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Abstract

We investigate the T (3)-gauge theory of static dislocations in continuous solids.
We use the most general linear constitutive relations bilinear in the elastic distor-
tion tensor and dislocation density tensor for the force and pseudomoment stresses
of an isotropic solid. The constitutive relations contain six material parameters. In
this theory both the force and pseudomoment stresses are asymmetric. The theory
possesses four characteristic lengths ℓ1, ℓ2, ℓ3 and ℓ4 which are given explicitely.
We first derive the three-dimensional Green tensor of the master equation for the
force stresses in the translational gauge theory of dislocations. We then investigate
the situation of generalized plane strain (anti-plane strain and plane strain). Using
the stress function method, we find modified stress functions for screw and edge
dislocations. The solution of the screw dislocation is given in terms of one indepen-
dent length ℓ1 = ℓ4. For the problem of an edge dislocation, only two characteristic
lengths ℓ2 and ℓ3 arise with one of them being the same ℓ2 = ℓ1 as for the screw
dislocation. Thus, this theory possesses only two independent lengths for gener-
alized plane strain. If the two lengths ℓ2 and ℓ3 of an edge dislocation are equal,
we obtain an edge dislocation which is the gauge theoretical version of a modified
Volterra edge dislocation. In the case of symmetric stresses we recover well known
results obtained earlier.

Keywords: Gauge theory; dislocations; defects; incompatible elasticity, torsion,
Green tensor.
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1 Introduction

1.1 Reviewing remarks

Gauge theories are very successful in high energy physics to understand and to explain
fundamental interactions (see, e.g., [1, 2]). Important solutions in gauge theories are
topological strings like the so-called Abrikosov-Nielson-Olesen string [3, 4]. It is also
known that the theories of gravity and generalized gravity can be understood as gauge
theories of the Poincaré group and the affine group, respectively [5, 6]. For example,
the teleparallel formulation of Einstein’s general relativity can be understood as a gauge
theory of the four-dimensional translation group (see, e.g., Hehl [7]). Thus, the torsion
tensor is not just a tensor, but rather a very special tensor that is related to the translation
group [6]. In such theories mathematical solutions for cosmic strings and other topological
defects in space-time are found [8]. But it is hard to observe them by experiment.

An application of the three-dimensional translational gauge theory is the gauge theo-
retical formulation of dislocations. The torsion tensor plays the role as the translational
field strength. In such a theory dislocations appear quite naturally as topological defects
(strings). Dislocations play an important role in solid state physics [9]. It is easy to
investigate them experimentally. Therefore, the gauge theory of dislocations is the best
example to investigate the translational gauge theory as a physical field theory. Pioneering
work in the field of the translational gauge theory of defects in solids was made by Kadić
and Edelen [10, 11], Edelen and Lagoudas [12]. It is well known that dislocations are the
fundamental carrier of plasticity. The hope of the gauge theory of dislocations is to un-
derstand plasticity as a ‘fundamental’ interaction in solids. Materials display strong size
effects when the characteristic length scales are of the order of micrometers down to a few
nanometers. With the interest in miniaturization of devices, the length scales associated
with nanodevices are very small and classical theories of elasticity and plasticity are not
applicable. Classical elasticity and plasticity theories cannot explain the size dependence
because their constitutive laws possess no internal material lengths. In metals, the phys-
ical origin of size effects can be related to dislocations. Gauge theory of dislocations may
be used to explain size effects and to model mechanical properties of miniaturized devices.
In the gauge theory of dislocations the dislocation density tensor which is the curl of the
elastic distortion or of the negative plastic distortion multiplied by material parameters
which define internal material lengths enter the constitutive relations. The gauge theory
of dislocations shall be a step in the direction of a microscopic theory of plasticity that
incorporates interaction of structural defects. The dislocation should play a similar role
as a gauge boson like the photon as a gauge boson in Maxwell’s theory. Nevertheless,
the theory of Kadić and Edelen [11], Edelen and Lagoudas [12] has some lacks. They
used very special constitutive relations. For example, the force stress tensor is symmetric.
But in the continuum theory of dislocations it is known that the force stress tensor has
to be asymmetric at least in the dislocation core region [13, 14] and that moment stress
is the specific response to dislocations [15]. Such a moment stress cannot be calculated
from elastic moduli only. A realistic constitutive law between the moment stress and the
dislocation density tensor has to be used to built a physical dislocation theory.

Therefore, such a theory is not the most general isotropic dislocation gauge theory.
Their theory is just able to give an acceptable solution of a screw dislocation after some ad
hoc assumptions [16, 17]. Moreover, it is not possible to give a correct solution of an edge
dislocation. Especially, the stress component σzz is incorrect and the condition of plane

2

Page 2 of 50

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

strain is not satisfied [18]. Such a dislocation gauge theory with symmetric force stresses
possesses only one additional material parameter and two length scales can be defined to
describe size-effects. In order to explain bending and torsion experiments one needs at
least two length scales. One question that arises is how many characteristic length scales
should appear in an improved gauge theory of dislocations? Recently, Sharma and Ganti
[19] have combined Edelen’s gauge model with a simple strain gradient elasticity. These
authors applied it to a screw dislocation.

These drawbacks of the Edelen model have been a motivation for further investiga-
tions [18, 20]. The so-called Einstein choice has been investigated by Malyshev [18] and
Lazar [21, 22]. Their solution of a screw dislocation looks to be acceptable for theories
with symmetric force stresses. In the solution of an edge dislocation found by Malyshev
[18], a strange far field emerges, which shows an oscillating behavior. In addition, the
condition of plane strain is not fulfilled. Later, Lazar [23] tried to find a more realistic
gauge theoretical solution for an edge dislocation. He used another constitutive relation
and it was necessary to introduce additional gradients of the elastic rotation which is a
little sophisticated. Thus, up to now, the case of an edge dislocation has not been treated
satisfactory in the gauge theoretical framework. Quite recently, Malyshev [24] has used
the Einsteinian T (3)-gauge approach to calculate the stress tensor of a screw dislocation
in the second order. Some other proposals are given by Katanaev and Volovich [25], Popov
and Kröner [26], Kröner [27]. We want to note that all these kinds of gauge theories of
dislocations use symmetric force stresses and some special choices for the constitutive law
of the moment (or hyper) stresses.

1.2 The subject of the paper

In this paper we want to investigate the translational gauge theory of dislocations with
the most general linear isotropic constitutive relations quadratic in the physical state
quantities for the force and pseudomoment stress tensors with six material coefficients.
Such a theory was originally proposed by Lazar [21]. However, Lazar [21] used a simplified
version for dislocations. Our purpose is to derive the general framework of such a theory
and to apply it to find new analytical solutions of straight screw and edge dislocations
in an infinite medium. The paper consists of five sections. Section 1 is the introduction.
In section 2 we give the basics of the translational gauge theory of dislocations. We
give the relation for positive definiteness of the elastic energy and the dislocation core
energy. We give the relation between the pseudomoment stress tensor and the moment
stress tensor. We derive the Euler-Lagrange equation in terms of the asymmetric stress
tensor. This is the central equation for an isotropic material with dislocations. We set
up the relation to other gauge theories of dislocations proposed earlier. We calculate the
three-dimensional Green tensor for the central equation of the asymmetric force stresses.
In this manner we are able to introduce four characteristic length scales of the gauge
theory with asymmetric force stresses. Later we investigate dislocations in the framework
of generalized plane strain. Sections 3 and 4 present the gauge theoretical solutions of
straight screw and edge dislocations in an infinite medium with asymmetric force stresses.
We will calculate the elastic distortion and dislocation density (torsion) tensors and the
force and pseudomoment stresses of screw and edge dislocations. We prove that the force
stresses of a screw dislocation and an edge dislocation have to be asymmetric instead
of symmetric in order to guarantee nonnegative energy. Section 5 concludes the paper.
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Details of dislocations in asymmetric elasticity are given in the appendices A and B.

2 Gauge theory of dislocations

2.1 Foundations

In the translational gauge theory of dislocations the displacement vector ui is defined up
to a gauge transformation – a local translation τi(x)

ui → ui + τi(x) (2.1)

and the translational gauge field φij transforming under the local translation in a suitable
form

φij → φij − τi,j(x). (2.2)

From the mathematical point of view, the gauge field φij is the translational part of the
generalized affine connection [20]. In the translational gauge theory, the elastic distortion
is defined by the translational gauge-covariant derivative according to

βij = ∇jui := ui,j + φij. (2.3)

Thus, the elastic distortion is gauge independent and, therefore, a physical state quantity.
The asymmetric tensor φij may be identified as the negative plastic distortion tensor [20,
21]. The elastic strain energy is a function of the elastic distortion. It reads

Wel =
1

2
βijσij (2.4)

with the specific response

σij =
∂Wel

∂βij

. (2.5)

It is the analog of the Piola-Kirchhoff stress tensor. It is an asymmetric stress tensor.
The most general isotropic constitutive relation has three material coefficients. Thus, the
asymmetric force stress tensor has the form1

σij = λ δijβkk + 2µ β(ij) + 2γ β[ij]. (2.6)

Here µ and λ are the Lamé coefficients. The coefficient γ is an additional material
parameter due to the skew-symmetric part of the elastic distortion (the elastic rotation).
Thus, γ is the module of rotation (see also Kröner [28]). The skew-symmetric stress σ[ij] is
caused by the (local) elastic distortion β[ij]. If γ = 0 in Eq. (2.6), we obtain the Hooke law
with σ[ij] = 0. Thus, in this case the elastic rotation β[ij] is undetermined. The positive
semi-definiteness of the elastic distortion energy Wel ≥ 0 requires the restriction

µ ≥ 0, γ ≥ 0, 2µ + 3λ ≥ 0. (2.7)

1We are using the notations A(ij) ≡
1
2 (Aij + Aji) and A[ij] ≡

1
2 (Aij − Aji).
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Another physical state quantity is the translational gauge field strength – the torsion
tensor

Tijk = φik,j − φij,k, Tijk = −Tikj (2.8)

and

Tijk = βik,j − βij,k. (2.9)

It has the physical meaning of the dislocation density tensor

αij =
1

2
ǫjklTikl = ǫjklβil,k. (2.10)

They fulfill the translational Bianchi identity

ǫjklTijk,l = 0, αij,j = 0. (2.11)

Thus, the physical state quantities are the elastic distortion, βij , and the dislocation
density tensor Tijk.

The dislocation core energy contains only the translational gauge field strength and is
given by

Wdisl =
1

4
TijkHijk (2.12)

with the translational gauge field momentum tensor

Hijk = 2
∂Wdisl

∂Tijk
, Hijk = −Hikj. (2.13)

The translational gauge field momentum tensor Hijk is a very special hyperstress tensor.
It is the response quantity to the dislocation density tensor and has only nine independent
components. It is convenient to perform an irreducible decomposition of the torsion, from
which we can construct the most general linear and isotropic constitutive law between the
dislocation density and the hyperstress in the following way [20, 21]

Hijk =
3∑

I=1

aI
(I)Tijk. (2.14)

Here a1, a2 and a3 are nonnegative material coefficients due to the positive semi-definiteness
if the dislocation core energy Wdisl ≥ 0. They have the dimension of a force. The irre-
ducible decomposition of the torsion under the rotation group SO(3), with the numbers
of independent components 9 = 5 ⊕ 3 ⊕ 1, is given by

Tijk = (1)Tijk + (2)Tijk + (3)Tijk. (2.15)

The tensor, the trace and the axial tensor pieces are defined by (see also [6, 21])

(1)Tijk = Tijk −
(2)Tijk −

(3)Tijk (tentor) (2.16)

(2)Tijk :=
1

2
(δijTllk + δikTljl) (trator) (2.17)

(3)Tijk :=
1

3
(Tijk + Tjki + Tkij) (axitor). (2.18)
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The hyperstress tensor may be written as

Hijk = c1 Tijk + c2

(
Tjki + Tkij

)
+ c3

(
δijTllk + δikTljl

)
(2.19)

with the abbreviations

c1 :=
1

3

(
2a1 + a3

)
, c2 :=

1

3

(
a3 − a1

)
, c3 :=

1

2

(
a2 − a1

)
. (2.20)

The inverse relations are

a1 = c1 − c2 ≥ 0, a2 = c1 − c2 + 2c3 ≥ 0, a3 = 2c2 + c1 ≥ 0. (2.21)

Since βij and Tijk are uncoupled from each other, the conditions of positive semi-definiteness,
W = Wel + Wdisl ≥ 0, can be studied separately: Wel ≥ 0 and Wdisl ≥ 0. Thus, the char-
acteristic constants of the material have to satisfy the conditions (2.7) and (2.21).

With the relations Him = 1
2
ǫjkmHijk and Tijk = ǫjknαin, we obtain from Eq. (2.14) the

irreducible decomposition

Hij = a1

(
α(ij) −

1

3
δijαkk

︸ ︷︷ ︸
tentor: (1)αij

)
+ a2 α[ij]︸︷︷︸

trator: (2)αij

+ a3
1

3
δijαkk

︸ ︷︷ ︸
axitor: (3)αij

. (2.22)

Thus, the axitor represents a set of three perpendicular forests of screw dislocations of
equal strength. The trator describes forests of edge dislocations: αxy = −αyx, αxz = −αzx

and αyz = −αzy. The tentor is the deviator of the dislocation density tensor and it
represents forests of edge dislocations: αxy = αyx, αxz = αzx and αyz = αzy and screw
dislocations: (1)αxx = αxx − 1

3
(αxx + αyy + αzz), (1)αyy = αyy − 1

3
(αxx + αyy + αzz),

(1)αzz = αzz −
1
3
(αxx + αyy + αzz) with (1)αxx +(1) αyy +(1) αzz = 0. A similar constitutive

relation was given earlier by Hehl and Kröner [13], Kröner [14], Katanaev and Volovich
[25], Popov and Kröner [26]. Alternatively, the dislocation core energy (2.12) may be
rewritten in the form

Wdisl =
1

2
αijHij . (2.23)

We want to note that a similar hyperstress tensor like (2.22) in terms of the dislocation
density tensor and with three material coefficients was derived by Eringen and Claus [29] in
a special case of micromorphic elasticity. Therefore, the static gauge theory of dislocations
is related to a micromorphic theory and not to a Cosserat theory if we identify the gauge
field φij with the micro-distortion tensor of micromorphic elasticity [30, 31]. In general,
a hyperstress tensor possesses 27 independent components and is the response quantity
to the gradient of the micro-distortion tensor. The isotropic constitutive relation of such
hyperstress tensor has 11 material parameters (see, e.g., Mindlin [30]).

Since the tensor Hi[jk] has only nine independent components like a couple stress
tensor, the following question arises: In which way is the tensor Hijk related to the couple
stress tensor? The contortion tensor is defined in terms of the torsion tensor according
to [32, 33, 34]

Kijk = −
1

2

(
Tijk + Tjki − Tkij

)
, Kijk = −Kjik. (2.24)
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A moment stress tensor possesses nine independent components and for an isotropic ma-
terial the constitutive relations has just three material parameters. The contortion tensor
contains nine independent rotational degrees of freedom. Obviously, Kijk is antisymmet-
ric in i, j, whereas Tijk is so in j, k. With the identity Klk = 1

2
ǫijlKijk, we recover the

so-called Nye curvature tensor [35] (see also [36, 37, 38, 39])2

Kij = αji −
1

2
δijαll, αij = Kji − δijKll. (2.25)

The moment stress (or spin moment stress tensor) is the response of the crystal to the
contortion

τijk =
∂W

∂Kijk
, τijk = −τjik. (2.26)

Thus, contortion produces moment stress and vise versa. We can rewrite the tensor Hijk

in terms of the moment stress tensor τijk as follows

Hijk = −τijk + τjki − τkij (2.27)

H[ij]k = −τijk. (2.28)

Therefore, the tensor Hijk is given in terms of moment stresses similar like the torsion
in terms of the contortion. Such a tensor Hi[jk] is called pseudomoment stress tensor or
sometimes spin energy potential tensor [41, 42, 5, 6]. In addition, we have

Hij = τji −
1

2
δijτll, τij = Hji − δijHll, (2.29)

where τij = ∂W/∂Kij . We conclude, torsion produces pseudomoment stress and vise
versa. Thus, pseudomoment stress is the specific response to dislocations. In the following
we will use the expression pseudomoment stress tensor for Hijk.

It is known that nontrivial traction boundary problems in the variational formula-
tion of the gauge theory of defects can be formulated by means of a so-called null La-
grangian [12, 17, 43]. When the null Lagrangian is added to the Lagrangian of elasticity,
it does not change the ‘classical’ Euler-Lagrange equation (force equilibrium in elasticity
theory) because the associated Euler-Lagrange equation, σ0

ij,j = 0, is identically satisfied.
After minimal replacement, ui,j → βij , the null Lagrangian

Wbg = ∂j

(
σ0

ijui

)
= σ0

ij,jui + σ0
ijui,j −→ σ0

ijβij, (2.30)

gives rise to a background stress tensor σ0
ij which can be considered as the nucleation field

in the gauge theory of defects [17].
The Euler-Lagrange equations of W = Wdisl + Wel − Wbg are given by

δW

δβij
≡

∂W

∂βij
− ∂k

∂W

∂βij,k
= 0 (2.31)

which can be expressed with Eqs. (2.5) and (2.13) as

Hijk,k + σij = σ0
ij (pseudomoment equilibrium). (2.32)

2We want to mention that Nye [35] derived originally the Eq. (2.25) if the elastic strain is zero (see
also discussion in Li et al. [40]). Here we have used the differential geometrical definition (2.24) of the
contortion in order to derive (2.25). For non-zero elastic strain Eq. (2.25) was derived by deWit [38].
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Thus, the null Lagrangian gives a contribution to the pseudomoment equilibrium condi-
tion. Because the pseudomoment stress Hijk is skewsymmetric in the indices j and k, the
force equilibrium follows from Eq. (2.32) as a continuity equation

σij,j = 0 (force equilibrium). (2.33)

We want to note that a similar equation like (2.32) has been earlier obtained by Trzȩsowski
and S lawianowski [44], Kröner [45] from a variational principle in nonlinear dislocation
theory. We may rewrite Eq. (2.32) as follows

ǫkjnHin,k = σij − σ0
ij (2.34)

in order to see that the pseudomoment stress tensor Hin is a kind of a stress function tensor
of first order [46]. Eq. (2.32) may be decomposed into the symmetric and antisymmetric
parts

H(ij)k,k + σ(ij) = σ0
(ij) (2.35)

H[ij]k,k + σ[ij] = σ0
[ij] (moment equilibrium). (2.36)

Hence, Eq. (2.36) has an appearance close to Cosserat’s moment of momentum equation
and H[ij]k has the meaning of a moment stress tensor. The divergence of the moment
stress tensor gives rise to asymmetric force stresses. The existence of moment stresses
H[ij]k demands asymmetric force stresses σ[ij]. However, due to Eq. (2.35) the equilib-
rium equations of dislocation theory deviate distinctly from those of the Cosserat theory
(see also Kröner [45]). Using Eqs. (2.9) and (2.19), we can rewrite the moment equilib-
rium (2.32) in the following form

c1(βik,jk − βij,kk) + c2(βji,kk − βjk,ki + βkj,ki − βki,kj)

+ c3

[
δij(βlk,kl − βll,kk) + βll,ji − βlj,li

]
+ σij = σ0

ij . (2.37)

With the inverse constitutive relation for βij

βij =
γ + µ

4µγ
σij +

γ − µ

4µγ
σji −

ν

2µ(1 + ν)
δij σkk (2.38)

where the Poisson ration ν is expressed in terms of the Lamé coefficients

ν =
λ

2 (λ + µ)
, λ =

2µν

1 − 2ν
(2.39)

we are able to rewrite completely the pseudomoment equilibrium condition (2.37) in terms
of the force stress tensor according to

[
(c1 − c2 + 2c3)

2γν

1 + ν
− 2c3γ

]
(δij σll,kk − σll,ij) + 2c3γ δij σkl,kl

+
[
c1(γ + µ) − c2(γ − µ)

]
(σik,jk − σij,kk) +

[
c1(γ − µ) − c2(γ + µ)

]
(σki,kj − σji,kk)

+
[
2c2µ − c3(γ + µ)

]
σkj,ki −

[
2c2µ + c3(γ − µ)

]
σjk,ki + 4µγ σij = 4µγ σ0

ij . (2.40)

If we use the force equilibrium condition σij,j = 0, Eq. (2.40) simplifies to
[
(c1 − c2 + 2c3)

2γν

1 + ν
− 2c3γ

]
(δij σll,kk − σll,ij) −

[
c1(γ + µ) − c2(γ − µ)

]
σij,kk (2.41)

+
[
c1(γ − µ) − c2(γ + µ)

]
(σki,kj − σji,kk) +

[
2c2µ − c3(γ + µ)

]
σkj,ki + 4µγ σij = 4µγ σ0

ij .

Equation (2.41) is the master equation, being the central equation for the force stress
tensor in this gauge theory of dislocations. In the next two sections, solutions for screw
and edge dislocations will be given.
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2.2 Comparison to other gauge theories of dislocations

At this point we want to discuss the relation to other translational gauge theories of
dislocations which differ in the form of the constitutive relations of the force stress and
pseudomoment stress. The differences between the gauge theories of dislocations are
mainly the choice of the constitutive relations of the force and pseudomoment stresses.
Edelen [11, 12, 17] used a very simple constitutive relation for the pseudomoment stress
tensor. The Edelen choice is c1 = 2s, c2 = 0 and c3 = 0. Of course, this is not a
general isotropic constitutive law. In addition he assumed symmetric force stresses. Also
Valsakumar and Sahoo [16] used this choice for the constitutive relations. Malyshev [18]
and Lazar [21, 22] discussed and used the so-called Einstein choice in three dimensions.
It is given by: a2 = −a1 and a3 = −a1/2. Thus, c1 = a1/2, c2 = −a1/2 and c3 = −a1. In
the Einstein choice the pseudomoment stress tensor is symmetric in the first two indices
Hijk = H(ij)k and is given in terms of ‘gradients’ of the elastic strain β(ij). In this
choice, H(ij)k,k reduces to the Einstein tensor. Another choice c1 = a1/2, c2 = −a1/2
and c3 = ν/(1 − ν)a1 was used by Lazar [23] to calculate symmetric force stresses of
screw and edge dislocations. It can be seen in Eq. (2.21) that the Einstein-choice and
also the latter choice violate the condition of nonnegative energy Wdisl ≥ 0. The material
coefficients a1, a2 and a3 have to be nonnegative. But in this paper we use the most
general linear constitutive relations (2.6) and (2.19) of an isotropic material with six
material parameters. In Table 1 we have listed the choice of the constitutive relations.

Edelen [10] Einstein choice [18, 21] Lazar [23] present paper
µ µ µ µ µ
ν ν ν ν ν
γ 0 0 0 γ
a1 2s a1 a1 a1

a2 2s −a1
1+ν
1−ν

a1 a2

a3 2s −a1

2
−a1

2
a3

Table 1: This table lists the material parameters aI , µ, ν and γ for the translational gauge
theory of dislocations.

2.3 The Green tensor

In this subsection, we want to derive the three-dimensional Green tensor of the mas-
ter equation (2.41). First we set σ0

ij = Lijδ(x)δ(y)δ(z). The fundamental solution of
Eq. (2.41) is defined by the equation

[
(c1 − c2 + 2c3)

2γν

1 + ν
− 2c3γ

]
(δij σll,kk − σll,ij) −

[
c1(γ + µ) − c2(γ − µ)

]
σij,kk (2.42)

+
[
c1(γ − µ) − c2(γ + µ)

]
(σki,kj − σji,kk) +

[
2c2µ − c3(γ + µ)

]
σkj,ki

+ 4µγ σij = 4µγ Lij δ(x)δ(y)δ(z).

We use the notation for the three-dimensional Fourier transform [47, 48]

f̃(q) ≡ F(3)

[
f(r)

]
=

∫
∞

−∞

f(r) e+iq·rdr, f(r) ≡ F−1
(3)

[
f̃(q)

]
=

1

(2π)3

∫
∞

−∞

f̃(q) e−iq·rdq.

(2.43)
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Applying the Fourier transform, it follows that

[
(c1 − c2 + 2c3)

2γν

1 + ν
− 2c3γ

]
(δij q2σ̃ll − qiqj σ̃ll) −

[
c1(γ + µ) − c2(γ − µ)

]
q2σ̃ij (2.44)

+
[
c1(γ − µ) − c2(γ + µ)

]
(qkqj σ̃ki − q2σ̃ji) +

[
2c2µ − c3(γ + µ)

]
qkqiσ̃kj

− 4µγ σ̃ij = −4µγ Lij .

The force equilibrium (2.33) reads in the q-space: σ̃ijqj = 0. Symmetrization, antisym-
metrization, taking the trace and the inner product by q from left of Eq. (2.44) we deduce

[1 + ℓ2
1q

2]σ̃(ij) −
1

2
(ℓ2

1 − ℓ2
2)[δijq

2 − qiqj ]σ̃ll − (ℓ2
1 − ℓ2

3)qkσ̃k(iqj) = L(ij) (2.45)

[1 + ℓ2
4q

2]σ̃[ij] + (ℓ2
4 − ℓ2

3)qkσ̃k[iqj] = L[ij] (2.46)

[1 + ℓ2
2q

2]σ̃ll = Lll (2.47)

[1 + ℓ2
3q

2]qiσ̃ij = qiLij (2.48)

where the characteristic length scales are defined by

ℓ2
1 =

c1 − c2

2µ
=

a1

2µ
(2.49)

ℓ2
2 =

(1 − ν)(c1 − c2 + 2c3)

2µ(1 + ν)
=

(1 − ν)a2

2µ(1 + ν)
(2.50)

ℓ2
3 =

(µ + γ)(c1 − c2 + c3)

4µγ
=

(µ + γ)(a1 + a2)

8µγ
(2.51)

ℓ2
4 =

c1 + c2

2γ
=

a1 + 2a3

6γ
. (2.52)

The lengths ℓ1, ℓ2 and ℓ3 fulfill the following relation

ℓ2
3 =

µ + γ

4γ

(
ℓ2
1 +

1 + ν

1 − ν
ℓ2
2

)
. (2.53)

Now some remarks are in order. In the static gauge theory of dislocations we have found
four characteristic length scales. These length scales may describe size effects produced
by dislocations. They are important in the plastic zone namely the dislocation core.
All four length scales depend on the six material parameters of an isotropic material.
Thus, they describe the material property on which the influence of the pseudomoment
stresses depends strongly. If the ratio of the smallest dimension of the body to the length
scales is large, the effects of pseudomoment stresses are negligible. However, when this
ratio is not large, pseudomoment stresses may produce effects of appreciable magnitude.
This is the case in the dislocation core region. It is interesting to note that the internal
length ℓ1 depends on µ and has a similar form as the internal length in the couple stress
theory [49, 50] and in gradient elasticity [30]. It can be seen that ℓ2 depends on the
Poisson number ν. This length ℓ2 is the characteristic length of dilatation. Such a
length appears also in gradient elasticity [30]. Because the characteristic lengths ℓ3 and ℓ4

depend on γ they look like the two characteristic lengths of micropolar elasticity namely
the characteristic lengths for bending and for torsion (see e.g. [51]). Thus, it depends on
the physical problem which length scale is of importance. It is clear that for γ → ∞ just
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the bending length, which is the characteristic length in the theory of couple stresses,
survives

lim
γ→∞

ℓ2
3 =

c1 − c2 + c3

4µ
=

a1 + a2

8µ
, lim

γ→∞

ℓ2
4 = 0. (2.54)

On the other hand, if γ = 0, then ℓ3 → ∞ and ℓ4 → ∞. For the Einstein choice a2 = −a1

and a3 = −a1/2 the lengths convert to

ℓ2
1 =

c1

µ
=

a1

2µ
, ℓ2

2 = −
(1 − ν)c1

µ(1 + ν)
= −

(1 − ν)a1

2µ(1 + ν)
, ℓ2

3 = 0, ℓ2
4 = 0. (2.55)

Thus, only two lengths survive. These length scales ℓ2
1 and ℓ2

2 agree with M−2 and −N−2

used by Malyshev [18]. In addition, four length scales survive in the Edelen choice together
with asymmetric force stresses

ℓ2
1 =

s

µ
, ℓ2

2 =
(1 − ν)s

µ(1 + ν)
, ℓ2

3 =
(µ + γ)s

2µγ
, ℓ2

4 =
s

γ
. (2.56)

The length scales ℓ2
1 and ℓ2

2 coincide with M−2 and N−2 introduced by Kadić and Edelen
[10], Edelen [52]. If γ = 0, then ℓ3 → ∞ and ℓ4 → ∞.

From Eqs. (2.45)–(2.48) we obtain

σ̃ll =
Lll

1 + ℓ2
2q

2
(2.57)

qiσ̃ij =
qiLij

1 + ℓ2
3q

2
(2.58)

and

σ̃(ij) =
L(ij)

1 + ℓ2
1q

2
+

1

2
(ℓ2

1 − ℓ2
2)

[δijq
2 − qjqj ]Lll

(1 + ℓ2
1q

2)(1 + ℓ2
2q

2)
+ (ℓ2

1 − ℓ2
3)

qkLk(iqj)

(1 + ℓ2
1q

2)(1 + ℓ2
3q

2)
(2.59)

σ̃[ij] =
L[ij]

1 + ℓ2
4q

2
− (ℓ2

4 − ℓ2
3)

qkLk[iqj]

(1 + ℓ2
4q

2)(1 + ℓ2
3q

2)
. (2.60)

Using the inverse Fourier transformed function [47, 48]

F−1
(3)

[ 1

q2 + 1
ℓ2

]
=

1

4πr
e−r/ℓ, r =

√
x2 + y2 + z2 (2.61)

we find

σ(ij) =
L(ij)

4πrℓ2
1

e−r/ℓ1 −
Lkk

8π
[δij∆ − ∂i∂j ]

[1

r

(
e−r/ℓ1 − e−r/ℓ2

)]
−

1

4π
Lk(i∂j)∂k

[1

r

(
e−r/ℓ1 − e−r/ℓ3

)]

(2.62)

σ[ij] =
L[ij]

4πrℓ2
4

e−r/ℓ4 +
1

4π
Lk[i∂j]∂k

[1

r

(
e−r/ℓ4 − e−r/ℓ3

)]
. (2.63)

With σij = σ(ij) + σ[ij], the fundamental solution can be written in the following form

σij = GijklLkl (2.64)
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where Gijkl is the Green tensor of Eq. (2.42). So, the Green tensor reads

Gijkl =
1

8π

{
(δikδjl + δilδjk)

e−r/ℓ1

ℓ2
1r

+ (δikδjl − δilδjk)
e−r/ℓ4

ℓ2
4r

− (δij∆ − ∂i∂j)δkl

[1

r

(
e−r/ℓ1 − e−r/ℓ2

)]

− (δjl∂i + δil∂j)∂k

[1

r

(
e−r/ℓ1 − e−r/ℓ3

)]
− (δjl∂i − δil∂j)∂k

[1

r

(
e−r/ℓ4 − e−r/ℓ3

)]}
.

(2.65)

Using the convolution theorem, we obtain for the solution of Eq. (2.41)

σij = Gijkl ∗ σ0
kl. (2.66)

With the help of this equation three-dimensional problems can be solved e.g. dislocation
loops.

3 Screw dislocation

We consider now a straight screw dislocation. We choose the dislocation line and the
Burgers vector in z-direction: bx = by = 0, bz = b. First of all, a screw dislocation
corresponds to the anti-plane strain problem. Thus, we only have the non-vanishing com-
ponents of the elastic distortion tensor βzx and βzy. From the constitutive equation (2.6)
we obtain the relations valid in anti-plane strain:

σzx =
µ − γ

µ + γ
σxz, σzy =

µ − γ

µ + γ
σyz. (3.1)

In the case of a screw dislocation we want to solve Eq. (2.37) directly. From the force
equilibrium condition (2.33), the following condition follows

βzx,x + βzy,y = 0. (3.2)

It looks like a gauge condition, but it is nothing else than a consequence of the force
equilibrium condition (2.33). Using Eq. (3.2), (2.37) simplifies to

[
1 −

c1

µ + γ
∆

]
βzx = β0

zx,
[
1 +

c2

µ − γ
∆

]
βzx = β0

zx, (3.3)

[
1 −

c1

µ + γ
∆

]
βzy = β0

zy,
[
1 +

c2

µ − γ
∆

]
βzy = β0

zy. (3.4)

Here ∆ denotes the two-dimensional Laplacian. Because we have four equations for two
components βzx and βzy, we obtain a relation between c2 and c1 as follows3

c2 = −
µ − γ

µ + γ
c1 (3.5)

3If γ = 0, we obtain c2 = −c1. If c2 = 0 like in the Edelen choice, we obtain c1 = 0, ℓ2
1 = 0, βzx = β0

zx

and βzy = β0
zy. Thus, only the classical solution of a screw dislocation is allowed in the Edelen choice

with symmetric force stresses. Edelen [17] used some ad hoc assumptions like β0
xz = βzx to avoid this

problems. But in the classical theory it must be: β0
xz = 0. Also the approach of Valsakumar and Sahoo

[16] possesses such lacks.

12

Page 12 of 50

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

or in the ‘irreducible’ parameters

a3 =
3γ − µ

2µ
a1. (3.6)

Relation (3.5) is a consequence of (3.1). From the relation (3.6) together with the condition
of non-negative dislocation core energy (2.21) we obtain the constraint between µ and γ:

γ ≥
µ

3
. (3.7)

It is important to note that in the case of γ = 0, a3 = −a1/2 violates the condition (2.21).
Therefore, the condition of nonnegative dislocation core energy demands asymmetric force
stresses. For the Edelen choice (a3 = a1) we obtain from (3.5) and (3.6): µ = γ. Thus,
it does not make sense to use symmetric force stresses in the Edelen model. Due to
these reasons, the Edelen model demands asymmetric force stresses with µ = γ for a
screw dislocation. Therefore, with γ = µ the correct solution of a screw dislocation of
the Edelen model is contained in our general solution of the screw dislocation which we
calculate in the following.

If we substitute (3.5) and (3.6) in (2.49) and (2.52), we obtain the characteristic length
scale of the anti-plane strain problem

ℓ2
1 = ℓ2

4 =
c1

µ + γ
=

a1

2µ
(3.8)

and the equations for the elastic distortion simplify to

[
1 − ℓ2

1∆
]
βzx = β0

zx,
[
1 − ℓ2

1∆
]
βzy = β0

zy. (3.9)

They are two-dimensional inhomogeneous Helmholtz equations. The inhomogeneous parts
are given by Eq. (A.2). If we substitute (A.2) into Eq. (3.9), the elastic distortion is easily
obtained as

βzx = −
b

2π

y

r2

[
1 −

r

ℓ1
K1

( r

ℓ1

)]
, βzy =

b

2π

x

r2

[
1 −

r

ℓ1
K1

( r

ℓ1

)]
(3.10)

where Kn is the modified Bessel function of the second kind and n = 0, 1, . . . denotes the
order of this function. Substituting the elastic distortions (3.10) into (2.9), the torsion
tensor or dislocation tensor is calculated as

Tzxy = αzz =
b

2πℓ2
1

K0

( r

ℓ1

)
. (3.11)

The torsion (3.11) generates the following components of the pseudomoment stress ten-
sor (2.19) according

Hxx = Hxyz = c2 Tzxy = −
(µ − γ)b

2π
K0

( r

ℓ1

)
(3.12)

Hyy = Hyzx = c2 Tzxy = −
(µ − γ)b

2π
K0

( r

ℓ1

)
(3.13)

Hzz = Hzxy = c1 Tzxy =
(µ + γ)b

2π
K0

( r

ℓ1

)
. (3.14)
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Thus, this localized pseudomoment stress caused by a screw dislocation is of torsion-type.
It is given in terms of only one length scale ℓ1. The trace of the pseudomoment stresses is

Hkk = −
(µ − 3γ)b

2π
K0

( r

ℓ1

)
. (3.15)

Now we want to show how we can solve the master equation (2.41) by means of a
suitable stress function ansatz for the asymmetric force stresses of a screw dislocation.
With the stress function ansatz we fulfill the force equilibrium condition (2.33). Then we
substitute the stress function ansatz into the pseudomoment equilibrium condition (2.41).
In the case of a straight screw dislocation Eq. (2.41) reduces to
[
c1(γ − µ) − c2(γ + µ)

]
(σyz,yx − σxz,yy) −

[
c1(γ + µ) − c2(γ − µ)

]
∆σzx + 4µγσzx = 4µγσ0

zx

(3.16)
[
c1(γ − µ) − c2(γ + µ)

]
(σxz,xy − σyz,xx) −

[
c1(γ + µ) − c2(γ − µ)

]
∆σzy + 4µγσzy = 4µγσ0

zy

(3.17)
[
c2(γ + µ) − c1(γ − µ)

]
∆σzx +

[
c2(γ − µ) − c1(γ + µ)

]
∆σxz (3.18)

+
[
2c2µ − c3(γ + µ)

]
(σxz,xx + σyz,xy) + 4µγσxz = 4µγσ0

xz[
c2(γ + µ) − c1(γ − µ)

]
∆σzy +

[
c2(γ − µ) − c1(γ + µ)

]
∆σyz (3.19)

+
[
2c2µ − c3(γ + µ)

]
(σxz,xy + σyz,yy) + 4µγσyz = 4µγσ0

yz.

We introduce the following stress function ansatz, which is suitable for asymmetric force
stresses in the anti-plane strain problem,

σij =




0 0 −µ−γ

µ+γ
∂yF

0 0 µ−γ
µ+γ

∂xF

−∂yF ∂xF 0



 (3.20)

where F is a modified Prandtl stress function. Using (3.5), (2.49) and (A.7), we have to
solve the two-dimensional inhomogeneous Helmholtz equation

[
1 − ℓ2

1∆
]
F = F 0. (3.21)

Its solution reads

F =
(µ + γ)b

2π

[
ln r + K0

( r

ℓ1

)]
. (3.22)

With Eqs. (3.20) and (3.22) the force stress is calculated as

σzx = −
(µ + γ)b

2π

y

r2

[
1 −

r

ℓ1

K1

( r

ℓ1

)]
, σxz = −

(µ − γ)b

2π

y

r2

[
1 −

r

ℓ1

K1

( r

ℓ1

)]
, (3.23)

σzy =
(µ + γ)b

2π

x

r2

[
1 −

r

ℓ1
K1

( r

ℓ1

)]
, σyz =

(µ − γ)b

2π

x

r2

[
1 −

r

ℓ1
K1

( r

ℓ1

)]
. (3.24)

In cylindrical coordinates the non-vanishing components of the force stress and elastic
distortion tensors read

σzφ =
(µ + γ)b

2π

1

r

[
1 −

r

ℓ1
K1

( r

ℓ1

)]
, σφz =

(µ − γ)b

2π

1

r

[
1 −

r

ℓ1
K1

( r

ℓ1

)]
(3.25)

βzφ =
b

2π

1

r

[
1 −

r

ℓ1
K1

( r

ℓ1

)]
. (3.26)
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Figure 1: The component βzϕ is given in units of b/[2πℓ1] . The dashed curve represents
the classical component.

The force stress and elastic distortion fields, calculated in the gauge theory, do not possess
singularities. In fact, they have at r ≃ 1.114ℓ1 a maximum of: σzφ ≃ 0.399(µ+γ)b/[2πℓ1],
σφz ≃ 0.399(µ − γ)b/[2πℓ1], βzφ ≃ 0.399b/[2πℓ1] (see figure 1). We want to note that if
γ = 0, we recover the force stress and pseudomoment stress, the elastic distortion and
the dislocation tensor earlier calculated by Malyshev [18] and Lazar [21, 22] in the gauge
theory of dislocations with the so-called Einstein choice. The modified Burgers vector is
given by

b(r) =

∮ 2π

0

βzφ r dφ =

∫ 2π

0

∫ r

0

αzz(r
′) r′ dr′ dφ = b

[
1 −

r

ℓ1
K1

( r

ℓ1

)]
. (3.27)

This modified Burgers vector differs appreciably from the constant value b in the core
region from r = 0 up to r ≃ 6ℓ1. Thus, it is suggestive to take rc ≃ 6ℓ1 as the disloca-
tion core radius. Outside this core region, the Burgers vector reaches its constant value.
Accordingly, the gauge theoretical solutions approaches the classical one outside the dislo-
cation core region. Due to the cylindrical symmetry of a straight screw dislocation around
the dislocation line the physical situation requires only one length scale ℓ1.

The force between dislocations is the so-called Peach-Koehler force [53, 54, 55]. In the
gauge theory of dislocations the gauge invariant formulation of the Peach-Koehler force
has been derived by Lazar and Anastassiadis [56]. Kadić and Edelen [11] and Edelen and
Lagoudas [12] just derived an expression which is not gauge invariant because they used
the canonical Eshelby stress tensor instead of the gauge invariant one. It is given by the
convolution of the stress and the dislocation density tensor

Fk = −σli ∗ Tlik = ǫkijσli ∗ αlj. (3.28)

It is obvious that (3.28) is similar in the form as the classical expression of the Peach-
Koehler force. But, in (3.28) the stress and the dislocation density tensor are the gauge
theoretical ones. For a screw dislocation it reads

Fx = σzy ∗ αzz, Fy = −σzx ∗ αzz. (3.29)

By the convolution theorem, it is in the Fourier space

F̃x(q) = F(2)

[
Fx] = σ̃zy(q)α̃zz(q), F̃y(q) = F(2)

[
Fy] = −σ̃zx(q)α̃zz(q). (3.30)
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We use the following notation for the two-dimensional Fourier transform [47, 48]

f̃(q) ≡ F(2)

[
f(r)

]
=

∫
∞

−∞

f(r) e+iq·rdr, f(r) ≡ F−1
(2)

[
f̃(q)

]
=

1

(2π)2

∫
∞

−∞

f̃(q) e−iq·rdq.

(3.31)

The Fourier transformed functions are

F(2)

[
ln r

]
= −

2π

q2
, F(2)

[
K0

( r

ℓ1

)]
=

2π

q2 + 1
ℓ1

(3.32)

and we obtain

σ̃zy(q) = (µ + γ)b
iqx

ℓ2
1q

2
(
q2 + 1

ℓ1

) , σ̃zx(q) = −(µ + γ)b
iqy

ℓ2
1q

2
(
q2 + 1

ℓ1

) (3.33)

α̃zz(q) = b′
1

ℓ2
1

(
q2 + 1

ℓ1

) . (3.34)

The Fourier transformed Peach-Koehler force F̃x is

F̃x(q) = (µ + γ)bb′
iqx

ℓ4
1q

2
(
q2 + 1

ℓ1

)2 . (3.35)

Using the inverse Fourier transform, the Peach-Koehler force Fx is calculated as

Fx = −(µ + γ)bb′ ∂x F
−1
(2)

[
1

q2
−

1

q2 + 1
ℓ1

−
1

ℓ2
1

(
q2 + 1

ℓ1

)2

]

= (µ + γ)bb′ ∂x

[
ln r + K0

( r

ℓ1

)
+

r

2ℓ1
K1

( r

ℓ1

)]

=
(µ + γ)bb′

2π

x

r2

[
1 −

r

ℓ1
K1

( r

ℓ1

)
−

r2

2ℓ2
1

K0

( r

ℓ1

)]
. (3.36)

After an analogous computation we obtain for the component Fy

Fy =
(µ + γ)bb′

2π

y

r2

[
1 −

r

ℓ1
K1

( r

ℓ1

)
−

r2

2ℓ2
1

K0

( r

ℓ1

)]
. (3.37)

In polar coordinates, the non-vanishing component reads:

Fr =
(µ + γ)bb′

2π

1

r

[
1 −

r

ℓ1
K1

( r

ℓ1

)
−

r2

2ℓ2
1

K0

( r

ℓ1

)]
. (3.38)

The Peach-Koehler force between two screw dislocations is a radial force. It has a maxi-
mum of: Fr ≃ 0.2488(µ + γ)bb′/[2πℓ1] at r ≃ 2.324ℓ1 and is zero at r = 0 (see figure 2).
It is interesting to note that the maximum of the Peach-Koehler force calculated in the
framework of nonlocal elasticity is higher than our gauge theoretical result (see Eringen
[57, 58], Lazar [59]). If one calculates the gradient of the elastic interaction energy be-
tween two screw dislocations, then also the result (3.38) follows. But, if one uses the ‘total’
interaction energy including the core contribution, one does not get the Peach-Koehler
force. Because Valsakumar and Sahoo [60] used the ‘total’ interaction energy, they have
not calculated the Peach-Koehler force in the gauge theory. Nevertheless, their result is
in agreement with the nonlocal expression calculated by Eringen [57].
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Figure 2: The component Fr is given in units of µbb′/[2πℓ1] (γ = 0). The small dashed
curve represents the nonlocal result and the dashed curve represents the classical compo-
nent.

4 Edge dislocation

In this section we consider a straight edge dislocation. We choose the dislocation line in
the z-direction and the Burgers vector reads bx = b, by = 0, bz = 0. The problem of an
edge dislocation corresponds to plane strain.

4.1 The general case

Let us turn to the edge dislocation in the framework of the gauge theory of dislocations.
In this case the master equation (2.37) reduces to

[
(c1 − c2 + 2c3) 2γν − 2c3γ(1 + ν)

]
(σxx,yy + σyy,yy) − 2γ(c1 − c2)∆σxx (4.1)

+
[
(c1 − c2)(γ − µ) − c3(γ + µ)

]
(σxx,xx + σyx,yx) + 4µγ σxx = 4µγ σ0

xx[
(c1 − c2 + 2c3) 2γν − 2c3γ(1 + ν)

]
(σxx,xx + σyy,xx) − 2γ(c1 − c2)∆σyy (4.2)

+
[
(c1 − c2)(γ − µ) − c3(γ + µ)

]
(σxy,xy + σyy,yy) + 4µγ σyy = 4µγ σ0

yy[
c1(γ − µ) − c2(γ + µ)

]
(σxx,xy − σyx,xx) +

[
2c2µ − c3(γ + µ)

]
(σxy,xx + σyy,yx)

−
[
(c1 − c2 + 2c3) 2γν − 2c3γ(1 + ν)

]
(σxx,xy + σyy,xy) (4.3)

−
[
c1(γ + µ) − c2(γ − µ)

]
∆σxy + 4µγ σxy = 4µγ σ0

xy[
c1(γ − µ) − c2(γ + µ)

]
(σyy,yx − σyx,yy) +

[
2c2µ − c3(γ + µ)

]
(σxx,xy + σyx,yy)

−
[
(c1 − c2 + 2c3) 2γν − 2c3γ(1 + ν)

]
(σxx,xy + σyy,xy) (4.4)

−
[
c1(γ + µ) − c2(γ − µ)

]
∆σyx + 4µγ σyx = 4µγ σ0

yx
[
1 −

(1 − ν)c3

2µν
∆

]
σzz = σ0

zz. (4.5)

We used the plane strain condition σzz = ν(σxx + σyy) because we require plane strain for
an edge dislocation in the gauge theory.

For the asymmetric force stress we use the stress function ansatz of Mindlin-type with
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the two modified stress functions f and Ψ:

σij =




∂2
yyf − ∂2

xyΨ −∂2
xyf + ∂2

xxΨ 0

−∂2
xyf − ∂2

yyΨ ∂2
xxf + ∂2

xyΨ 0

0 0 ν∆f




. (4.6)

This stress function ansatz (4.6) has been also used by Lazar and Maugin [61] in gradient
micropolar elasticity. If we substitute (4.6) into the coupled system of equations (4.1)–
(4.5), we obtain the decoupled equations

∂2

∂y2

[(
1 −

(c1 − c2 + c3)(1 − ν)

2µ
∆

)
f − f 0

]

−
∂2

∂x∂y

[(
1 −

(c1 − c2 + c3)(µ + γ)

4µγ
∆

)
Ψ − Ψ0

]
= 0 (4.7)

∂2

∂x2

[(
1 −

(c1 − c2 + c3)(1 − ν)

2µ
∆

)
f − f 0

]

+
∂2

∂x∂y

[(
1 −

(c1 − c2 + c3)(µ + γ)

4µγ
∆

)
Ψ − Ψ0

]
= 0 (4.8)

∂2

∂x∂y

[(
1 −

(c1 − c2 + c3)(1 − ν)

2µ
∆

)
f − f 0

]

−
∂2

∂x2

[(
1 −

(c1 − c2 + c3)(µ + γ)

4µγ
∆

)
Ψ − Ψ0

]
= 0 (4.9)

∂2

∂x∂y

[(
1 −

(c1 − c2 + c3)(1 − ν)

2µ
∆

)
f − f 0

]

+
∂2

∂y2

[(
1 −

(c1 − c2 + c3)(µ + γ)

4µγ
∆

)
Ψ − Ψ0

]
= 0 (4.10)

∆
[(

1 −
c3(1 − ν)

2µν
∆

)
f − f 0

]
= 0. (4.11)

The addition of Eqs. (4.7) and (4.8) gives

∆
[(

1 −
(c1 − c2 + c3)(1 − ν)

2µ
∆

)
f − f 0

]
= 0. (4.12)

For the moment equilibrium condition (2.36), we obtain

∆
[(

1 −
(c1 − c2 + c3)(µ + γ)

4µγ
∆

)
Ψ − Ψ0

]
= 0. (4.13)

If we compare (4.11) with (4.12), we obtain the following constraint between c1, c2 and
c3:

4

c3 =
ν

1 − ν
(c1 − c2) (4.14)

4This relation is not fulfilled in the Einstein choice and c1 − c2 + c3 = 0. In the Edelen choice c3 = 0,
c2 = 0, we obtain from (4.14) c1 = 0, ℓ2 = 0 and ℓ3 = 0. Thus, only f = f0 and Ψ = Ψ0 are allowed with
the Edelen choice if the plane strain condition is fulfilled. Due to these reasons, Edelen [52], Kadić and
Edelen [11], Malyshev [18] used a stress function ansatz not fulfilling the plane strain condition.
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or in ‘irreducible’ parameters

a2 =
1 + ν

1 − ν
a1. (4.15)

This constraint is nothing but a consequence of the relation σzz = ν(σxx + σyy) valid in
the plane strain problem. We want to note that this constraint (4.15) has been earlier
derived by Lazar [23]. With −1 ≤ ν ≤ 1/2, we get from (4.15) the relation

0 ≤ a2 ≤ 3a1. (4.16)

If we substitute (4.14) and (4.15) into (2.50) and (2.51), we obtain the two characteristic
length scales of the plane strain problem

ℓ2
2 =

c1 − c2

2µ
=

1

2µ
a1 (4.17)

ℓ2
3 =

(c1 − c2)(µ + γ)

4µ(1 − ν)γ
=

µ + γ

4µ(1 − ν)γ
a1. (4.18)

The relation between these internal lengths is

ℓ2
3 =

µ + γ

2(1 − ν)γ
ℓ2
2. (4.19)

Therefore, we obtain from Eqs. (4.7)–(4.11) two inhomogeneous Helmholtz equations
which we have to solve

[1 − ℓ2
2 ∆]f = f 0 (4.20)

[1 − ℓ2
3 ∆]Ψ = Ψ0 (4.21)

where the inhomogeneous parts are given by (B.14) and (B.15). The solutions of Eqs. (4.20)
and (4.21) are the following modified ‘Airy’ stress functions

f = −
µb

4π(1 − ν)
∂y

{
r2 ln r + 4 ℓ2

2

[
ln r + K0

( r

ℓ2

)]}
(4.22)

Ψ =
µγ b

2π(µ + γ)
∂x

{
r2 ln r + 4 ℓ2

3

[
ln r + K0

( r

ℓ3

)]}
. (4.23)

If we substitute the stress functions (4.22) and (4.23) into the stress function ansatz (4.6),
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the following components of the force stress tensor follow

σxx = −
y

r4

{
A

[
(y2 + 3x2) +

4 ℓ2
2

r2
(y2 − 3x2) − 2y2 r

ℓ2
K1

( r

ℓ2

)
− 2(y2 − 3x2)K2

( r

ℓ2

)]

− B
[
(x2 − y2) −

4 ℓ2
3

r2
(3x2 − y2) + 2x2 r

ℓ3

K1

( r

ℓ3

)
− 2(y2 − 3x2)K2

( r

ℓ3

)]}
(4.24)

σyy = −
y

r4

{
A

[
(y2 − x2) −

4 ℓ2
2

r2
(y2 − 3x2) − 2x2 r

ℓ2
K1

( r

ℓ2

)
+ 2(y2 − 3x2)K2

( r

ℓ2

)]

+ B
[
(x2 − y2) −

4 ℓ2
3

r2
(3x2 − y2) + 2x2 r

ℓ3
K1

( r

ℓ3

)
+ 2(3x2 − y2)K2

( r

ℓ3

)]}
(4.25)

σxy =
x

r4

{
A

[
(x2 − y2) −

4 ℓ2
2

r2
(x2 − 3y2) − 2y2 r

ℓ2
K1

( r

ℓ2

)
+ 2(x2 − 3y2)K2

( r

ℓ2

)]

+ B
[
(x2 + 3y2) +

4 ℓ2
3

r2
(x2 − 3y2) − 2x2 r

ℓ3

K1

( r

ℓ3

)
− 2(x2 − 3y2)K2

( r

ℓ3

)]}
(4.26)

σyx =
x

r4

{
A

[
(x2 − y2) −

4 ℓ2
2

r2
(x2 − 3y2) − 2y2 r

ℓ2

K1

( r

ℓ2

)
+ 2(x2 − 3y2)K2

( r

ℓ2

)]

− B
[
(x2 − y2) −

4 ℓ2
3

r2
(x2 − 3y2) − 2y2 r

ℓ3
K1

( r

ℓ3

)
+ 2(x2 − 3y2)K2

( r

ℓ3

)]}
(4.27)

σzz = −2ν A
y

r2

[
1 −

r

ℓ2
K1

( r

ℓ2

)]
(4.28)

with

A :=
µb

2π(1 − ν)
, B :=

µγb

π(µ + γ)
. (4.29)

The trace of the stress tensor is

σkk = −2(1 + ν) A
y

r2

[
1 −

r

ℓ2

K1

( r

ℓ2

)]
. (4.30)

The skew-symmetric part of the force stress tensor reads

σ[xy] =
µγb

π(µ + γ)

x

r2

[
1 −

r

ℓ3
K1

( r

ℓ3

)]
. (4.31)

Now we want to discuss some details of the core modification of the force stress fields (4.24)–
(4.28). The spatial distributions of the force stresses near the dislocation line are presented
in figure 3. The force stress fields have no artificial singularities at the core and the max-
imum stress occurs at a short distance away from the dislocation line (see figures 4 and
5). They are zero at r = 0. It can be seen that the stresses have the following extreme
values: |σxx(0, y)| ≃ 0.546A/ℓ2 + 0.260B/ℓ3 at |y| ≃ (0.996ℓ2 + 1.494ℓ3)/2, |σyy(0, y)| ≃
0.260A/ℓ2−0.260B/ℓ3 at |y| ≃ (1.494ℓ2 +1.494ℓ3)/2, |σxy(x, 0)| ≃ 0.260A/ℓ2 +0.546B/ℓ3

at |x| ≃ (1.494ℓ2 + 0.996ℓ3)/2, |σyx(x, 0)| ≃ 0.260A/ℓ2 − 0.260B/ℓ3 at |x| ≃ (1.494ℓ2 +
1.494ℓ3)/2, and |σzz(0, y)| ≃ 0.399A at |y| ≃ 1.114ℓ2. Thus, the characteristic internal
lengths ℓ2 and ℓ3 determine the position and the magnitude of the stress maxima. For
γ > 0 the stresses σxx and σxy are bigger than in the case γ = 0 and σyy and σyx are
smaller than in the case γ = 0 (see figure 5).
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Using Eq. (2.38), we find for the elastic distortion

βxx = −
y

r4

{
A

2µ

[
(1 − 2ν)r2 + 2x2 +

4 ℓ2
2

r2
(y2 − 3x2) (4.32)

− 2(y2 − ν r2)
r

ℓ2
K1

( r

ℓ2

)
− 2(y2 − 3x2)K2

( r

ℓ2

)]

−
B

2µ

[
(x2 − y2) −

4 ℓ2
3

r2
(3x2 − y2) + 2x2 r

ℓ3
K1

( r

ℓ3

)
− 2(y2 − 3x2)K2

( r

ℓ3

)]}

βyy = −
y

r4

{
A

2µ

[
(1 − 2ν)r2 − 2x2 −

4 ℓ2
2

r2
(y2 − 3x2) (4.33)

− 2(x2 − ν r2)
r

ℓ2
K1

( r

ℓ2

)
+ 2(y2 − 3x2)K2

( r

ℓ2

)]

+
B

2µ

[
(x2 − y2) −

4 ℓ2
3

r2
(3x2 − y2) + 2x2 r

ℓ3

K1

( r

ℓ3

)
+ 2(3x2 − y2)K2

( r

ℓ3

)]}

βxy =
x

r4

{
A

2µ

[
(x2 − y2) −

4 ℓ2
2

r2
(x2 − 3y2) − 2y2 r

ℓ2
K1

( r

ℓ2

)
+ 2(x2 − 3y2)K2

( r

ℓ2

)]

+
B

2µ

[
2y2 +

4 ℓ2
3

r2
(x2 − 3y2) − (x2 − y2)

r

ℓ3
K1

( r

ℓ3

)
− 2(x2 − 3y2)K2

( r

ℓ3

)]

+
B

2γ
r2

[
1 −

r

ℓ3

K1

( r

ℓ3

)]}
(4.34)

βyx =
x

r4

{
A

2µ

[
(x2 − y2) −

4 ℓ2
2

r2
(x2 − 3y2) − 2y2 r

ℓ2

K1

( r

ℓ2

)
+ 2(x2 − 3y2)K2

( r

ℓ2

)]

+
B

2µ

[
2y2 +

4 ℓ2
3

r2
(x2 − 3y2) − (x2 − y2)

r

ℓ3
K1

( r

ℓ3

)
− 2(x2 − 3y2)K2

( r

ℓ3

)]

−
B

2γ
r2

[
1 −

r

ℓ3
K1

( r

ℓ3

)]}
. (4.35)

The dilatation reads

βkk = −
(1 − 2ν)A

µ

y

r2

[
1 −

r

ℓ2
K1

( r

ℓ2

)]
. (4.36)

In addition the elastic rotation is

β[xy] =
µb

2π(µ + γ)

x

r2

[
1 −

r

ℓ3
K1

( r

ℓ3

)]
. (4.37)

In Eqs. (4.36) and (4.37) it can be seen that ℓ2 and ℓ3 are the characteristic lengths for
the elastic dilatation and elastic rotation, respectively.

Using the elastic distortion (4.32)–(4.35) in terms of the stress functions f and Ψ,
we obtain for the torsion (2.9) or the dislocation density of a straight edge dislocation
according

αxz = Txxy = −
1 − ν

2µ
∂y∆f +

µ + γ

4µγ
∂x∆Ψ (4.38)

αyz = Tyxy =
1 − ν

2µ
∂x∆f +

µ + γ

4µγ
∂y∆Ψ. (4.39)
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Figure 3: Force stress contours of an edge dislocation near the dislocation line: (a) σxx,
(b) σxy, (c) σyy, (d) σyx with ν = 0.3 and γ = µ/2.

Simple differentiation gives the non-vanishing expressions

αxz =
b

4π

{
1

ℓ2
2

K0

( r

ℓ2

)
+

1

ℓ2
3

K0

( r

ℓ3

)
−

x2 − y2

r2

[ 1

ℓ2
2

K2

( r

ℓ2

)
−

1

ℓ2
3

K2

( r

ℓ3

)]}
(4.40)

αyz = −
b

2π

xy

r2

[ 1

ℓ2
2

K2

( r

ℓ2

)
−

1

ℓ2
3

K2

( r

ℓ3

)]
. (4.41)

So far, it is surprising that the component (4.41), which is usually the dislocation density
of an edge dislocation with Burgers vector by, is non-zero. The components (4.40) and
(4.41) are necessary to fulfill the pseudomomentum equilibrium condition (2.32). Also
we would like to note that these non-vanishing components of the torsion tensor do not
have cylindrical symmetry due to the K2-terms (see figure 6). Since an edge dislocation is
lacking cylindrical symmetry around the dislocation line two length scales, ℓ2 and ℓ3, are
needed for a proper model. Fig. 6a shows this asymmetry in the dislocation core region
of an edge dislocation.

With Eqs. (2.19) and (2.22) the localized pseudomoment stresses of bending type are
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Figure 4: Force stress of an edge dislocation: (a) σxx, (b) σxy, (c) σyy, (d) σyx are given
in units of A with ν = 0.3 and γ = µ/2.

given by

Hxz = Hxxy =
1

1 − ν
(c1 − c2)αxz (4.42)

= A
[
K0

( r

ℓ2

)
−

x2 − y2

r2
K2

( r

ℓ2

)]
+ B

[
K0

( r

ℓ3

)
+

x2 − y2

r2
K2

( r

ℓ3

)]}

Hzx = Hzxy = −
ν

1 − ν
(c1 − c2)αxz (4.43)

= −νA
[
K0

( r

ℓ2

)
−

x2 − y2

r2
K2

( r

ℓ2

)]
− νB

[
K0

( r

ℓ3

)
+

x2 − y2

r2
K2

( r

ℓ3

)]}

Hyz = Hyxy =
1

1 − ν
(c1 − c2)αyz = −2

xy

r2

[
A K2

( r

ℓ2

)
− BK2

( r

ℓ3

)]
(4.44)

Hzy = Hzzx = −
ν

1 − ν
(c1 − c2)αyz = 2ν

xy

r2

[
A K2

( r

ℓ2

)
− BK2

( r

ℓ3

)]
. (4.45)

Therefore, plane strain bending is given in terms of the two length scales ℓ2 and ℓ3. If
we use the components (4.40) and (4.41) of the dislocation density, the Burgers vector is
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Figure 5: The force stresses components near the dislocation line: (a) σxx(0, y), (b)
σxy(x, 0), (c) σyy(0, y), (d) σyx(x, 0) are given in units of A with ν = 0.3 and γ = µ/2.
The dashed curves represent the stresses in asymmetric elasticity and the small dashed
curves the symmetric force stresses (γ = 0).
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Figure 6: Torsion contours of an edge dislocation near the dislocation line: (a) αxz, (b)
αyz with ν = 0.3 and γ = µ/2 (in units of b/[4π]).
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Figure 7: The modified Burgers vector of an edge dislocation b(r)/b for ℓ2 = ℓ3 (small
dashed) and for ν = 0.3 and γ = µ/2 (solid).

calculated as

b(r) =

∮
(βxx dx + βxy dy) =

∫ 2π

0

∫ r

0

αxz(r′, φ′) r′ dr′ dφ′

= b
{

1 −
1

2

[ r

ℓ2

K1

( r

ℓ2

)
+

r

ℓ3

K1

( r

ℓ3

)]}
(4.46)

0 =

∮
(βyx dx + βyy dy) =

∫ 2π

0

∫ r

0

αyz(r′, φ′) r′ dr′ dφ′. (4.47)

Thus, it can be seen that the torsion (4.41) does not contribute to the Burgers vector.
Only the K0-terms in (4.40) give a contribution to the Burgers vector (4.46). The plot is
given in figure 7.

4.2 The case ℓ2 = ℓ3

Now we turn to a special case of the gauge theoretical edge dislocation we have found. We
obtained two internal lengths ℓ2 and ℓ3. If we require that the dislocation density (4.41)
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has to be zero, the internal lengths must fulfill ℓ2 = ℓ3. Therefore, we may reduce them
to only one internal length. If the internal lengths ℓ2 and ℓ3 are equal, we find

ℓ2 = ℓ3 : ⇒ γ =
λ

2ν
=

µ

1 − 2ν
, A = B. (4.48)

Thus, in this case the parameter γ is expressed in terms of µ and ν. Eventually, the
non-vanishing components of the stress tensor are

σxx = −
µb

π(1 − ν)

y

r2

[
1 −

r

ℓ2
K1

( r

ℓ2

)]
(4.49)

σxy =
µb

π(1 − ν)

x

r2

[
1 −

r

ℓ2
K1

( r

ℓ2

)]
(4.50)

σzz = −
µνb

π(1 − ν)

y

r2

[
1 −

r

ℓ2
K1

( r

ℓ2

)]
. (4.51)

Thus, σyx = 0 and σyy = 0. The non-vanishing components of the elastic distortion are

βxx = −
b

2π

y

r2

[
1 −

r

ℓ2
K1

( r

ℓ2

)]
(4.52)

βxy =
b

2π

x

r2

[
1 −

r

ℓ2

K1

( r

ℓ2

)]
(4.53)

βyx =
νb

2π(1 − ν)

x

r2

[
1 −

r

ℓ2

K1

( r

ℓ2

)]
(4.54)

βyy =
νb

2π(1 − ν)

y

r2

[
1 −

r

ℓ2

K1

( r

ℓ2

)]
. (4.55)

Because the components βyx and βyy are compatible, they can be expressed in terms of a
displacement field uy according to

βyx = uy,x, βyy = uy,y, uy =
νb

2π(1 − ν)

[
ln r + K0

( r

ℓ2

)]
. (4.56)

Let us compare this type of edge dislocation with the edge dislocation originally introduced
by Volterra [62] (see also [66]). The displacement field of a Volterra edge dislocation reads
ux = b/(2π) arctan y/x and uy = b/(2π) ln r. But the corresponding force stress of this
displacement field calculated in the theory of (symmetric) elasticity does not fulfill the
force equilibrium condition because it produces line forces at the dislocation line and the
dilatation and the hydrostatic pressure are zero. These drawbacks are not acceptable
from the physical point of view. In the limit ℓ2 → 0, our displacement field uy has a pre-
factor ν/(1− ν) instead of 1. But the modified pre-factor is necessary to satisfy the force
equilibrium condition with asymmetric force stresses and to give the correct dilatation.
Thus, we have found the gauge theoretical version of an edge dislocation of Volterra type
which is able to remove the original drawbacks of the edge dislocation of Volterra type.
The limiting value ν = 1/2 defines incompressibility and we obtain the pre-factor 1. In
this limit λ and γ tend to infinity. Thus, in the limit of incompressibility the Volterra
dislocation is also valid.

The non-vanishing component of the dislocation density tensor is given by

αxz =
b

2π

1

ℓ2
2

K0

( r

ℓ2

)
. (4.57)
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Thus, this dislocation density has cylindrical symmetry and has the same form as a screw
dislocation (3.11). The localized pseudomoment stress reads

Hxz =
µb

π(1 − ν)
K0

( r

ℓ2

)
, Hzx = −

νµb

π(1 − ν)
K0

( r

ℓ2

)
. (4.58)

It is the pseudomoment stress of an edge dislocation with cylindrical symmetry (see
also [23]). The corresponding Burgers vector is

b(r) = b
[
1 −

r

ℓ2
K1

( r

ℓ2

)]
. (4.59)

4.3 The case γ = 0: symmetric force stresses

Now we want to revert the case of symmetric force stresses. If we set γ = 0 (symmetric
force stress), we obtain from Eqs. (3.5), (2.49), (4.14), (2.50) and (2.51):

a3 = −
a1

2
, a2 =

1 + ν

1 − ν
a1, ℓ2

2 = ℓ2
1 =

a1

2µ
, ℓ2

3 → ∞, B = 0. (4.60)

It is obvious that a3 in (4.60) violates the condition of positive dislocation core energy
(2.21). Thus, the condition of nonnegative dislocation core energy requires asymmetric
force stresses. The condition (4.60) has only one independent internal length and it is
the choice introduced by Lazar [23]. With B = 0 we recover from Eqs. (4.24)–(4.28) the
force stress earlier calculated by [23] and [63, 64] in the framework of a gauge theory
with symmetric force stresses and strain gradient elasticity, respectively. Also the distor-
tions (4.32)–(4.35) become symmetric with B = 0 and the elastic rotation (4.37) becomes
zero.

4.4 The case γ → ∞

If we set γ → ∞ , then we obtain from Eqs. (3.5), (2.49), (4.14), (2.50) and (2.51):

a3 → ∞, a2 =
1 + ν

1 − ν
a1, ℓ2

2 = ℓ2
1 =

a1

2µ
, ℓ2

3 =
a1

4µ(1 − ν)
, B =

µb

π
. (4.61)

This case does not violate the positive definiteness of the dislocation core energy (2.21).
So we obtain the relation between ℓ2 and ℓ3

ℓ2
3 =

1

2(1 − ν)
ℓ2
2,

ℓ2

2
≤ ℓ3 ≤ ℓ2. (4.62)

The skewsymmetric stress (4.31) converts to

σ[xy] =
µb

π

x

r2

[
1 −

r

ℓ3
K1

( r

ℓ3

)]
(4.63)

and the skewsymmetric distortion (4.37) vanishes β[xy] = 0. All other quantities can be
easily calculated with (4.61). Because the elastic rotation is zero in the present case the
corresponding energy converts to

lim
γ→∞

W (β, curl β) = W (e, curl e) = W (e, curl eP), e = sym β (4.64)
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where e and eP denote the elastic and plastic strains. Such a theory looks like a theory
of strain gradient plasticity (see, e.g., Gurtin and Anand [65].) In such a theory the trace
of the dislocation density tensor is zero

αjj = −ǫjklejk,l = ǫjkle
P
jk,l = 0. (4.65)

Thus, it is a theory with two constraints

γ → ∞ : β[ij] = 0

a3 → ∞ : αjj = 0. (4.66)

5 Conclusion

In this paper, we have investigated the (static) translational gauge theory of disloca-
tions. We have used the most general linear and isotropic constitutive relations between
the force stress and elastic distortion tensors and the pseudomoment stress and disloca-
tion density (torsion) tensors. Thus, the linear theory possesses six material coefficients
and the force and pseudomoment stress tensors are asymmetric. We have found four
characteristic length scales for the gauge theory of dislocation given in terms of the six
material coefficients to account for size effects of small-scale problems. We have derived
the conditions of positive energy for the six material coefficients. We observed that the
so-called Einstein choice of the three coefficients of the pseudomoment stress tensor vio-
lates the positive definiteness of the dislocation core energy. This fact demonstrates that
the three-dimensional Einsteinian gauge approach is not a realistic model for dislocations.
We have observed that in the gauge theory of dislocations moment stress is the response
to contortion and pseudomoment stress is the response to pseudomoment stress. Using
Fourier transform, we have calculated the three-dimensional Green tensor of our so-called
master equation of the force stress tensor. In the case of generalized plane strain the four
characteristic lengths reduce to only two lengths and the number of independent material
coefficients simplifies to four. Later, we have solved the anti-plane strain problem of a
screw dislocation and the plane strain problem of an edge dislocation in the framework of
gauge theory. In this turn, we have found new solutions for all physical state quantities
of a screw dislocation and an edge dislocation.
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A Screw dislocation in asymmetric elasticity

In asymmetric elasticity the force stress tensor is asymmetric and fulfills the force equi-
librium condition

σ0
ij,j = 0, σ0

ij 6= σ0
ji. (A.1)
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The elastic distortion of a Volterra screw dislocation is given by [66]

β0
zx = −

b

2π

y

r2
, β0

zy =
b

2π

x

r2
, r2 = x2 + y2. (A.2)

Thus, the present problem is of anti-plane strain type. The non-vanishing component of
the dislocation density of a screw dislocation reads

α0
zz = β0

zy,x − β0
zx,y. (A.3)

It is the incompatibility condition. In terms of force stresses it reads

α0
zz =

1

µ + γ
(σ0

zy,x − σ0
zx,y). (A.4)

For a straight screw dislocation it has the form

α0
zz = b δ(x)δ(y). (A.5)

In terms of the Prandtl stress function F 0, the incompatibility condition is given by

∆F 0 = (µ + γ)b δ(x)δ(y). (A.6)

The Prandtl stress function is nothing but the Green function of the two-dimensional
Laplace equation. It reads [39]

F 0 =
(µ + γ)b

2π
ln r. (A.7)

B Edge dislocation in asymmetric elasticity

In the case of straight edge dislocations the equations of incompatibility take the form

α0
xz = β0

xy,x − β0
xx,y (B.1)

α0
yz = β0

yy,x − β0
yx,y. (B.2)

We introduce the following combinations [51]

A1 := α0
yz,x − α0

xz,y = β0
yy,xx + β0

xx,yy − β0
xy,xy − β0

yx,xy (B.3)

A2 := − α0
xz,x − α0

yz,y = β0
yx,yy − β0

xy,xx + β0
xx,xy − β0

yy,xy. (B.4)

Expressing the elastic distortions in terms of force stresses and using σ0
ij,j = 0 and σ0

zz =
ν(σ0

xx + σ0
yy), we obtain

A1 =
1 − ν

2µ
∆(σ0

xx + σ0
yy) (B.5)

A2 =
1

2µ
(σ0

xx,xy − σ0
yy,xy) +

γ − µ

4µγ
(σ0

xy,yy − σ0
yx,xx) +

γ + µ

4µγ
(σ0

yx,yy − σ0
xy,xx). (B.6)
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Because we deal with asymmetric force stresses we use the stress function ansatz given
by Mindlin for couple-stress theory [50]

σ0
ij =




∂2
yyf

0 − ∂2
xyΨ0 −∂2

xyf
0 + ∂2

xxΨ0 0

−∂2
xyf

0 − ∂2
yyΨ0 ∂2

xxf
0 + ∂2

xyΨ0 0

0 0 ν∆f 0




(B.7)

where f 0 and Ψ0 are stress functions of second order. The stress function ansatz (B.7)
is the generalization of the stress function ansatz with the Airy stress function f 0 for
symmetric stresses. If Ψ0 is zero, (B.7) reduces to the usual expression for the stresses
in terms of the Airy stress function f 0. Equations (B.5) and (B.6) are reduced to the
following inhomogeneous bi-harmonic equations

∆∆ f 0 =
2µ

1 − ν
A1 (B.8)

∆∆ Ψ0 = −
4µγ

µ + γ
A2. (B.9)

Because we want to consider a straight edge dislocation with the Burgers vector b = bx,
the dislocation density tensor has the form

α0
yz = 0, α0

xz = b δ(x)δ(y). (B.10)

So we obtain

∆∆ f 0 = −
2µb

1 − ν
∂y[δ(x)δ(y)] (B.11)

∆∆ Ψ0 =
4µγb

µ + γ
∂x[δ(x)δ(y)]. (B.12)

Since the two-dimensional Green function of the bi-harmonic equation is

∆∆ G = δ(x)δ(y), G =
1

8π
r2 ln r (B.13)

the solutions of (B.11) and (B.12) are the following Airy stress functions [39]

f 0 = −
µb

4π(1 − ν)
∂y(r2 ln r) (B.14)

Ψ0 =
µγ b

2π(µ + γ)
∂x(r2 ln r). (B.15)

(B.14) is the well-known Airy stress function for an edge dislocation with Burgers vector
bx and (B.15) looks like an Airy stress function for an edge dislocation with Burgers vector
by with a different pre-factor.
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[13] F.W. Hehl, E. Kröner, Z. Naturforschg. 20a (1965) 336.
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[39] E. Kröner, Continuum Theory of Defects, in: Physics of Defects (Les Houches, Ses-
sion 35), R. Balian et al., eds., North-Holland, Amsterdam (1981) p. 215.

[40] S. Li, C. Linder, J.W. Foulk III, J. Mech. Phys. Solids 55 (2007) 980.
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