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We consider strong temperature effects on two-phase immiscible flow through a porous
medium. A dependency on temperature is introduced via a temperature-dependent viscos-
ity for one of the phases. The purpose is to develop a simple prototype model for simulating
the injection of steam into a porous medium which is saturated with highly viscous oil. To
solve the problem, a Galerkin finite element model is formulated, with special residual-based
terms added to stabilise the problem when advective transport processes dominate and to
capture the discontinuities that develop at oil-water interfaces. It is also discussed how the
mathematical representation of the numerical model can be transformed into computer code
automatically, and two test cases are presented which demonstrate that this simplified model
can capture typically observed phenomena robustly.

1. Introduction

The recovery of highly viscous hydrocarbons from reservoirs often relies on the
introduction of significant quantities of heat into the system. The resulting increase
in temperature dramatically reduces the viscosity of the hydrocarbon phase which
then enhances flow through the porous medium due to the increased mobility of
the oil phase. The modelling of this process is challenging on a number of fronts.
The array of interacting physical processes is large and diverse, and the interactions
between various processes must be properly captured. Furthermore, a number of
the equations which model particular processes are difficult to solve numerically,
demanding robust and flexible numerical solution strategies.

We consider here a simplified model for thermal recovery which retains phenom-
ena that are both key in the real physical problem and are particularly challenging
to solve robustly and stably with numerical methods. Our aim is to develop a
robust, flexible and extensible variational framework which can capture the key
physical processes during steam injection. The first step in this process is to de-
velop a formulation which is capable of modelling essential processes, albeit in a
highly simplified form, robustly. The simplified model we consider involves temper-
ature dependent two-phase flow through a porous medium coupled to heat trans-
port. While a number of effects are absent, numerically challenging aspects of the
problem are retained.

Several example simulations are presented to demonstrate the model and to
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illustrate that effects which are crucial in the recovery of heavy oil can be captured.
Large parts of the necessary computer code for the numerical examples have been
generated using newly developed techniques for automated code generation. The
numerical examples both support the proposed model as well as demonstrate the
potential of automated computer modelling techniques for complex multi-physics
problems.

The remainder of this work is organised as follows. The basic equations for two-
phase flow through porous media and heat transport are presented in Section 2,
which are followed in Section 3 by the proposed Galerkin finite element scheme.
An overview of the automated modelling approach is given in Section 3.2, followed
by numerical examples in Section 4, and conclusions are drawn in Section 5.

2. Governing equations for two-phase flow through a porous medium

We consider two-phase immiscible flow (oil/water) through a rigid porous medium.
The domain of interest is denoted by Ω ⊂ Rd, 1 < d ≤ 3, and it is fixed in space.
The boundary of the domain Ω is denoted by ∂Ω and the outward unit normal
vector on ∂Ω is denoted by n. The overall medium has the porosity φ, and the
fraction of the pore volume occupied by oil, the oil saturation, is denoted by So
and the pore volume occupied by water, the water saturation, is denoted by Sw
such that So + Sw = 1. It is assumed that no exchange of mass between the two
phases can take place.

Some well-known equations for flow through porous media are briefly derived in
order to shed some light on the assumptions which may require special considera-
tion for fluids with high viscosity.

2.1. Conservation of mass

In the context of multiphase flow through a porous medium, mass conservation for
the α-phase in the absence of a source term reads:

∂ (φραSα)
∂t

+∇ · (ραuα) = 0, (1)

where ρα is the density of the α-phase, t denotes time and uα is the Darcy velocity
of the phase α. The extension of Darcy’s law to multiphase flow reads

uα = −krακ
µα

(∇pα − ραg) , (2)

where krα is the relative permeability of the α-phase, κ is the permeability tensor,
pα is the pressure in the α-phase and g is the acceleration due to gravity. Darcy flow
can be derived from conservation of momentum under a number of assumptions and
with an appropriate constitutive model [1]. A number of the necessary assumptions
to arrive at Darcy’s law from conservation of momentum are likely violated when
considering heavy oil. In particular, the assumption underpinning Darcy flow that
the fluid phases are macroscopically inviscid does not hold. Despite this, Darcy
flow is still commonly adopted in practice for hydrocarbons with high viscosity.

We restrict our developments to two-phase flow, with α = o denoting the oil phase
and with α = w denoting the water phase. Following the assumption of a rigid
skeleton, ∂φ/∂t = 0, assuming that the oil and water phases are incompressible
and assuming that the po = pw (zero capillary pressure, a common assumption for
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heavy oil reservoirs), insertion of the Darcy velocity (2) into the mass conservation
equation (1) leads to the elliptic continuity-like equation

∇ · [λκ∇p− (λoρo + λwρw)κg] = 0, (3)

where λα is the phase mobility,

λα =
krα
µα

, (4)

and λ is the total mobility,

λ = λo + λw. (5)

For the range of temperatures that we will be considering in the numerical exam-
ples, the validity of the incompressibility assumption is compromised. It does how-
ever lead to substantial simplifications while retaining key physical mechanisms,
and in particular features which are challenging to model numerically.

The total velocity u is defined as

u = uo + uw, (6)

which is divergence-free under the assumptions of incompressible phases
and ∂φ/∂t = 0. Using the expression for the phase velocities (2) in the conser-
vation of mass equation (1) leads to an equation for the water saturation,

φ
∂S

∂t
+∇ · (fu+ κλof (ρw − ρo) g) = 0, (7)

where here and henceforth for notational convenience S = Sw, and f is the frac-
tional flow function for the water phase,

f =
λw
λ
. (8)

Using incompressibility of the total velocity u leads to the well-known Buckley-
Leverett equation,

φ
∂S

∂t
+ f,Su · ∇S +∇ · (κλof (ρw − ρo) g) = 0, (9)

where f,S = ∂f/∂S. The saturation equation is nonlinear since f will depend on S,
and due to the assumption of zero capillary pressure it is purely hyperbolic. The
saturation equation admits shocks, which represent an oil–water interface. The nu-
merical treatment of the advective term is often a delicate point when working with
advective fields which are solenoidal in the exact case since in computations it is
possible that the advective velocity field is not locally divergence-free. A discussion
of this issue in the context of Galerkin and stabilised finite elements methods can
be found in Ref. [2].

2.2. Conservation of energy

In considering conservation of energy, kinetic and potential energy are neglected,
and the liquid phases are assumed to be macroscopically inviscid. Furthermore,

Page 3 of 14

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

September 19, 2008 17:12 Philosophical Magazine paper

4 G.N. Wells, T. Hooijkaas, X. Shan

under the assumption that no momentum transfer takes place between phases,
conservation of energy reads

∂

∂t

[
φ
∑
α

ραHαSα + (1− φ) ρsHs

]
+∇ ·

(∑
α

ραHαuα

)
−∇ · kT∇T = 0, (10)

where the solid phase is denoted by the subscript s, α = o, w, Hα is the enthalpy
per unit mass of phase α, ρs is the mass density of the solid skeleton and Hs is the
enthalpy of the solid skeleton. The scalar kT is an ‘equivalent’ thermal conductivity.
Following [3] and consistent with incompressibility of the phases, we ignore the
work done by the pressure and set Hα = Uα, where Uα is the internal energy of
the α-phase. Using conservation of mass (1), the conservation of energy expression
can be rephrased as

φ
∑
α

ραSα
∂Hα

∂t
+ (1− φ)

∂ (Hsρs)
∂t

+
∑
α

∇Hα · (ραuα)−∇ · (kTt
∇T ) = 0. (11)

The specific heat Cα is defined as dHα/dT , which leads to

M
∂T

∂t
+ (ρoCouo + ρwCwuw) · ∇T −∇ · (kTt

∇T ) = 0, (12)

where

M = φ
∑
α

ραCαSα + (1− φ) ρsCs. (13)

Under the assumptions ρC = ρoCo = ρwCw = ρsCs, the conservation of energy ex-
pression reduces to the conventional advective-diffusive scalar transport equation,

∂T

∂t
+ u · ∇T = ∇ · ν∇T, (14)

where ν = kTt
/ρC. We consider this highly simplified form of conservation of energy

as it still possesses a number of key features and is difficult to solve numerically
when advective transport dominates.

2.3. Temperature dependencies

Various terms in the model can be made temperature dependent. When modelling
thermal recovery methods, we will consider a strong dependency of the oil viscosity
on the temperature. The precise nature of this dependency is presented with the
relevant examples.

3. Galerkin finite element formulation

We develop a finite element formulation with a view to more complex models which
will incorporate more physical phenomena and more fields. This mandates the use
of staggered solution procedures as it will most certainly not be tractable to solve all
fields in a coupled fashion. Where necessary stabilisation techniques are employed
and the computer code is generated largely automatically using a variational form
compiler.
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3.1. Galerkin problems

The domain of interest is triangulated into n non-overlapping elements Ei such
that Ω̄ =

⋃n
i=1 Ēi. The boundary Γ = ∂Ω is partitioned such that: Γ = Γp

⋃
Γu,

Γp
⋂

Γu = ∅; ΓS ⊂ Γ; and Γ = ΓT
⋃

Γq, ΓT
⋂

Γq = ∅; Before proceeding with the
various formulations, it is useful to define some function spaces. Consider

P =
{
p ∈ H1 (Ω) : p ∈ P 2 (Ei) ∀ i, p = 0 on Γp

}
, (15)

P ? =
{
p ∈ H1 (Ω) : p ∈ P 2 (Ei) ∀ i, p = gp on Γp

}
, (16)

U =
{
u ∈ H1 (Ω) : u ∈ P 1 (Ei) ∀ i, u = 0 on ΓS

}
, (17)

U? =
{
u ∈ H1 (Ω) : u ∈ P 1 (Ei) ∀ i, u = gS on ΓS

}
, (18)

V =
{
v ∈ H1 (Ω) : v ∈ P 1 (Ei) ∀ i, v = 0 on ΓT

}
, (19)

V ? =
{
v ∈ H1 (Ω) : v ∈ P 1 (Ei) ∀ i, v = gT on ΓT

}
, (20)

where L2 is the space of square-integrable functions, H1 is the Sobolev space of
functions with square-integrable derivatives, P k (Ei) defines Lagrange finite ele-
ment basis functions of order k on the element Ei, and gp, gS and gT are prescribed.
In the context of the differential equations that we are considering, the last three
terms will be associated with Dirichlet boundary conditions.

In reservoir simulation, H (div,Ω) elements [4] are often used to guarantee local
mass conservation and to improve the accuracy of the velocity field. We have cho-
sen to work with conforming Lagrange basis functions and not to solve the Darcy
flow problem in a mixed fashion. In attempting to maintain the quality of the
velocity field, we will use quadratic basis functions for the pressure field. Determi-
nation of the most appropriate strategy, particularly when compressible phases are
considered, is a topic which requires further investigation.

The Galerkin problem corresponding to the pressure equation (3) reads: given
λn, λno , λnw, hn+1

u , find pn+1 ∈ P ? such that

−
∫

Ω
∇q · λnκ∇pn+1 dΩ = −

∫
Ω
∇q · ((λnoρo + λnwρw)κg) dΩ

+
∫

Γu

qhn+1
u dΓu ∀ q ∈ P, (21)

where Γu is the part of the boundary upon which the normal component of the
total velocity is specified, and hn+1

u is the prescribed normal velocity at time tn+1.
Using pn+1, the phase velocities and total velocity are updated according to Darcy’s
law (2), yielding un+1

o , un+1
w and un+1. The saturation equation (9) and the heat

transport (14) equation are then solved using the updated advective velocity un+1.
A stabilised Galerkin problem for the saturation equation using the streamline

upwind Petrov-Galerkin method [5] and shock-capturing operator reads: given Sn,
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fn,S , fn, un+1 and λno , find Sn+1 ∈ U? such that

∫
Ω
vφ
Sn+1 − Sn

∆t
dΩ +

∫
Ω
vfn,Su

n+1 · ∇Sn+1 dΩ

+
∑
Ei

∫
Ei

(
un+1 · ∇v

)
τsr

n+1 dΩ +
∑
Ei

∫
Ei

νshock∇v · ∇Sn+1 dΩ

= −
∫

Ω
v∇ · (κλnofn (ρw − ρo) g) dΩ ∀ v ∈ U, (22)

where
∑

Ei

∫
Ei

(·) indicates integration over all element interiors, rn+1 is the resid-
ual at time step n+ 1,

rn+1 = φ
Sn+1 − Sn

∆t
+ fn,Su

n+1∇Sn+1 +∇ · (κλnofn (ρw − ρo) g) . (23)

and τs is a stabilisation parameter which is defined element-wise. We have adopted

τs =
h

2‖un+1‖
(24)

where h is a measure of the element size. This expression is well-accepted for purely
hyperbolic problems [6]. The term νshock is an artificial shock viscosity defined as

νshock =


βh|rn+1|
2‖∇Sn‖

if ‖∇Sn‖ 6= 0,

0 otherwise,
(25)

where β is a parameter. This artificial shock viscosity was proposed by Codina [7],
although we have not adopted an anisotropic version. Based on numerous numeri-
cal experiments, some of which are reported in Section 4, a value of β = 2 has been
found to be effective in that jumps in the solution are typically spread across two
elements. Oscillations about discontinuities are avoided without overly smooth-
ing the front. We note that both stabilisation terms in the variational problem
are residual based, i.e. they vanish for the exact solution. For purely hyperbolic
problems, a variety of specialised and effective numerical methods exist. We have
deliberately chosen a generic approach as it can be extended to more general cases
in which the saturation equation is not purely hyperbolic.

Finally, for the heat transport problem, the stabilised Galerkin problem reads:
given Tn and un+1, find Tn+1 ∈ V ? such that

∫
Ω
w
Tn+1 − Tn

∆t
dΩ +

∫
Ω
wun+1 · ∇Tn+1 dΩ +

∫
Ω
∇w · ν∇Tn+1 dΩ

+
∑
E

∫
E
un+1 · ∇wτTr

n+1
T dΩ =

∫
Γq

whn+1
q dΓ ∀ w ∈ V, (26)

where Γq is the part of the boundary on which the diffusive heat flux is prescribed
and hn+1

q is the prescribed diffusive heat flux at time tn+1. For the heat equation,
we adopt a definition of the stabilisation parameter which takes into account the
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presence of a diffusive term [8],

τT =
(

1− 1
Pe

)−1 h

2‖un+1‖
, (27)

where element Péclet number Pe =
∥∥un+1

∥∥h/2ν. The residual associated with the
heat transport equation reads

rn+1
T =

Tn+1 − Tn

∆t
+ un+1 · ∇Tn+1 −∇ · ν∇Tn+1. (28)

With the new water saturation and temperature, all quantities which are dependent
on the saturation and the temperature are updated, and the procedure is advanced
in time and repeated.

In summary, the solution procedure involves:

Algorithm 1:

(1) Solve the pressure equation (21).
(2) Compute the Darcy velocity.
(3) Solve the saturation (22) and heat transport (26) equations.
(4) Update the fractional flow functions, viscosities and densities, and advance
in time.

Each field is decoupled in the solution process, and at each step an implicit solu-
tion procedure is adopted. The problem is linearised about the previous time step
and advanced in time. It is likely that such a procedure will only be first-order
accurate in time regardless of the time stepping scheme used for each equation,
therefore we have used the backward Euler approach. Experience from the simula-
tion of various problems indicates that the stabilised scheme is particularly robust.
To gain further insights into the stability, conservation and accuracy properties of
the procedure, detailed a priori analysis is required.

A significant number of numerical solution procedures are used in reservoir en-
gineering, and an overview of some common approaches can be found in Ref. [9].
Noteworthy is that variational methods are relatively novel in this context.

3.2. Automated computer code generation

Numerical models and the resulting computer code for modelling enhanced recov-
ery methods for heavy oil are marked by complexity and diversity. This makes the
problem a candidate for exploring the potential of automated computer code gener-
ation for solving differential equations. We have therefore developed computer code
for the proposed model using recent developments from the FEniCS Project [10]. In
particular, the FEniCS Form Compiler (FFC) [11, 12] is used to generate the com-
puter code required for computing the generating element matrices and vectors,
and the library DOLFIN [13] is used to assemble and solve the resulting equations.
All components of the FEniCS Project are licenced under a GNU Public License
or a Lesser GNU Public License and can be found at www.fenics.org.

The form compiler FFC produces low-level code from a high-level input which
resembles mathematical notation. By default, FFC will produce C++ output con-
sistent with the Unified Form-assembly Code format (UFC) [14]. The automati-
cally generated code can be used in combination with any library that supports the
UFC format, such as DOLFIN. The compiler approach for variational forms per-
mits various a priori optimisations. A number of optimisations are are employed,
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such as alternative element tensor representations [11] and loop unrolling. Partic-
ularly appealing is that mixed function spaces can be used trivially in the context
of multi-physics problems. Using an automated modelling approach which mirrors
mathematical formulations, models can be easily and rapidly extended and mod-
ified, and the resulting code is potentially faster than hand-optimised specialised
code.

4. Numerical examples

Two example problems are presented to illustrate the model and the physical pro-
cesses that we wish to simulate. Both use unstructured meshes with triangular
elements. This permits the consideration of complex geometries and opens the
possibility of using spatially adaptive schemes which are attractive in the context
of thermal recovery modelling.

4.1. Model parameters

For all examples, the Corey model [15] for the relative permeability is used. For
this model the relative permeabilities read

krw = krw,end

(
S − Swc

1− Swc − Sor

)nw

, (29)

kro =
(

1− S − Sor
1− Swc − Sor

)no

, (30)

where krw,end is the water relative permeability when S = 1−Sor, where Sor is the
irreducible oil saturation, Swc is the connate water saturation and the exponents
nw and no are model parameters. For all examples we adopt Swc = 0.15, Sor = 0.15,
nw = 3.5, no = 1.5 and krw,end = 0.5.

The viscosity of typical heavy oil drops exponentially with increasing tempera-
ture. We therefore adopt the relationship

µo = c1

(
T/T ref

)−c2
, (31)

where c1 > 0, c2 ≥ 0 and T ref > 0.

4.2. Water flooding

The case of water flooding in a rectangular domain is simulated to examine the
performance of the model in the presence of shocks in the saturation field. A
rectangular domain Ω = (0, 3)× (0, 1) (length units of metres) is considered, with
the pressure set equal to 100 Nm−2 at the inflow boundary and zero at the outflow
boundary,

p =

{
100 if x1 = 0,
0 if x1 = 3,

(32)

and no net flow is permitted in the x2 direction,

u · n = 0 if x2 = 0 or x2 = 1. (33)
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(a) (b)

(c) (d)

Figure 1. Water saturation profiles for the water flooding test case for (a) µo/µw = 0.1; (b) µo/µw = 1;
(c) µo/µw = 10; and (d) µo/µw = 100.

For the saturation equation, the initial saturation S (x, 0) = 0.15 and the saturation
on the boundary at x1 = 0 is increased from 0.15 to 0.8 linearly as a function
of time over 10 time increments. Gravity effects are neglected, porosity φ = 1,
permeability κ = I m2 and temperature effects are not included. For the water
phase µw = 1 Nsm−2, and the oil viscosity is varied for four tests. For µo/µw = 0.1,
∆t = 5× 10−4 s; µo/µw = 1, ∆t = 1× 10−3 s; µo/µw = 10, ∆t = 2.5× 10−3 s; and
µo/µw = 100, ∆t = 1× 10−2 s. The time steps are chosen such that the water-oil
interfaces travel half the domain in a comparable number of time steps.

Figure 1 shows the saturation profiles for the various oil–water viscosity ratios at
the time at which the water-oil interface is located approximately at the mid-point
of the domain. The elevation indicates the water saturation, and in all cases it is
equal to 0.8 at the left-hand boundary and 0.15 at the right-hand boundary. For all
viscosity ratios, the shock is spread over approximately two cells and no overshoot
can be observed behind the water–oil interface. Minimal overshoot can be observed
in front of the shock in some cases. This could be attributed to the ‘time lag’ in
the computation of the shock capturing viscosity.

4.3. Steam assisted gravity drainage prototype

The example in this section aims to qualitatively reproduce the basic processes
active during a more complex process which is known as steam assisted gravity
drainage (SAGD) [16]. SAGD involves the injection of steam at a horizontal injec-
tion well, with a horizontal production well placed below the injection well. Driven
by buoyancy effects, heat is transported upwards, resulting in a dramatic drop in
oil viscosity. Then, due to the increased mobility of the oil and the influence of
gravity, oil flows downwards towards the production well.

The reservoir configuration to be modelled is shown in Figure 2. Two wells are
visible at the centre of Figure 2. The upper well is the injection well and the lower
well is the production well. The lower well is located 4 m from the bottom of the
domain, and the distance between the injection and production wells is 6 m. Hot
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2
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 m

140 m

Figure 2. Problem geometry for the SAGD-like test case.

water is injected at the injection well. Two cases are considered: the first involving a
negligible imposed pressure gradient between the wells and strong buoyancy effects;
and the second involving an induced pressure gradient between the wells and no
buoyancy effects. In both cases, the initial water saturation is set to S(x, 0) = 0.32
and the initial temperature T (x, 0) = 15 ◦C. The oil density ρ0 = 1.1× 103 kgm−3

and the water density ρw = 1.0 × 103 kgm−3. Both are held constant. The oil
viscosity evolves according to equation (31) with c1 = 2.77×106Nsm2, c2 = −3.74,
and T ref = 1 ◦C. The water viscosity is kept constant at µw = 8.4× 10−4 Nsm−2,
and the thermal diffusivity is constant at ν = 6.16× 10−7 m2s−1.

Pertinent to the pressure equation, the pressure is prescribed at the injection and
production wells, and no flow is permitted (u ·n = 0) at the top, bottom and sides
of the domain. For the saturation equation, the water saturation S is prescribed at
the injection well where it is increased linearly as a function of time from 0.15 to
0.84 over 80 time increments and is then held constant. All other boundaries are
outflow or no-flow, hence the saturation is not prescribed. For the heat equation,
the temperature is prescribed at the injection well, and is increased linearly as a
function of time from 15 ◦C up to 200 ◦C over 80 time steps and is then held
constant. At all other boundaries, the diffusive heat flux across the boundary is
set to zero and the advective flux is not prescribed as they are no-flow or outflow
boundaries. A constant time step of ∆t = 1.25× 103 s is used.

For the first example, buoyancy effects are exaggerated by setting g = 9.81 ×
103 ms−2. The pressure p = 4.4 × 106 Nm−2 at the injection well and p = 4.39 ×
106 Nm−2 at the recovery well. Therefore the externally imposed pressure gradient
between the wells is negligible.

The evolution of the water saturation for this problem is shown in Figure 3. The
oil in a significant region around the injection well has been displaced by water
and recovered. The processes involved can be further elucidated by considering the
evolution of the temperature field, shown in Figure 4. The warm region mirrors
closely the displaced oil region. Heat has been transported upwards by the water
phase which moves upwards due to buoyancy. The rise in temperature causes a drop
in the oil viscosity and oil then flows downwards, as shown in Figure 5 at various
time steps. In Figure 5, the contours indicate the magnitude of the oil velocity
and the arrows indicate the direction. Clearly, the oil velocity is highest at the
boundaries of the heated zone. Gravity drives the oil towards the production well.
As the recovery process proceeds, the effectiveness of the gravity driving force is
reduced as the flow direction transitions from near vertical towards the horizontal.

This problem has also been computed with a mesh that has been refined by a
factor of two in both directions. The computed results resemble each other closely,
and as one would reasonably expect with a refined mesh, the oil-water interface is
sharper.

The second example examines the response in the presence of an imposed pres-
sure gradient between the two wells and the absence of buoyancy effects. For this
problem, p = 4.4×106 Nm−2 at the injection well and p = 0 at the production well,
and ρo = ρw. The water saturation and the temperature field are shown in Figure 6
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(a) 125 steps

(b) 250 steps

(c) 500 steps

(d) 1000 steps

(e) 2000 steps

Figure 3. Evolution of the water saturation S in the presence of negligible imposed pressure gradient.

after 2000 time steps. Clearly, oil has been recovered primarily from the region be-
tween the two wells and the recovered domain is far smaller compared with the
gravity assisted case (see Figure 3). The small recovery domain is reflected in the
temperature field. Most of the injected heat is transported directly towards the
production well. This can be seen by examining the water velocity field shown in
Figure 7. Similar to the oil velocity plots, in Figure 7 the contours indicate the
magnitude of the water velocity and the arrows indicate the direction of the flow.
Much of the heated water which is injected moves directly to the production well
and the region from which oil is recovered does not evolve. This phenomena can
be reinforced if the geomechanical response is considered, as the high flow velocity
between the wells can lead to a reduction in porosity. This is particularly the case
for heavy oils as they are usually found in cohesion-less sands rather than the more
typical porous rocks.

5. Conclusions

A stabilised Galerkin formulation has been presented for modelling temperature
effects on two-phase flow through porous media. It represents a simplified model for
thermal oil recovery techniques and provides a platform for further developments in
modelling steam injection into porous media. The Galerkin finite element approach
has been chosen as it naturally permits the use of unstructured grids and extends
naturally to various different equations which will play a role in more sophisticated
models incorporating more interacting processes.

Page 11 of 14

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

September 19, 2008 17:12 Philosophical Magazine paper

12 G.N. Wells, T. Hooijkaas, X. Shan

(a) 125 steps

(b) 250 steps

(c) 500 steps

(d) 1000 steps

(e) 2000 steps

Figure 4. Evolution of the temperature field T in the presence of negligible imposed pressure gradient.

Stabilisation techniques have been used to deal with the difficulties which arise
when advection dominated transport processes are involved and a shock capturing
term has been used to deal with the discontinuity at the oil–water interface which
arises due to the assumption of zero capillary pressure. These residual-based stabil-
isation techniques have led to stable results, but such methods must be used with
care as it is possible that important physical instabilities are being suppressed. In
particular, one may expect fingering when displacing a phase with another phase
which is significantly more mobile, and stabilisation schemes may suppress this
phenomenon. This point is deserving of further attention.

Finally, the complexity of the thermal recovery process and the resulting com-
puter models places a heavy burden on software development. Therefore we have in-
vestigated the application of new automated code generation techniques and shown
by example that automation concepts and tools can be applied for such problems.
These tools are in fact extremely useful for these types of models to speed the de-
velopment process, produce potentially faster computer code, and they provide a
high degree of flexibility to rapidly experiment with different models and numerical
formulations.
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(a) 125 steps (b) 250 steps

(c) 500 steps (d) 1000 steps

(e) 2000 steps

Figure 5. Evolution of oil velocity field uo in the presence of negligible imposed pressure gradient.

(a)

(b)

Figure 6. Contours of the (a) water saturation S and (b) temperature field T in the presence of a
significant induced pressure gradient after 2000 steps.
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