppressed under sticking conditions.

– The wedging mechanism leads to material pile-up around the contacts for all contact fractions a/w
analyzed.

• Discrete dislocation plasticity predicts a size effect for micron scale contacts.

– The size effect originates from: (i) geometrically necessary dislocations; and (ii) the limited availability
of dislocation sources beneath the micron scale contacts. The size effect is more pronounced for
perfectly sticking contacts and when the contact fraction a/w is small.

• For small contact fraction a/w and sufficiently large contact size a, discrete dislocation plasticity predicts
that:

– the deformation is localized underneath the contacts (as for conventional continuum crystal plasticity)
but material sink in rather than pile-up occurs around the asperities.

– the mean contact pressure increases with indentation depth at a larger rate than predicted by crystal
plasticity.

– the response is essentially independent of friction conditions.

• When contacts are sufficiently close to each other (large contact fraction a/w):
– indentation induces plastic flow throughout the crystal for frictionless contacts.
– plastic flow is largely suppressed for perfectly sticking contacts.
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