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Introduction

Even if particles interact with only excluded volume interactions, they may exhibit a rich phase diagram, for example it is known that simple non-spherical hard-core particles can form either crystalline or liquid crystalline ordered phases [START_REF] Allen | Liquid Crystal Systems[END_REF], as first shown analytically by Onsager [START_REF] Onsager | [END_REF] for rod-like particles. Accurate phase diagrams of several hard-body shapes can be found in literature [3][4][5][6] but detailed informations about dynamics properties and kinetically arrested states of hard-core bodies are not available. While mode coupling theory (MCT) [START_REF] Götze | Aspects of Structural Glass Transition[END_REF] well describes the slowing down of the dynamics of hard-sphere system on increasing the packing fraction φ, its molecular counterpart, the molecular model coupling theory (MMCT) [START_REF] Letz | Ideal glass transition for hard ellipsoids[END_REF] has not been tested in simulated or real systems yet. On going from spheres to non-spherical particles, non-trivial phenomena arise, due to the interplay between translational and rotational degrees of freedom. The slowing down of the dynamics can indeed appear either in both translational and rotational properties or in just one of the two. Hard ellipsoids (HE) of revolution [START_REF] Allen | Liquid Crystal Systems[END_REF]9] been applied to HE [10,11], predicting a swallow-like glass transition line. In addition, the theory suggests that for X 0 0.5 and X 0 2, the glass transition is driven by a precursor of nematic order, resulting in an orientational glass where the translational density fluctuations are quasi-ergodic, except for very small wave vectors q.

Methods

We perform an extended study of the dynamics of monodisperse HE in a wide window of φ and X 0 values, extending the range of X 0 previously studied [12].

We study the translational and rotational mean squared displacements, looking for evidences of cage effect and the translational and rotational correlation functions, to search for the onset of slowing down and stretching in the decay of the correlation. We also focus on establishing the trends leading to dynamic slowing down in both translations and rotations, by evaluating the loci of constant translational and rotational diffusion. These lines, in the limit of vanishing diffusivities, approach the glass-transition lines. We simulate a system of N = 512 ellipsoids at various volumes V = L 3 in a cubic box of edge L with periodic boundary conditions. We chose the geometric mean of the axis l = 3 √ ab 2 as unit of distance, the mass m of the particle as unit of mass (m = 1) and k B T = 1 (where k B is the Boltzmann constant and T is the temperature) and hence the corresponding unit of time is ml 2 /k B T . The inertia tensor is chosen as I x = I y = 2mr 2 /5, where r = min{a, b}. The value of the I z component is irrelevant [START_REF] Allen | Talbot Molecular Dynamics Simulations Using Hard Particles[END_REF], since the angular velocity along the symmetry (z-) axis of the HE is conserved. We simulate a grid of more than 500 state points at different X 0 and φ. To create the starting configuration at a desired φ, we generate a random distribution of ellipsoids at very low φ and then we progressively decrease L up to the desired φ. We then equilibrate the configuration by propagating the trajectory for times such that both angular and translational correlation functions have decayed to zero. Finally, we perform a production run at least 30 times longer than the time needed to equilibrate. For the points close to the isotropic-nematic (I-N) transition we check the nematic order by evaluating the largest eigenvalue S of the order tensor (for further details see [START_REF] De Michele | Dynamics of uniaxial hard ellipsoids[END_REF]).

Results and discussion

Mean squared displacements

A first characterization of HE dynamics is offered by translational and rotational mean squared displacements (MSD). Translational MSD is defined as:

r 2 (t) = 1 N i x i (t) -x i (0) 2 (1)
where N is the number of HE and x i (t) is the position of the center-of-mass of the i-th HE. Analogously the rotational MSD is:

Φ 2 (t) = 1 N i ∆Φ i 2 (2) 
where ∆Φ i = t 0 ω i dt, ω i being the angular velocity of the i-th HE. In Fig. 2 ( ∆ tra (∞), ∆ rot (∞) = 1), respectively. Anyway, if the translational, or rotational, velocity autocorrelation function (VCF) exhibits a negative tail at long times, ∆ tra (t) shows a minimum. In other words a monotonically decreasing translational (rotational) VCF, that is without cage effect, corresponds to a monotonically decreasing ∆ tra (t) (∆ rot (t)) [START_REF] Larini | Universal scaling between structural relaxation and vibrational dynamics in glass-forming liquids and polymers[END_REF].

Orientational correlation function

Cage effect of Φ 2 (t) for large X 0 , approaching the nematic phase, supports the possibility of a close-by glass transition. To further support this possibility we evaluate the self part of the intermediate scattering function F self (q, t) = 1 N j e iq•(xj(t)-xj(0)) and the second order orientational correlation function C 2 (t) defined as [12] C 2 (t) = P 2 (cos θ(t)) , where P 2 (x) = (3x 2 -1)/2 and θ(t) is the angle between the symmetry axis at time t and at time 0. The over-compressing achievable for HE is rather limited (as for the well known hard-sphere case), nevertheless rotational and translational correlation functions reveals that the onset of dynamic slowing down and glassy dynamics can be detected by the appearance of stretching. F self shows an exponential behaviour close to the I-N transition (X 0 = 3.2, 0.3448) on the prolate and oblate side and only when X 0 ≈ 1, F self develops a small stretching, consistent with the minimum of the swallow-like curve observed in the fluid-crystal line [16,17], in the jamming locus as well as in the predicted behavior of the glass line for HE [START_REF] Letz | Ideal glass transition for hard ellipsoids[END_REF] and for small elongation dumbbells [18,19].

In contrast to the F self behavior, the orientational correlation function C 2 shows stretching at large anisotropy, i.e. at small and large X 0 values, but decays within the microscopic time for almost spherical particles, in accordance with the cage effect of Φ 2 (t) . Previous studies of the rotational dynamics of HE [12] did not report stretching in C 2 , probably due to the smaller values of X 0 previously investigated and to the present increased statistic which allows us to follow the full decay of the correlation functions.

In summary C 2 becomes stretched approaching the I-N transition while F self remains exponential on approaching the transition. To quantify the amount of stretching in C 2 , we fit it to the function A exp[-(t/τ C2 ) βC 2 ] (stretched exponential) for several state points and we show in Fig. 3 the X 0 dependence of τ C2 and β C2 for three different values of φ. In all cases, slowing down of the characteristic time and stretching increases progressively on approaching the I-N transition.

Isodiffusivity lines

For all the simulated state points, we evaluated the translational (D trans ) and rotational (D rot ) diffusion coefficients. Then by proper interpolation of D trans and D rot , we evaluate the corresponding isodiffusivity lines, that are the loci of points, in the X 0 -φ diagram, having the same diffusivity. Isodiffusivity lines are shown in Fig. 4. What emerges clearly from this figure is a striking decoupling of the translational and rotational dynamics: translational isodiffusivity lines resemble the swallow-like shape of the coexistence between the isotropic liquid and crystalline phases (as well as the MMCT prediction for the glass transition [START_REF] Letz | Ideal glass transition for hard ellipsoids[END_REF]), while rotational isodiffusivity lines have qualitatively the same shape of the I-N coexistence.

Translation isodiffusivity lines run almost parallel to x-axis, i.e. translational diffusion is mainly controlled by volume fraction (packing), that is the y-axis in Fig. 4. In contrast due to the almost perpendicular crossing of translational and rotational isodiffusivity lines, the rotational isodiffusivity lines are instead mostly controlled by X 0 , showing a progressive slowing down of the rotational dynamics independently from the translational behavior. In other words moving along a translational isodiffusivity path, D rot progressively decreases, untilmkdir the rotational diffusion is completely arrested. Unfortunately in our specific case of monodisperse HE, before reaching this point, the I-N nematic instability intervenes, and we were able to observe only a limited degree of supercooling. It would be intriguing to design a system of hard particles, where the nematic transition is completely inhibited. Likely this system can be obtained by a proper choice of the disorder in the particle's shape and/or elongations. MMCT predicts a nematic glass for large X 0 HE [START_REF] Letz | Ideal glass transition for hard ellipsoids[END_REF], in which orientational degrees of freedom start to freeze approaching the isotropic-nematic transition line, while translational degrees of freedom mostly remain ergodic. Hence our slowing down of the rotational dynamics is consistent with the results of this theory.

Conclusions

In summary we investigated the dynamics properties of a system of monodisperse HE and we have shown that clear precursors of dynamic slowing down, like the stretching of correlation functions and the cage effect, can be observed in the region of the phase diagram where a (meta)stable isotropic phase can be studied. In particular our data suggest, in accordance with MMCT predictions [START_REF] Letz | Ideal glass transition for hard ellipsoids[END_REF], at least two possible glass transition mechanisms: a slowing down in the orientational degrees of freedom (when X 0 0.5, X 0 2), driven by the elongation of the particles and related to pre-nematic order (quantitative predictions about precursors effects of I-N transition can be also found in [START_REF] Kivelson | Unified Theory of Orientational Relaxation[END_REF] and they can be checked using our data, work on this is under way), and a slowing down in the translational degrees of freedom (active for 0.5 X 0 2) driven by packing and related to cage effect. The main effect of the existence of these two complementary arrest mechanisms is a decoupling of the translational and rotational dynamics which generates an almost perpendicular crossing of the D trans and D rot isodiffusivity lines. 
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 31 Figure 1. [Color online]Translational (top) and rotational (bottom) MSD for three different elongations at different volume fractions. Top (from left to right) X 0 =1/3 (from top to bottom: φ = 0.20 . . . 0.45), 1.0 (φ = 0.20 . . . 0.53) ,3.0 (φ = 0.20 . . . 0.52). Bottom (from left to right): X 0 =1/3 (φ = 0.20 . . . 0.45 ) , 1.2 (φ = 0.20 . . . 0.518), 3.0 (φ = 0.20 . . . 0.52). Dashed lines and dot-dashed lines are guides to eye, showing the ballistic and diffusive regime respectively.

Figure 2 .

 2 Figure 2. [Color online] ∆tra(t) and ∆rot(t) (see text for their definitions) for the most "supercooled" state points simulated for four different elongations. Dotted lines indicate ballistic and diffusive regimes.

Figure 3 .

 3 Figure 3. [Color online] β C 2 and τ C 2 are obtained from fits of C 2 to a stretched exponential for φ = 0.40, 0.45 and 0.50. Top: τ C 2 as a function of X 0 . Bottom: β C 2 as a function of X 0 . The time window used for the fits is chosen in such a way to exclude the microscopic short times ballistic relaxation. For 0.588 < X 0 < 1.7 the orientational relaxation is exponential.

Figure 4 .

 4 Figure 4. [Color online] Isodiffusivity lines. Solid lines are isodiffusivity lines from translational diffusion coefficients Dtrans and dashed lines are isodiffusivities lines from rotational diffusion coefficients Drot. Arrows indicate decreasing diffusivities. Left and right arrows refer to rotational diffusion coefficients. Diffusivities along left arrow are: 1.5, 0.75, 0.45, 0.3, 0.15. Diffusivities along right arrow are: 1.5, 0.75, 0.45, 0.3, 0.15, 0.075, 0.045. Central arrow refers to translational diffusion coefficients, whose values are: 0.5, 0.3, 0.2, 0.1, 0.04, 0.02. Thick Long-dashed curves are coexistence curves of all first order phase transitions in the phase diagram of HE evaluated by Frenkel and Mulder[20] Solid lines are coexistence curves for the I-N transition of oblate and prolate ellipsoids, obtained analytically by Tijpto-Margo and Evans [6].
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