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Ab initio theory of temperature dependent magneto-resistivities

Introduction

The age of spintronics started with the discovery of the giant magnetoresistance (GMR) in 1988 [1] [2]. Presently GMR based magnetic read heads are commonly used in magnetic recording [3]. The understanding of the underlying effects as well as the design of new spintronics devices do require a proper theoretical description of magneto-resistivities. Nowadays zero temperature ab-initio descriptions of the electric resistivity became almost a standard procedure by making use of the Kubo-Greenwood equation and of the Screened Korringa-Kohn-Rostoker method [4][5][6]. At non-zero temperatures, however, additional effects such as electron-phonon scattering and electron-magnon scattering become rather important. Assuming that the electron-phonon interaction (R e-ph ), impurity scattering (R i ) and the magnetic part (R M ) contribute additively, the total temperature dependent resistances of the parallel (P) and the antiparallel (AP) configurations of a spin valve corresponding to a simple parent lattice are given by

R P (AP) (T ) = R P (AP) M (T ) + R i + R e-ph (T ) , (1) 
where the impurity and phonon scattering contributions clearly are independent of the magnetic configuration. The temperature dependent GMR ratio, depends therefore only in the denominator on the temperature dependent phononelectron contribution. Calculations of the GMR ratio at zero temperature with the ab initio Kubo-KKR method were performed for example by Weinberger and Szunyogh for a FeCo spin valve structure [7]. Clearly enough an ab-initio evaluation of temperature dependent GMR ratios would require also a proper description of the temperature dependence of the magnetic resistivity. Earlier theoretical studies dealing with the problem of temperature dependent magnetic resistivities, M (T ), started either from the Boltzmann equation using a simple s-d scattering model Hamiltonian [8][9][10], or, applying the so-called two current model of Fert [11][12][13][14][15]. In both cases experimental parameters were used in order to determine M (T ). According to our knowledge up-to-now there is no fully ab-initio description for the temperature dependent magneto-resistivity in the literature. The aim of this paper was therefore to develop a theoretical tool for the calculation of M (T ). For this purpose we implemented the disordered local moment scheme (DLM) in the KKR-Kubo formalism. As a trial system we tested in here this new approach for the bulk systems Fe and Co. Quite clearly the present formalism can easily be carried over to alloyed layered systems (two-dimensional translational symmetry) by making use of the properties of the screened-KKR method [16]. Only then an evaluation of the GMR(T ) of a given system becomes accessible.

GMR(T ) = R AP -R P R P = R AP M (T ) -R P M (T ) R P M (T ) + R i + R e-ph (T ) , (2) 

Theory

The Disordered Local Moment approach

The Disordered Local Moments (DLM) theory in the context of the Korringa-Kohn-Rostoker Coherent Potential Approximation (KKR-CPA) was proposed originally by Györffy et al. [17] and is based on the idea that in itinerant metallic magnets, on a certain time scale τ , which is small as compared to the characteristic time of spin fluctuations, but longer than the electron hopping times, the spin orientations of the electrons leaving an atomic site are sufficiently correlated with those arriving such that a nonzero magnetization exists when the appropriate quantity is averaged over τ . In the DLM scheme the magnetic excitations are modelled by associating local spin-polarization axes {ê} with all lattice sites that vary very slowly on the time-scale of the electronic motions. These local moment degrees of freedom produce local magnetic fields centered at lattice sites which in turn affect the electronic motions and are self-consistently maintained by them. By taking appropriate ensemble averages over orientational configurations the system's magnetic properties can be determined. As a mean field approximation, the CPA was applied for these ensemble averages.

The DLM for three-dimensional translationally invariant systems was first used to calculate the magnetic properties of the paramagnetic state of ferromagnetic materials [17,18], and later on was generalized to non-zero temperature ferromagnetic states by taking into account relativistic effects in order to evaluate temperature dependent magnetic anisotropies [19,20]. An implementation of the DLM in the screened-KKR method [16], i.e., an implementation for two-dimensional translationally invariant systems facilitated already to describe anisostropic surface magnetism and thin films [21]. In the following section we present an implementation of this particular DLM scheme into the KKR-Kubo-Greenwood formalism. For the electrical conductivity calculations we used Kubo's [22] linear-response theory. In this approximation the static (q = 0, ω = 0) electrical conductivity is given by [23]:

σ µµ = π N V at m,n J µ mn J µ nm δ (ε F -ε m ) δ (ε F -ε n ) , (3) 
where µ = {x, y, z}, N is the number of atoms, V at the atomic volume, . . . refers to the statistical average, ε F is the Fermi energy, and the J µ mn are the matrix elements of the current operator,

J µ mn = m|J µ |n ,
in the basis of the eigenstates |n of the unperturbed Hamiltonian, the current operator being given by

J(r) = ec ψ + (r) - → α ψ(r) . (4) 
By making use of the below identity,

n |n n| δ (ε -ε n ) = - 1 π ImG + (ε) = - 1 2πi [G + (ε) -G -(ε)] , (5) 
G ± (ε) = lim η→±0 G(ε + iη)(ε) , (6) 
Eq.( 3) can be rewritten as

σ µµ = π N V at T r J µ ImG + (ε F )J µ ImG + (ε F ) , (7) 
or, by introducing the notation

ε ± = lim η→±0 ε + iη , as σ µµ = 1 4 {σ µµ (ε + , ε + ) + σµµ (ε -, ε -) -σµµ (ε + , ε -) -σµµ (ε -, ε + )} , (8) 
where

σµµ (ε 1 , ε 2 ) = π N V at T r J µ ImG + (ε 1 )J µ ImG + (ε 2 ) , (9) 
(ε i ∈ {ε + , ε -} ; i = 1, 2) . ( 10 
)
Expressing the Green's functions in terms of scattering path operators (SPO) τ pi,qj (ε) as described in Ref. [5] the resistivity can then be obtained by assuming a region consisting of n intermediate atomic layers inbetween two semi-infinite systems. If n tends to infinity, the resistivity converges to the corresponding bulk value. According to Refs. [5] or [6] a typical contribution σµµ (ε 1 , ε 2 ) is then given by

σµµ (ε 1 , ε 2 ) = π nN 0 V at (11) × n p=1 i∈I(L2) n q=1 j∈I(L2) tr J pi µ (ε 2 , ε 1 )τ pi,qj (ε 1 )J qj µ (ε 1 , ε 2 )τ qj,pi (ε 2 ) ,
where the summations over i and j cover over all pairs of sites situated in layers 0 < p, q ≤ n. In Eq. ( 11) N 0 is the number of atoms in a layer and I(L 2 ) is the set of indices belonging to a simple two-dimensional lattice L 2 .

In the basis of regular scattering solutions Z pi Λ (r pi , ε) [START_REF] Zabloudil | Electron Scattering in Solid Matter[END_REF] the matrix elements of the current operator, Eq.( 4), are given by

J pi µ,ΛΛ (ε 1 , ε 2 ) = ec WS Z pi Λ (r pi , ε 1 ) + α µ Z pi Λ (r pi , ε 2 )d 3 r pi , (12) 
where Λ = κµ and the integration has to be performed over a particular unit (Wigner-Seitz) cell. Provided that two-dimensional invariance applies in all layers under consideration we can make use of the fact that

J p µ (ε 1 , ε 2 ) = J p0 µ (ε 1 , ε 2 ) = J pi µ (ε 1 , ε 2 ) ∀i ∈ I(L 2 ) . (13) 
For this very reason one easily can see that for each layer p the sum over i ∈ I(L 2 ) gives N 0 times the same contribution, therefore,

σµµ (ε 1 , ε 2 ) = C n n p=1 n q=1   j∈I(L2) tr J p µ (ε 2 , ε 1 )τ p0,qj (ε 1 )J q µ (ε 1 , ε 2 )τ qj,p0 (ε 2 )   , (14) 
with C = π /V at . If we neglect the so-called vertex corrections [4] we can reformulate the statistical average of the products in the above equation as

σµµ (ε 1 , ε 2 ) = C n n p=1 n q=1 j∈I(L2) dê 0 dê j P ({ê 0 , êj }) (15) 
× tr J p0 µ (ε 2 , ε 1 , ê0 ) τ p0,qj (ε 1 ) p0ê0,qjêj J qj µ (ε 1 , ε 2 , êj ) τ qj,p0 (ε 2 ) qjêj,p0ê0
where P ({ê 0 , êj }) is the probability of an {ê 0 , êj } configuration. The restricted averages τ p0,qj (ε 1 ) p0ê0,qjêj can be obtained by freezing in the local moment directions in sites 0 and j and average over all other lattice sites. Note that now also the current matrix elements are direction dependent, since a rotational transformation of Eq.( 12) yields

J p µ,ΛΛ (ε 1 , ε 2 , ê) = 3 ν=1 Γ Γ O * ΛΓ R µν J p ν,Γ:Γ (ε 1 , ε 2 )O Γ Λ , (16) 
where J p µ,Γ:Γ (ε 1 , ε 2 ) refers to a current matrix if the local moment points along the ẑ axis, and O ΛΓ and R µν denote appropriate representations of that rotation which takes the ẑ axis into the ê axis in the angular momentum as well as in coordinate space, respectively. The sum in Eq.( 15) can be split into a site-diagonal and an off-diagonal term,

σµµ (ε 1 , ε 2 ) = σ0 µµ (ε 1 , ε 2 ) + σ1 µµ (ε 1 , ε 2 ) , (17) 
where the diagonal part is given by

σ0 µµ (ε 1 , ε 2 ) = C n n p=1 dêP p (ê) tr J p µ (ε 2 , ε 1 , ê) τ p0,p0 (ε 1 ) p0 ê (18) 
J p µ (ε 1 , ε 2 , ê) τ p0,p0 (ε 2 ) p0 ê . ( 19 
)
Expressing the restricted scattering path operators within the single-site CPA approximation [START_REF] Zabloudil | Electron Scattering in Solid Matter[END_REF] and using the underlying two-dimensional translational invariance,

τ pi,pi (ε) piê = τ pi,pi c (ε)D pi (ε, ê) = τ pp c (ε)D p (ε, ê) ∀i ∈ I(L 2 ) , (20) 
one obtains

σ0 µµ (ε 1 , ε 2 ) = C n n p=1 dêP p (ê) tr J p µ (ε 2 , ε 1 , ê)τ pp c (ε 1 ) (21) 
× D p (ε 1 , ê)J p µ (ε 1 , ε 2 , ê)τ pp c (ε 2 )D p (ε 2 , ê) ,
where P p (ê) is the probability density function of the local moment direction distribution in layer p [21], and

D p (ε, ê) = [I + (m p (ε, ê) -m c,p (ε 1 ))τ pp c (ε)] -1 ,
with m c,p (ε 1 ) and m p (ε, ê) being the inverse scattering matrices [START_REF] Zabloudil | Electron Scattering in Solid Matter[END_REF] of the coherent media, and the local moment 'impurity' pointing to the ê direction, respectively. The site off-diagonal part can be further decomposed into two terms:

σ1 µµ (ε 1 , ε 2 ) = σ2 µµ (ε 1 , ε 2 ) + σ3 µµ (ε 1 , ε 2 ) , (22) 
where

σ2 µµ (ε 1 , ε 2 ) = C n n p=1 n q=1 (1 -δ pq ) j∈I(L2) tr J p µ (ε 2 , ε 1 )τ p0,qj (ε 1 )J q µ (ε 1 , ε 2 )τ qj,p0 (ε 2 ) (23) and σ3 µµ (ε 1 , ε 2 ) = C n n p=1 j∈I(L2)\{0} tr J p µ (ε 2 , ε 1 )τ p0,pj (ε 1 )J p µ (ε 1 , ε 2 )τ pj,p0 (ε 2 ) . (24) 
As one can see σ2 µµ arises from sites located in different layers, while σ3 µµ arises from sites in one and the same layer. Restricting the local moments on two different sites, the restricted SPO can be written as [START_REF] Zabloudil | Electron Scattering in Solid Matter[END_REF] τ p0,qj (ε) p0êi,qjêj = Dp (ε, êi )τ p0,qj c (ε)D q (ε, êj ) , 

Using this expression and neglecting vertex corrections σ2

µµ can be written as

σ2 µµ (ε 1 , ε 2 ) = C n n p=1 n q=1 (1 -δ pq ) j∈I(L2)
dê i dê j P p (ê i )P q (ê j )

× tr J p µ (ε 2 , ε 1 , êi ) Dp (ε 1 , êi )τ p0,qj c (ε 1 )D q (ε 1 , êj ) × J q µ (ε 1 , ε 2 ) Dq (ε 2 , êj )τ qj,p0 c (ε 2 )D p (ε 2 , êi ) .
or, by introducing the below quantity,

J p,av µ (ε 2 , ε 1 ) = dêP p (ê i )D p (ε 2 , ê)J p µ (ε 2 , ε 1 , ê) Dp (ε 1 , ê) , (25) 
as

σ2 µµ (ε 1 , ε 2 )= C n n p=1 n q=1 (1 -δ pq ) × j∈I(L2) tr Jp,av µ (ε 2 , ε 1 )τ p0,qj c (ε 1 ) J q,av µ (ε 1 , ε 2 )τ qj,p0 c (ε 2 ) .
From the Fourier transformed form,

τ p0,qj c (ε) = 1 Ω SBZ e i k• - → R j τ pq c ( k, ε)d 2 k ,
where Ω SBZ is the volume of the Surface Brillouin zone, and using the orthogonality relations,

j∈I(L2) τ p0,qj c (ε 1 )τ qj,p0 c (ε 2 ) = 1 Ω SBZ τ pq c ( k, ε 1 )τ qp c ( k, ε 2 )d 2 k ,
we finally obtain for σ2 µµ ,

σ2 µµ (ε 1 , ε 2 ) = C nΩ SBZ n p=1 n q=1 (1 -δ pq ) (26) × tr Jp,av µ (ε 2 , ε 1 )τ pq c ( k, ε 1 ) J q,av µ (ε 1 , ε 2 )τ qp c ( k, ε 2 ) d 2 k .
Similarly, using again a lattice Fourier transformation we obtain for σ3 of the resistivity we found the same linear dependence already described in the literature [26,27], namely

µµ (ε 1 , ε 2 ), σ3 µµ (ε 1 , ε 2 ) = C nΩ SBZ (27) × n p=1 tr Jp,av µ (ε 2 , ε 1 )τ pp c ( k, ε 1 ) J p,av µ (ε 1 , ε 2 )τ pp c ( k, ε 2 ) d 2 k + σ3 corr µµ (ε 1 , ε 2 ) , F o
µµ = lim δ→0 µµ (δ) . (30) 
For this continuation to the real axis we used µµ (δ) values corresponding to δ =1 and 2 mRyd. The magnetisation direction was chosen to be perpendicular to the intermediate layers, i.e., pointed along to the ẑ direction, which in turn causes a small difference between the zz and xx = yy components of the resistivity. Since this difference turned out to be smaller than 1 µΩ.cm in the whole temperature regime, twe confine ourselves to use the zz component of the resistivity only.

Results for bulk Fe and Co

First we calculated the temperature dependent Weiss fields, which are needed for the finite temperature thermal averaging in Eq. [START_REF] Stearns | Landolt-Bornstein New Series -Group III Condensed Matter -19A[END_REF]. In using the experimental lattice parameter (5.4 a.u.) we obtained a too large Curie-temperature (T C ) for pure bcc Fe, namely 1670 K, which is about 60% larger than the experimental T C of 1040 K. This deficiency is probably due to a shortcoming of the mean-field approximation. However, for a lattice parameter of 5.07 a.u., we can recover the experimental T C . In Fig. 1 we show the calculated T C for bcc Fe versus the lattice parameter used in the calculations. It should be noted that the lattice parameter at the experimental Curie temperature is even larger than the one at zero temperature, namely 5.55 a.u. according to Chapter 1.1.2.2 of Ref. [START_REF] Stearns | Landolt-Bornstein New Series -Group III Condensed Matter -19A[END_REF]. Since the LDA usually yields lattice parameter smaller than the experimental ones (5.3 a.u. [START_REF] Lezaic | [END_REF]) Györffy et.al. [17] used this particular lattice parameter, and in employing the nonrelativistic version of the DLM found a Curie temperature of 1250 K in terms of the divergence of the paramagnetic spin-susceptibility. As a second test system we chose Co bulk which -as is well-known -shows a phase transition from hcp to fcc at about 600-800 K, which, however, by using only the fcc geometry in the whole temperature regime was neglected in the present calculations. At zero temperature the theoretical LDA lattice parameter (6.69 a.u. [29]) differs by less than 1% from the experimental one. At the experimental T c , however, the lattice parameter is considerably enlarged, namely amounts to 6.84 a.u. [START_REF] Stearns | Landolt-Bornstein New Series -Group III Condensed Matter -19A[END_REF]. In the Co case the DLM considerably underestimates the Curie temperature, even at 6.84 a.u. we only get 950 K. The experimental T c is 1380 K, which can be simulated in terms of the DLM by using a lattice constant of 7.04 a.u., see also Fig. 2. The experimental Curie temperature is 1380K, at which the lattice parameter is 6.84 a.u. [START_REF] Stearns | Landolt-Bornstein New Series -Group III Condensed Matter -19A[END_REF].

From the self-consistent potentials corresponding to the paramagnetic DLM state we first calculated the Weiss fields as described in Ref. [21] for specific temperature points. In using these Weiss fields we then calculated the corresponding temperature dependent electrical conductivities in terms of Eq. (8). For low temperatures, it seems that the ferromagnetic potentials (corresponding to zero temperature, screened KKR without DLM) describe the electronic structure better. It turned out, however, that the difference between the ferromagnetic and paramagnetic potential only influences the conductivity results marginally. In Fig. 3 the results for bcc Fe are displayed corresponding (a) to the experimental lattice parameter which gave an overestimated Curie temperature, and (b) for the lattice parameter that recovers the experimental Curie temperature. For comparison we also show the experimental total resistivity values from Ref. [START_REF] Stearns | Landolt-Bornstein New Series -Group III Condensed Matter -19A[END_REF].

It became customary [30] to assume that well above the Curie temperature only phonon-electron interactions contribute to the resistivity. By using the Bloch-Grüneisen formula [START_REF] Ziman | Electrons and Phonons[END_REF],

ph -e (T ) = K T Θ D 5 J Θ D T , (31) 
where Θ D is the Debye temperature, and J is a Debye integral [START_REF] Ziman | Electrons and Phonons[END_REF], we can fit the parameter K to the linear part of the experimental Fe resistivity above T c . Subtracting this Bloch-Grüneisen term from the total resistivity we get a first guess for the magnetic resistivity, which is also displayed in Fig. 3. It has to be mentioned that this approximation, although used by Weiss and Marotta [30] for several magnetic metals, is still theoretically not justified, since in this procedure the magnon-phonon interactions [8] are completely neglected. It can be seen from this figure that the DLM gives the right order of magnitude of the magnetic resistivity, being however systematically too large. The deviation between the calculated resistivities corresponding to the two different lattice parameter used is less than 40% at room temperature and also for temperatures far below the Curie temperature. The DLM result for the experimental lattice parameter fits well to the experimental total resistivity for temperatures below about 700 K, although the total resistivity ought to be larger than the pure magnetic contribution. We also have to mention, that the DLM gives a constant magnetic resistivity in the paramagnetic phase since there the probability density function is constant, i.e., is temperature independent above the Curie temperature. ρ (µΩcm)

T (K)

Figure 3. Black circles: experimental total resistivity from Ref. [START_REF] Stearns | Landolt-Bornstein New Series -Group III Condensed Matter -19A[END_REF]. Blue up-triangles: magnetic part of the resistivity with detached phonon-electron contribution of Bloch-Grüneisen form. Red down triangles: Our results corresponding to the experimental lattice parameter ( 5.4 a.u.), green squares: for a lattice constant of 5.07 a.u.

The results for fcc Co are shown in Fig. 5. It can be seen that below 700 K the DLM results corresponding to different lattice parameters differ by about 30%. The common feature of the calculated curves is an up-turning just below the Curie temperature. This again seems to be a consequence of the applied mean field approximation. We can see that below 700 K the computed resistivity curves are by about 50-100% above the experimental total resistivity, which as should be recalled contains all possible contributions. In the case of Co the above mentioned method to subtract the phonon-electron contribution by using a fit for the Bloch-Grüneisen formula doesn't work sufficiently well, because below 600 K a negative value for the (experimental) magnetic resistivity is obtained, see Fig. 4, which of course does not make any sense at all.

Weiss and Marotta [30], however, did use this method of subtraction to evaluate the high temperature (saturated) magnetic resistivity of Co and cited a corresponding value of 50 µΩ cm. The main deficiency of this subtraction procedure probably is a consequence of different phonon-electron contribution in the hcp and fcc phases: from the slope of the resistivity in the paramagnetic phase with respect to temperature only conclusions for the fcc phonon-electron contribution can be gained. In addition, the temperature regime between the Curie temperature and the melting point is possibly too small to saturate a magnetic resistivity, making it thus difficult to detach a linear phonon-electron contribution. For this reason in Fig. 5. only the experimental total resistivity is shown. It is obvious that our DLM results overestimate the magnetic part of the resistivity, however, we have to stress that they are the very first parameter-free (ab-initio) results ever obtained for bulk Fe and Co. The deviations from experiment most likely emerge from an inaccurate determination of the Curie temperature which in turn is a consequence of the mean-field approximation, although also an inaccurate description of spin-spin correlations in a mean-field description probably adds to these deviations. It should mentioned that in the case of chemically disordered systems more accurate descriptions can be given by taking into account for example vertex corrections [4]. From Fig. 2. of Ref. [33] it can be seen that by taking into account vertex corrections the resistivity of non-magnetic Cu c Zn 1-c is reduced by about a factor of two. The resistivity is even further reduced by taking into account short range ordering by means of a non-local CPA [34] instead of the single-site CPA used in the present paper. Based on the analogy between the "chemical"-CPA and the "spin-disorder"-CPA, we expect therefore that an inclusion of vertex corrections and of short range order will reduce also our results for the temperature dependent resistivity. 
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  , ê) = [I + τ pp c (ε)(m p (ε, ê)m c,p (ε))] -1 .
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 1 Figure 1. Calculated Curie temperature for bcc Fe corresponding to different lattice parameters. The experimental zero temperature lattice parameter is 5.4 a.u., the experimental Curie temperature is 1040K.

Figure 2 .

 2 Figure2. Calculated Curie temperature of fcc Co corresponding to different lattice parameters. The experimental Curie temperature is 1380K, at which the lattice parameter is 6.84 a.u.[START_REF] Stearns | Landolt-Bornstein New Series -Group III Condensed Matter -19A[END_REF].
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 114 Figure 4. Experimental resistivity of Co (red straight curve) and of the Bloch-Grüneisen (BG) fitting function (black dotted). The difference of the experimental curve and the BG curve (blue dashed), which should be an approximation to the magnetic part of the resistivity is negative below 500 K. (The loop around 700 K is the sign of an fcc-hcp phase transition.)
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where σ3 corr µµ (ε 1 , ε 2 ) arises from extending the sum in Eq. [START_REF] Zabloudil | Electron Scattering in Solid Matter[END_REF] to ∀j ∈ I(L 2 ) and subtracting the term for j = 0,

Summarizing all the terms, the electrical conductivity obtained from Eq.( 8) is of the form,

In order to perform the calculations we first have to calculate the temperature dependent Weiss fields as described in Ref. [21], which provide the probability distributions P p (ê), and then evaluate Eq.(28).

Computational details

In order to perform the calculations we first have to calculate the temperature dependent Weiss fields as described in Ref. [21], which provide the probability distributions P p (ê), and then evaluate Eq.( 28). We calculated the magnetic part of the conductivity of bulk Fe and Co using Eqs. [START_REF] Stearns | Landolt-Bornstein New Series -Group III Condensed Matter -19A[END_REF] and Eq.( 8) in terms of the screened KKR. For the k integration in Eq.( 28) we used a quadrature with 1600 points in the two-dimensional Brillouin zone, which gave converged results. The so-called intermediate region consists of n atomic layers; the σ(ε F ± iδ, ε F ± iδ) in Eq.( 8) were calculated for finite imaginary parts δ of the Fermi energy. A side effect of considering a finite number of atomic layers is a (1/n)-like decay [25] in the calculated resistivity

Therefore plotting n µµ (n, δ) versus n the slope of the curve for large enough n yields µµ (δ), the bulk resistivity value at a given value of δ. In practise it turned out that n µµ (n, δ) is already linear in n for n 50 layers. For the δ dependence