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An atomic mechanism for the boson peak in metallic glasses

U. Buchenau∗ and H. R. Schober

Institut für Festkörperforschung, Forschungszentrum Jülich

Postfach 1913, D–52425 Jülich, Federal Republic of Germany

(Dated: August 31, 2008)

Abstract

The boson peak in metallic glasses is modeled in terms of local structural shear rearrangements.

Using Eshelby’s solution of the corresponding elasticity theory problem (J. D. Eshelby, Proc.

Roy. Soc. A241, 376 (1957)), one can calculate the saddle point energy of such a structural

rearrangement. The neighbourhood of the saddle point gives rise to soft resonant vibrational

modes. One can calculate their density, their kinetic energy, their fourth order potential term and

their coupling to longitudinal and transverse sound waves.

PACS numbers: 64.70.Pf, 77.22.Gm
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I. INTRODUCTION

As yet there is no generally accepted explanation of the boson peak in the neutron or

Raman scattering intensities of glasses. The boson peak is a broad peak at an energy transfer

of a few meV, where simple crystals show only sound waves. Glasses seem to have a sizable

excess of vibrations at this boson peak. At present, there is no agreement which forces drive

these extra vibrations into the low-frequency region, though several possible explanations

have been proposed [1–8]. Another controversial question [9, 10] is whether the interaction

with these vibrations is the physical reason for the crossing of the Ioffe-Regel limit, the

reduction of the mean free path down to below the wavelength of sound waves in the THz

range.

The present paper proposes a detailed atomic model for the boson peak modes in glasses

consisting of close-packed atoms or spherical molecules: The soft modes are ascribed to

small regions with a pronounced shear misfit with respect to the surrounding matrix. In

the following section II we describe the picture and derive the properties of these modes. In

section III we relate our model to experiment and in section IV discuss and summarize the

results.

II. THE GLIDING-TRIANGLE MECHANISM

A. Shear strain defects

The central concept of this model is a structural rearrangement of a limited region in

the sample which changes its shape to a sheared one. In three-dimensional close packing,

the lowest-energy structural rearrangement can be viewed as a gliding of a triangle of three

close-packed atoms over an underlying close-packed plane (Fig. 1). On the left side of Fig.

1, the center of the upper triangle lies exactly over the center of a lower triangle within the

close-packed plane. The central points of the six atoms form an octahedron. Gliding the

triangle in vertical direction one reaches again a stable position after a distance of 2r/
√

3

(r sphere radius), right part of Fig. 1. The six atoms there form a pair of edge-sharing

tetrahedra. Since the distance between close-packed planes is 2r
√

2/3, the shear angle is

1/
√

2 in radians, i. e. 40.5 degrees.

The physical problem of a small piece of matter able to transform to a sheared shape

2
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within an elastic matrix has been treated fifty years ago by several authors, notably by J.

D. Eshelby [11, 12]. Here, we translate Eshelby’s result into the usual convention, in which

the shear angle e and the shear stress σ are related by σ = Ge (G infinite frequency shear

modulus). Let vi be the volume of the spherical inclusion and ei the shear angle difference

between its two stable configurations (in the example of Fig. 1, ei = 1/
√

2 and vi = 6v,

where v is the atomic volume). For strictly harmonic potentials, the symmetric case of two

equally strained configurations has the elastic deformation energy

Ea =
γ

8
Gvie

2

i . (1)

The coefficient γ is given by

γ =
7 − 5σP

15(1 − σP )
, (2)

where σP is Poisson’s ratio. Since Poisson’s ratio lies between 0.1 and 0.44 for the known

glasses, γ lies between 0.48 and 0.57, close to 1/2.

Eshelby’s solution divides the energy into two almost equal parts, one located in the

inclusion and one outside. Their ratio is γ/(1 − γ). In the symmetric case, the inclusion

would have to distort by ei/2 to fit exactly into the unstrained hole in the surrounding

matrix. From a structural point of view, this is the saddle point between the two stable

configurations.

In strictly harmonic approximation, Eq. (1) holds and the structural saddle point indeed

is a saddle point of the energy landscape. However, the harmonic approximation does not

account for the flattening at the saddle point, at least as regards the distortion energy Ec

of the inclusion. For the inclusion, a better description is by a cosine law

Ec =
3Gv

4π2
(1 + cos 2

√
2πec) (3)

shown in Fig. 2, where ec is the shear angle of the central inclusion, counted from the saddle

point of the energy of the inclusion. This cosine law has the correct second derivative of

6Gv at ec = ±1/2
√

2, the two structural energy minima of Fig. 1.

The embedding energy outside the inclusion depends on the difference between ec and

the zero point em of the shear of the matrix. In terms of ec, the shear state of the hole after

removing the inclusion and relaxing the matrix is ec = em. Let us assume γ = 1/2. Then

the second derivative of this outside embedding term must also be 6Gv. The total elastic

3
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energy Eel is given by the sum of inside and outside contributions

Eel =
3Gv

4π2
(1 + cos 2

√
2πec) + 3Gv(em − ec)

2. (4)

Note that the symmetric case at em = 0 (the red lines in Fig. 2) has its minimum at

ec = 0, with all the energy inside the inclusion and a vanishing restoring force constant for

a displacement of ec. Thus one does not get a saddle point of the energy landscape, but one

gets a shear mode with zero restoring force constant at the structural saddle point. In this

case, there is no elastic energy outside the inclusion and the creation energy Es for the soft

mode configuration is

Es =
3Gv

2π2
. (5)

In order to know the probability of finding such a soft gliding-triangle mode in a closed

packed glass, one needs to know the ratio Gv/kBTg, where Tg is the glass transition tem-

perature, at which the glass falls out of the thermal equilibrium. For metallic glasses, this

information can be extracted from a recent data collection [13]. Fig. 3 plots the product Gv

for 30 metallic glasses at the glass transition as a function of Tg. There is a marked scatter,

but on average Gv/kBTg = 17.6 (the line in Fig. 3). With eq. (5), this implies a ratio

Es/kBTg of 2.67, i.e. a Boltzmann factor of 0.069. Thus one has to reckon with a sizeable

number of nearly unstable resonant shear modes in a metallic glass.

B. Properties of soft shear modes

The equilibrium value ec0 of the inner coordinate ec for a fixed em0 is given by the zero

of the first derivative of Eel, Eq. (4), with respect to ec:

em0 = ec0 −
sin 2

√
2πec0

2
√

2π
. (6)

The second derivative of Eq. (4) at ec0 gives the restoring force constant

De =
∂2Es

∂e2
c

= 6Gv(1 − cos 2
√

2πec0), (7)

which vanishes for em0 = ec0 = 0.

To calculate the kinetic energy of the mode, consider a sphere with volume of 6v, corre-

sponding to the six atoms in Fig. 1. Its radius r0 is given by

4πr3

0

3
= 6v. (8)

4
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Inside the sphere, the motion is a pure shear with amplitude e = ec − ec0, say ux = ey/2,

uy = ex/2 and uz = 0. The amplitude of the outside motion decays with the squared

distance from the center. It joins the inner shear amplitude continuously at the sphere

boundary. The kinetic energy inside the sphere is

Ekin,i =
ρėc

2

8

∫ π

0

∫

2π

0

∫ r0

0

sin3 θ dθdφr4dr, (9)

where ρ is the density. The kinetic energy outside the sphere, in which the r4 of Eq. (9) is

replaced by r6

0
/r2 and r is taken from r0 to infinity, is a factor of five higher than the one

inside. Replacing the density ρ = M/v, where M is the atomic mass, one finally arrives at

Ekin =
1

2

21/3310/3

5π2/3
Mv2/3ėc

2. (10)

For many purposes, it is useful to define a normal coordinate, A, of the soft mode with

Ekin = Ȧ2/2. For the soft shear modes

A =
21/635/3

51/2π1/3
M1/2v1/3ec. (11)

Consider the shear mode at the structural energy minima, say the octahedron of Fig. 1

at em = −1/2
√

2. Then, De = 12Gv, and the mode frequency attains its maximum ωmax

with
21/3310/3

5π2/3
Mv2/3ω2

max = 12Gv. (12)

It is interesting to compare this frequency with the Debye frequency ωD, determined

essentially by the transverse sound modes. The transverse sound velocity vt is given by

v2

t =
G

ρ
=

Gv

M
. (13)

The Debye sound velocity vD is given by the average

3

v3

D

=
1

v3

l

+
2

v3
t

, (14)

where vl is the longitudinal sound velocity, on the average for the metallic glasses [13] a

factor of 2.26 higher than the transverse one. For this case, vD = 1.13vt. The Debye wave

vector is kD = (6π2/v)1/3, so on average

ωD = 4.4
vt

v1/3
= 2.72 ωmax. (15)

This shows that the gliding-triangle mode considered here has a maximum frequency of less

than half the Debye frequency in the absence of any structural strain.

5
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C. Density of gliding-triangle modes

In order to estimate the density of soft shear modes, one first needs the number of

octahedra per atom in the disordered structure. In the crystalline close-packed structures,

both fcc and hcp, one has one octahedron per atom. Though this number might easily be

smaller in the disordered case, we will take it there also as one.

For each octahedron, there are twelve possibilities to distort to a pair of edge-sharing

tetrahedra. There are four choices of the two triangles which are to glide against each other

and for each pair there are three glide directions, 120◦ rotated to each other. Consequently,

there are two stable minima per atom, the octahedron and the edge-sharing pair of tetrahe-

dra, and twelve saddle points between them. As shown in the Appendix, the twelve saddle

points lie pairwise rather close to each other, with an angle of only 38.9 degrees between the

two members of each pair.

At the glass temperature Tg, the saddle points are already sufficiently high in energy

to be, in first order, negligible for the partition function, which can be approximated by a

harmonic potential around the octahedron energy minimum at eoct = −1/2
√

2. Close to the

minimum, Eq. (6) gives ec0 − eoct = (em0 − eoct)/2. At the energy minimum, Eq. (4) takes

the simple quadratic form

Eel =
3Gv

2
(em0 − eoct)

2, (16)

with the partition function

Z =

√

2πkBTg

3GV
(17)

at the glass temperature Tg.

The probability ps = p(em = 0) to find em close to the structural saddle point is

ps ≈
3 exp(−Es/kBTg)

Z
=

√

54Gv

πkBTg

exp

(

−3Gv

2π2kBT

)

. (18)

The factor 3 stems from the fact that there are three saddle point pairs per minimum, as

explained in detail in the Appendix.

It is useful to introduce the coordinate x

x =
√

2πec0 (19)

which is zero at the structural saddle point and ±π/2 at the two energy minima. From equs.

6
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(7) and (12), one obtains for the frequency of the shear mode

ω = ωmax sin x. (20)

As one moves away in em from the structural saddle point, the probability density changes

only slowly, but x and the restoring force constant of the mode change rapidly (see Fig. 2).

The probability density of x is related to the one of em by the derivative ∂em/∂x calculated

from eq. (6)
∂em

∂x
=

√
2

π
sin2 x. (21)

The vibrational density of states of the soft shear modes is given by

g◦

s(ω) =
ps

3

∂em0

∂x

∂x

∂ω
=

psω
2

3
√

2πω3
m

1
√

1 − ω2/ω2
m

(22)

where the prefactor 1/3 results from the usual convention of normalizing the three modes

per atom to 1. Since we are only interested in the density of states well below ωm, we neglect

the square root term. Then gs(ω)/ω2 is simply constant

g◦

s(ω)

ω2
=

ps

3
√

2πω3
m

. (23)

This constant is to be compared with the constant 3/ω3

D, obtained by dividing the Debye

density of states by ω2. For the average Gv/kBTg = 17.6 (see Fig. 2), one finds with

Eqs. (15) and (18) a ratio of 0.6 between the density of the soft shear modes and the Debye

one. Thus one finds a rather large number of soft gliding triangle modes at low frequency,

comparable with the number of sound waves.

D. The shape of the boson peak

The soft shear modes are not exact eigenmodes of the harmonic vibrations of the glass.

They interact with the other vibrations and in particular with the sound waves. The low

frequency shear modes can be understood as the cores of quasi-localized or resonant vi-

brations. They are bilinearly coupled to the other modes. This system of localized soft

vibrations coupled bilinearly to extended modes (sound waves) is the basis of the soft po-

tential model [14–16].

Through their interaction with the sound waves, there is also an interaction between the

soft shear modes. The bilinear interaction of the soft modes with the much larger number

7
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of higher frequency modes causes a downshift of the soft modes, some of which even become

harmonically unstable. Stabilization via anharmonicity results in a soft mode spectrum

linear in ω below a frequency ωc given by the interaction strength, while at low frequency

one has a DOS ∝ ω4. The crossover between the ω4 and ω regions then leads to the boson

peak.[17] The total number of soft modes is not changed by these frequency shifts. It has

been shown that this interaction mechanism can explain the nearly universal density of

observed two level systems in glasses.[18]

For the purpose of the present paper, it suffices to know that the exact shape of the

boson peak requires a more detailed theoretical treatment. Here, we restrict ourselves to the

conclusions which are easily accessible from our postulate for the eigenvector of the excess

modes. As will be seen in the next subsection, these conclusions include a calculation of the

damping and softening of the sound waves from the measured spectrum of a given metallic

glass.

E. Coupling, damping and softening

The coupling of a gliding-triangle soft shear mode to an external shear strain is given by

the derivative of the elastic energy of eq. (4) with respect to both the external strain em

and the internal coordinate ec

∂2Eel

∂em∂ec

= −6Gv (24)

if the external shear strain is in the direction of ec. In the general case, the directional

average over the five possible shear strain orientations must be taken.

It is usual to express the coupling in terms of a product ΛtAem of the shear strain and

the soft mode coordinate A, defined via eq. (11). From Λt, one can define a frequency ωt

via

ω2

t =
Λ2

t

Mv2
t

. (25)

Sorting all the factors out, one finally gets

ωt =
25/6π1/3

32/3

vt

v1/3
, (26)

about a factor of 3.5 lower than the Debye frequency.

8
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With ωt, the damping Γ of the transverse sound waves (the full width at half maximum

in a Brillouin experiment) is given by

Γt =
3π

2
ω2

t gs(ω), (27)

so the treatment predicts a damping of the transverse sound which increases with the fre-

quency or wavevector squared. The Ioffe-Regel condition Γ = ω/π is reached at the frequency

ωJRt

ωJRt =
2ω3

D

9π2αω2
t

. (28)

Here α is the ratio between Debye density of states and soft shear wave density of states,

which in the average metallic glass should be close to 1. For the average case with Gv/kBTg =

17.6, ωJRt lies at 0.23 ωD.

The Ioffe-Regel limit for the longitudinal sound waves lies markedly higher, because the

gliding-triangle modes couple only to the shear (or essentially so; we come back to this point

in the discussion). Since the longitudinal elastic constant is given by C11 = B + 4G/3,

where B is the bulk modulus, a pure shear coupling implies Λ2

l = 4Λ2

t /3 for the longitudinal

coupling constant. With again ω2

l = Λ2

l /Mv2

l , ω2

l will be a factor of 4v2

t /3v
2

l smaller than

ω2

t , with vl/vt ≈ 2.26 a factor of 0.26 smaller [13], which makes ωJRl a factor of nearly 4

higher than ωJRt.

The influence of the soft shear modes on the shear modulus is given by

∆G

G
= 3ω2

t

∫ ωmax

0

gs(ω)

ω2
dω, (29)

where ∆G is the difference between G above and below the boson peak.

III. COMPARISON TO EXPERIMENT

A. Vit-4, a heavily studied metallic glass

The best candidate for a check of these ideas is the metallic glass Vit-4,

Zr46.8Ti8.2Cu7.5Ni10Be27.5, a glass with an exceptionally low critical cooling rate [21], for

which every relevant quantity has been measured [19, 20, 22, 23], though the mechanical

[23], density [22] and neutron [19, 20] data were all taken for slightly different compositions.

At the glass temperature Tg = 615 K, the shear modulus is 35 GPa, the bulk modulus 112

9
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GPa [23] and the atomic volume is 0.017 nm3, so ~ωD = 27.5 meV. Fig. 4 shows the boson

peak at room temperature determined from inelastic neutron scattering data [19, 20] in units

of the Debye density of states (at room temperature [23], ~ωD = 28.6 meV).

If one takes the excess over the Debye density of states as gliding-triangle modes, one

can calculate the corresponding damping of the sound waves. One finds that the Ioffe-Regel

limit is never reached, even for the transverse sound waves. At the boson peak, the damping

is about half the Ioffe-Regel limit. Since the longitudinal waves are even less damped, one

expects rather sharp longitudinal Brillouin peaks in an inelastic x-ray experiment. This

was in fact measured for another metallic glass [10], Ni33Zr67. In this case, one finds a Q2

dependence above ωmax, which probably has nothing to do with the boson peak.

Though the boson peak is small, it is crucial for the mechanical properties and their

temperature dependence in the undercooled liquid. One calculates ∆G/G = 0.08 from eq.

(29) with the excess modes from Fig. 4. This fits in with the measured difference [23] of

26 % of the shear moduli of glass and crystal. The shear modulus Grüneisen parameter

ΓG = ∂ ln G/∂ ln v is found to be 6.5 from the temperature dependence of G [23] and the

density [22] in the glass phase. Consequently, the density ratio 1.027 between crystal and

glass explains two thirds of the shear modulus difference, the gliding-triangle modes explain

the rest.

In the undercooled liquid, the number of gliding-triangle modes increases exponentially

according to eq. (18) (replacing Tg by T ). They do not only increase their number, but

also shift to lower frequency, as seen in Fig. 4. However, if one makes a rough estimate

by a linear extrapolation of the liquid data in Fig. 4 to the frequency zero, the increase

of the area under the curve follows in fact eq. (18). Taking ∆G/G = 0.08 as the effect

of the gliding-triangle modes frozen in at Tg, eq. (18) predicts an additional reduction of

G of 0.023 GPa/K in the melt. This is almost exactly found in experiment [23] (see Fig.

5). The reduction in the liquid is a factor of 2.4 larger than the Grüneisen expectation on

the basis of the thermal expansion [22]. The difference can be frozen into the glassy state

by quenching. It is obviously due to configurational changes of the melt. The finding is of

great importance for the understanding o f liquids. Our model gives a quantitative physical

explanation for it: it is due to shear instabilities, stabilized by the surrounding matrix and

requiring a formation energy of about three times kBTg, which reduce the shear modulus.

The experiment [23] reveals also an additional decrease of the bulk modulus with increas-

10
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ing temperature, though not quite as pronounced as the one of the shear modulus. If this

is also attributed to our shear defects, they must couple to the compression. From the data

[23], the coupling constant ratio Λl/Λt of these defects should be 1.69 rather than the value
√

4/3 for a pure shear defect, close to the value 1.6 found for the tunneling states in glasses

[24]. We will come back to this point in the next section.

B. Low temperature anomalies

The gliding-triangle model makes some rather detailed predictions for the low tempera-

ture glass anomalies [25]. We show this employing the formalism of the soft potential model,

the standard model in the field for which an extensive comparison with experimental data

already exists [26–28].

The soft potential model [26–28] connects the boson peak modes to the tunneling states

[25] and to low-barrier relaxation. It postulates a constant density of first and second order

terms D1 and D2 around the value zero for the potential

Esoft = W (D1xs + D2x
2

s + x4

s). (30)

The coordinate xs relates again to the coordinate A of the soft mode with Ekin = Ȧ2/2. Let

us denote the fourth order term in this coordinate by v4A
4. Then the zero-point energy of

the purely quartic potential is by definition W , given by the equality of kinetic and potential

energy at A0

W ≡
~

2

2A2

0

= v4A
4

0
. (31)

This relation defines both W and A0. The kinetic energy results from the uncertainty

principle at a confinement within ±A0. The energy W separates tunneling states below W

from vibrational states above. The coordinate xs = A/A0.

The gliding-triangle modes of the present paper are also distributed around a purely

quartic potential (the continuous red line in Fig. 2). Its fourth order term 2π2Gve4

c , obtained

by the fourth derivation of eq. (4), leads in combination with the definition of A via eq.

(11) to

W =
52/3π10/9

25/9320/9
(Gv)1/3(~2/Mv2/3)2/3. (32)

Eq. (32) supplies an average value W/kB of 4.4 K for the thirty metallic glasses of the

data collection of Johnson and Samwer [13], a value well within the range of those fitted
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with the soft potential model for a number of nonmetallic glasses [27]. It combines a very

high energy, Gv, coming from the fourth order potential term, with the very low kinetic

confinement energy ~
2/Mv2/3. In this context, it is interesting to note that the fourth order

term of the quartic potential in Fig. 2 does not result from the short range atomic repulsion,

but rather from the decrease of the curvature of the inclusion energy with increasing ec, an

anharmonic property of the saddle point of the inclusion energy.

Let us next turn to the tunneling states. Of course, the potential of eq. (4) is in no

case a double-well potential with a low barrier able to form a tunneling state, because the

negative force constant of the inclusion can at most cancel the positive force constant of

the surrounding matrix. In terms of the soft-potential model, the treatment in Section II

corresponds to the case where the density p(D2) is not constant around zero, but rather

a δ-function at zero (this explains why one gets an ω2-rise in the excess density of states

rather than the ω4-rise of the soft potential model). But it was already pointed out in

section II that the interaction between the quasilocalized modes is responsible for the shape

of the boson peak and the appearance of tunneling states [17, 18]. However, such a detailed

modelling is beyond the scope of the present paper. Here we make no statement on the

number of these tunneling states. But we can make a statement on their coupling to the

sound waves.

For W = 4.4 K, a tunneling state with a splitting around 1 K requires D2 = −6. The two

minima of the double-well potential have a distance
√
−2D2 in the coordinate xs of eq. (30)

from each other. Using the definitions of equs. (31) and (11), one gets the corresponding

distance in ec. Multiplying this distance with the coupling factor 6Gv of eq. (4) and again

averaging over the five possible shears, one gets the coupling constant γt of the tunneling

state to a transverse sound wave

γt =
210/934/9

51/3π2/9

(

~
2/Mv2/3

Gv

)1/6
√

−D2Gv. (33)

For the data collection on metallic glasses [13] this yields an average value of 0.49 eV, not

too far away from the average value 0.39 of direct measurements of γt of the so-called low-

temperature ”tunneling plateau” in the sound absorption of 18 different inorganic glasses

[24]. In this field, scientists have always been wondering what kind of mode coordinate

would be able to give such a strong coupling. Here we have for the first time a detailed

answer to this question, at least for an important subgroup of glasses.
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The coupling to longitudinal sound waves is described by the analogous coupling constant

γl. From the consideration at the end of section II on a pure shear defect like the one

proposed here, one would expect a ratio γl/γt =
√

4/3 = 1.155. This does not agree with

the experimental finding [24] γl/γt = 1.6. As pointed out in the previous subsection, the

temperature dependence of the elastic moduli in the Vit-4 melt [23] suggests a factor of 1.69,

so metallic glasses in this respect do not differ from the general case. At present, we see no

obvious reason for this additional coupling to the compression.

IV. DISCUSSION AND SUMMARY

As seen in section III, the Ioffe-Regel limit for longitudinal sound waves for metallic

glasses should be by a factor of two to four higher than the one for transverse sound waves.

In fact, an inelastic x-ray Brillouin experiment in a metallic glass reveals a relatively low

longitudinal sound wave damping [10].

However, the metallic glass result [10] is an exception rather than the rule [9]. In the

nonmetallic glasses, one usually does find the Ioffe-Regel limit close to the boson peak,

maybe slightly above the boson peak. How is this possible?

The question is related to three ratios: The ratio of the boson peak height to the Debye

level, the ratio of the coupling constants Λ2

l /Λ
2

t , which for a pure shear defect is 4/3, and

the ratio v2

l /v
2

t . As it turns out [13], this last ratio is about 5.1 in the metallic glasses,

unusually high (compare silica, where this ratio is 2.3). This and the weakness of the boson

peak in many metallic glasses are the two reasons for the weak longitudinal damping. A

simulation [29] in a soft sphere glass, where the ratio v2

l /v
2

t was even higher than for real

metallic glasses, showed a very weak damping of the longitudinal waves.

There seems to be some as yet unexplained coupling of the boson peak modes to the

compression. As pointed out in section III, the ratio Λ2

l /Λ
2

t seems to be 1.62 = 2.56 rather

than 4/3. This feature is missing in our model. If one ascribes it to different packing factors

for octahedron and Pair of tetrahedra, Fig. 1, these would have to differ by about 18 %.

This explanation seems not to be very convincing. We rather think that the absence of

the compression coupling in our model comes from the neglect of the atomic roughness of

the shell surrounding the six central atoms, which introduces a random coupling to the

compression.
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Despite this small uncertainty, the evidence for the validity of the gliding triangle model

in section III shows that it is able to compete with other explanations of the boson peak

[2–8]. There is no adaptable parameter; one only needs the shear modulus, the atomic

mass and the atomic volume. The picture provides a microscopic basis for the empirical

soft-potential model [1, 26–28], not for all glasses, but for the subgroup of metallic glasses.

The gliding triangle motion considered here resembles the ”shear transformation zones”

invoked for the explanation of the yield stress in metallic glasses [13], because both are based

on the concept of a Frenkel gliding of adjacent atomic planes for a finite volume. However,

the shear transformation zones do not relate to low-frequency vibrations, but to relaxations

over a high barrier, the elementary flow process, probably with a much larger core than the

six atoms considered here.

In our derivation we have treated the soft shear motion in a mean field approximation for

the surrounding material, approximated by an elastic continuum. When the melt is cooled

down through the glass transition, correlations between adjacent groups of atoms gain im-

portance and will couple different modes. This can easily be observed in a crystalline model.

Let us take a simple hcp-lattice, with a stacking sequence of ababab... The rearrangement in

Fig. 1 then corresponds to a local change of stacking for the three atoms to abacab... A sim-

ple simulation shows that this causes two lines of compression along close packed direction

emanating from the triangle. The simple triangular shear thus becomes more collective, the

motion more correlated. Allowing the symmetry to be broken, as will always be the case in

a disordered medium, one of the two compressional chains gains on the expense of the other

which will merge to the first one leaving some “free” excess volume to its side. This picture

then resembles the chain-like structures of the soft modes found in simulations of soft sphere

glasses [30, 31] and other metallic systems. These chains resemble extended interstialcies

with an atom squeezed into the densely packed direction and excess volume smeared out on

its side. This picture is the basis of the intersticialcy model of Granato and coworkers [32].

But even with such a modification, the crucial point of our paper remains unchanged:

One needs local instabilities to create a low frequency or tunneling mode in a stable solid.

These instabilities require a strong local shear misfit, which costs energy, an energy of

several times the thermal energy at the glass transition. In model descriptions by random

matrices or elastic constant fluctuations, e.g. [2, 3] the condition of near instability of some

vibrational eigenmodes has to be imposed at the same time putting some ad hoc limits to
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prevent actual instability. The physical origin of both the disorder and the afore mentioned

conditions imposed on the randomness remain open in these models. Our model, on the

contrary, deals with the underlying physics - how an inherent structural softness leads to a

boson peak.

The question is: To which extent is this answer universal? How should one generalize it to

other glasses, glasses with covalent bonds forming a random network, molecular glasses with

the additional degree of freedom of the molecular rotation, to the random chain structure

of polymers? The answer to the question requires further studies. It might be an intelligent

guess, however, to assume the following two general features:

(i) The boson peak and the tunneling modes are always of the same nature, as postulated

by the soft potential model

(ii) Boson peak modes and tunneling modes are due to small regions with a strong elastic

shear misfit, lying close to a saddle point of the inclusion energy between two stable structural

minima of the inclusion.

The validity of these two assumptions would explain the universality of the low temper-

ature anomalies in glasses, including those at slightly higher temperatures where the boson

peak modes dominate.

V. APPENDIX: THE 12 SADDLE POINTS IN CUBIC NOTATION

In an fcc close packed crystal, the six atoms of the octahedron have the coordinates

(±a/2, 0, 0), (0,±a/2, 0) and (0, 0,±a/2) in units of the lattice constant a, related to the

atomic volume by a3 = 4v.

Let us first consider the gliding-triangle motion of the two triangles in the (111)-plane

along < 2̄11 > in Fig. 6. The upper triangle ABC moves opposite to the lower triangle DEF.

This gliding motion involves not only a shear, but also a rotation. To get the rotation-free

shear, let us define the two unit vectors ~a1 =< 2̄11 > /
√

6 and ~a2 =< 111 > /
√

3. With the

origin of the position vector ~r at the center of the octahedron, the displacement vector ~u(~r)

of the corresponding pure shear is given by

2

ec

~u = (~r~a2)~a1 + (~r~a1)~a2, (34)

where ec is the shear angle of the gliding triangle mode of Fig. 6.
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From eq. (34), one can calculate the shear. In Kittel’s notation [33] (diagonal elements

exx = ∂ux/∂x, nondiagonal elements exy = ∂ux/∂y + ∂uy/∂x), one finds for the gliding

triangle mode of Fig. 6 in units of ec

√
2/6 the diagonal elements exx = −4, eyy = 2 and

ezz = 2, the nondiagonal elements exy = −1, exz = −1 and eyz = 2. The elastic energy of

the octahedron is

Eel = (C11 − C12 + C44)ve2

c = (2C ′ + C44)ve2

c , (35)

where C ′ = (C11 −C12)/2 is one of the two shear moduli of the cubic crystal and C44 is the

other. Equating both of them to the isotropic shear modulus G of the glass, we are back to

the curvature of eq. (3) at the octahedral site.

Two thirds of the elastic energy of eq. (35) come from the diagonal elements, a dilatation

in the y and in the z-direction accompanied by a factor of two larger contraction in the

x-direction. As it turns out, this special shear is a common feature of four of the twelve

saddle point distortions, each coming from a different triangle plane. They only differ in the

nondiagonal elements, the one from the (11̄1)-plane having exy = 1, exz = −1 and eyz = −2,

the one from the (111̄)-plane having exy = −1, exz = 1 and eyz = −2 and finally the one

from the (1̄11)-plane having exy = 1, exz = 1 and eyz = 2. This last one is closest to the

first one, because the shear occurs in the same shear plane, with only a slight rotation of the

shear directions. In the five-dimensional shear space, the lines connecting those two saddle

points with the octahedron have an angle of only 38.9 degrees (Fig. 7).

The closeness has consequences for the probability density ps of section II. This was calcu-

lated integrating the partition function Z only over the connection line between octahedron

and saddle point, and then multiplying with the number of saddle points. In principle, one

needs the full integration over the five-dimensional shear space. As long as the saddle points

are well separated in phase space, the integration over the irrelevant degrees of freedom can

be omitted [34]. But if two saddle points are as close together as in Fig. 7, the integration

over their neighborhood (along the dashed lines in Fig. 7) leads to double-counting. In a

crude approximation, we counted the four saddle points with the common diagonal shear

elements as only two in eq. (18) (remember that the equation is only needed to demonstrate
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that the density of soft gliding triangle modes is comparable to the one of the sound waves).

[1] V. L. Gurevich, D. A. Parshin and H. R. Schober, Phys. Rev. B 67, 094203 (2003)

[2] W. Schirmacher, G. Diezemann and C. Ganter, Phys. Rev. Lett. 81, 136 (1998)

[3] S. N. Taraskin, Y. L. Loh, G. Natarajan and S. R. Elliott, Phys. Rev. Lett. 86, 1255 (2001)

[4] T. Nakayama, Rep. Prog. Phys. 65, 1195 (2002)

[5] W. Götze and M. R. Mayr, Phys. Rev. E 61, 587 (2000)

[6] A. P. Sokolov, R. Calemczuk, B. Salce, A. Kisliuk, D. Quitmann and E. Duval, Phys. Rev.

Lett. 78, 2405 (1997)

[7] T. S. Grigera, V. Martin-Mayor, G. Parisi and P. Verrocchio, J. Phys.: Cond. Matter 14, 2167

(2002)

[8] T. Scopigno, E. Pontecorvo, R. Di Leonardo, M. Krisch, G. Monaco, G. Ruocco, B. Ruzicka

and F. Sette, J. Phys.: Condens. Matter 15, S1269 (2003)
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Figure Captions:

Fig. 1 :The gliding-triangle rearrangement of six closely packed spherical atoms.

Fig. 2: Potential energies for inclusion and matrix as a function of the inclusion shear ec

around the structural saddle point, where the matrix equilibrium shear em lies in the middle

between the octahedron and the two tetrahedra of Fig. 1. The continuous black line is

the inclusion energy, the dashed red line and the dot-dot-dashed blue line show the matrix

energy for em = 0 and 0.05, respectively. The red dot-dashed and blue dotted lines show

the corresponding total energies.

Fig. 3: Energy Gv as a function of the glass transition temperature Tg in metallic glasses

[13]. The line depicts the average Gv/kBTg = 17.6.

Fig. 4: The boson peak of the model glass Vit-4 in comparison to crystal and liquid,

determined from inelastic neutron scattering [19, 20] in units of the glass Debye-level 3/E3

D.

The arrow marks the maximum frequency ωmax up to which one expects gliding triangle

modes.

Fig. 5: Shear modulus measurement [23] in glassy and liquid Vit-4. The dotted line

corresponds to a Grüneisen parameter ΓG = 6.5 in the glass.

Fig. 6: The octahedron and one of its twelve gliding triangle modes in cubic notation.

Triangle ABC glides in the < 2̄11 > direction, triangle DEF in the opposite direction.

Fig. 7: The two neighboring saddle points with a strong common shear ecommon and a

weak opposite shear exy + exz with respect to the undistorted octahedron.
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