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Particulate materials loaded under uniaxial compression and tension are studied using the Discrete Element Method (DEM). Self-healing of the damaged samples is activated through sintering, a process that effectively increases the contact adhesion (i.e., the tensile strength) between particles. The initial sample is prepared from spherical particles by applying high (isotropic) pressure, where particles in contact deform plastically and adhere to each other due to increased van der Waals forces. The result of this pressure-sintering is a solid sample from which the stress is released before uniaxial tension or compression is applied. Damage occurs "microscopically" through loss of contacts and thus loss of adhesion. In order to "self-heal" (part of) this damage, the mechanical loading is stopped. The system is then sintered again, so that the adhesion at existing contacts in the damaged sample becomes stronger than originally. Subsequently, mechanical loading is continued. The stress-strain curves for the mechanically loaded samples are characterized by a peakstrength followed by a softening branch. Self-healing of an originally "weak" sample, up to a "strong" adhesion level, leads to qualitatively different stress-strain behavior, dependent on the strain at which self-healing is applied. Interestingly, the response of the "weak" self-healed material is bounded by the damage response of the "strong" material. For an optimal self-healing of the particulate material, it is preferable to initiate the healing mechanism during the early stage of damage development, before the peakstrength is reached.

Introduction

The self-healing capability of biological systems has recently encouraged researchers to develop engineering materials that are able to heal cracks autonomously. One approach used in the development of self-healing materials is to initiate a bonding reaction at the crack faces, such that the defect disappears and the local load-bearing capacity of the material is re-established. At the molecular level a bonding reaction can be induced increasing the mobility of atoms towards the defect site, where they will occupy the defect volume and bond the crack faces together. The necessary diffusion and bonding characteristics of the "healing atoms" are realized by means of appropriate thermal and/or chemical processes [START_REF] Van Der Zwaag | An introduction to material design principles: Damage prevention versus damage management[END_REF]. A well-known example of self-healing through a chemical process has been 2 reported in the original contribution of White et al. [START_REF] White | Autonomic healing of polymer composites[END_REF], who suggest embedding brittle microcapsules filled with a liquid healing agent within an epoxy matrix. When a crack running through the epoxy breaks one of the microcapsules, the liquid flows out of the capsules into the cracked area, and glues the crack faces together when getting into contact with a catalyst. The authors demonstrate that this self-healing concept makes it possible to almost completely recover the original strength of the epoxy matrix. Another self-healing mechanism for polymers can be obtained by controlling the polymer network architecture through the presence of non-covalent hydrogen bonds [START_REF] Sijbesma | Reversible polymers formed from selfcomplementary monomers using quadrupole hydrogen bonding[END_REF]. The reversibility of the hydrogen bonds may induce a spontaneous rearrangement of principal chemical bonds. This allows the polymer to adjust its configuration to external stimuli, thus providing it with an inherent self-healing capability.

In addition to chemical processes, engineering materials often need an input of external energy, such as heating, in order to trigger self-healing. Varley [START_REF] Varley | Ionomers as self healing polymers in: Self Healing Materials. An Alternative Approach to 20 centuries of Materials Science[END_REF] describes the self-healing behaviour of ionomers after bullet penetration, where the heat required for locally healing the material directly comes from the ballistic impact. Alternatively, self-healing paintings have been introduced recently in the automotive industry, where small scratches generated during car washing vanish after exposure to solar heating. A similar healing mechanism has been applied for developing scratch-free ski goggles, where the scratches disappear when the ski goggles are exposed to heat generated by a standard central heating system. More examples of state-of-the-art self-healing materials can be found in the recently published overview edited by Van der Zwaag [START_REF] Van Der Zwaag | An introduction to material design principles: Damage prevention versus damage management[END_REF].

In the present paper the self-healing capacity of damaged particulate materials due to sintering is analyzed. The mechanical response of the particulate material is simulated by means of the Discrete Element Method (DEM), where the discrete masses represent the particles and their interactions are simulated with the sintering contact model of Luding et al. [START_REF] Luding | A discrete model for long time sintering[END_REF]. This contact model is able to account phenomenologically for the plastic, adhesive, stress-and temperature effects at the particle contact level, as effectively resulting from diffusion of atoms during sintering. However, for simplicity only the net increase in particle contact strength due to sintering is simulated in this study, without accounting in detail for all microscopic mechanisms involved. Experimental measurements have shown that the net increase in strength depends on the sintering temperature and duration (see for example [START_REF] Shoales | In situ strength evolution during the sintering of bronze powders[END_REF][START_REF] Takeuchi | Improvement of mechanical strength of 8 mol % Yttria-stabilized zirconia ceramics by spark-plasma sintering[END_REF][START_REF] Pirhonen | Porous bioactive glass scaffold with high compression strength[END_REF]). In the simulations it is assumed that during the initial pressure sintering stage, where the particulate sample is prepared, the optimal strength is not reached. Hence, the sample still has the ability to be strengthened further during a second sintering (healing) stage, which is applied after the sample has experienced damage under mechanical loading. This damage results from subjecting the particulate system to uniaxial tension or compression, and is characterised by a loss of adhesion at the particle contact level. The question is to which extent the damage can be "healed" by a second sintering cycle, applied at different deformation stages (i.e., at different damage levels).

The paper is organized as follows. In Section 2 the simulation method is presented. The DEM approach is summarized, and the sintering contact model is reviewed. Subsequently, the loading conditions and material parameters used in the DEM simulations are discussed, and the preparation procedure of the particulate sample is explained. In Section 3 the numerical results of the DEM simulations are presented, starting with the damage responses under uniaxial tensile and compressive loadings. The efficiency of self-healing through sintering 

Simulation method

DEM modeling of particulate materials

Discrete Element Method (DEM) studies of particle systems illustrate how the macroscopic response, as characterized by the yield strength, stiffness, dilatancy and anisotropy, depends on various microscopic properties, such as the contact network topology and particle size, and the contact adhesion, friction, stiffness and viscosity [START_REF] Chang | Constitutive relation for a particulate medium with the effect of particle rotation[END_REF][START_REF] Chang | Micromechanical modeling of deformation and failure for granulates with frictional contacts[END_REF][START_REF]Physics of Dry Granular Media[END_REF][START_REF] Liao | Pressure-dependent elastic moduli of granular assemblies[END_REF][START_REF]Continuous and Discontinuous Modelling of Cohesive Frictional Materials[END_REF][START_REF] Luding | Micro-Macro Transition for Cohesive Granular Media[END_REF][START_REF] Suiker | Comparison of the wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models[END_REF][START_REF] Luding | Micro-macro transition for anisotropic, frictional granular packings[END_REF][START_REF] Suiker | Frictional collapse of granular assemblies[END_REF][START_REF] David | Hysteresis and Creep in Powders and Grains[END_REF][START_REF] Luding | Anisotropy in cohesive, frictional granular media[END_REF][START_REF] Suiker | Enhanced continua and discrete lattices for modeling granular assemblies[END_REF][START_REF] Mouraille | Sound wave acceleration in granular materials[END_REF][START_REF] Luding | Cohesive, frictional powders: contact models for tension[END_REF]. Most of the above microscopic properties do not remain constant during the loading process, but depend on the actual deformation, stress and temperature of the material sample; for example, in a sintering process the adhesion between particles (strongly) increases with temperature and pressure [START_REF] Luding | A discrete model for long time sintering[END_REF][START_REF] Luding | Cohesive, frictional powders: contact models for tension[END_REF].

Depending on the formulations of the particle kinematics and the constitutive behaviour at particle contact level, various links can be established between the micro-and macrostructural characteristics of a particulate structure [START_REF] Chang | Constitutive relation for a particulate medium with the effect of particle rotation[END_REF][START_REF] Chang | Micromechanical modeling of deformation and failure for granulates with frictional contacts[END_REF][START_REF] Liao | Pressure-dependent elastic moduli of granular assemblies[END_REF][START_REF]Continuous and Discontinuous Modelling of Cohesive Frictional Materials[END_REF][START_REF] Suiker | Comparison of the wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models[END_REF][START_REF] Suiker | Frictional collapse of granular assemblies[END_REF][START_REF] Luding | Anisotropy in cohesive, frictional granular media[END_REF][START_REF] Suiker | Enhanced continua and discrete lattices for modeling granular assemblies[END_REF][START_REF] Suiker | Micro-mechanical modeling of granular material. Part 1: Derivation of a second-gradient micro-polar constitutive theory[END_REF][START_REF] Suiker | Micro-mechanical modeling of granular material. Part 2: Plane wave propagation in infinite media[END_REF][START_REF] Metrikine | One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure. Part 1. Generic formulation[END_REF][START_REF] Askes | One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure. Part 2. Static and dynamic response[END_REF]. In the present study, the coupling between microand macro scale properties is performed by first solving the equations of motion at the particle level, in a similar fashion as in the classical molecular dynamics approach, see the textbook [START_REF] Allen | Computer simulation of liquids[END_REF] by [START_REF] Allen | Computer simulation of liquids[END_REF]. Subsequently, the effective response of the particle system (expressed in terms of stress and strain) is derived through averaging the local variables at the particle contact level (force and displacement) over the assembly volume. Provided that the particle shape would appropriately be represented in the DEM model, the accuracy of the effective response solely depends on the chosen particle contact model [START_REF] Luding | Micro-Macro Transition for Cohesive Granular Media[END_REF][START_REF] Luding | Cohesive, frictional powders: contact models for tension[END_REF][START_REF] Tomas | Assessment of mechanical properties of cohesive particulate solids -part 1: particle contact constitutive model[END_REF][START_REF] Luding | About contact force-laws for cohesive frictional materials in 2D and 3D, in: Behavior of Granular Media[END_REF]. This makes this approach suitable for accurately predicting experimental results in a relatively straightforward fashion, and carefully judging the validity of macroscopic constitutive models [START_REF] Luding | Micro-macro transition for anisotropic, frictional granular packings[END_REF][START_REF] Suiker | Frictional collapse of granular assemblies[END_REF][START_REF] Luding | Anisotropy in cohesive, frictional granular media[END_REF][START_REF] Thornton | A numerical examination of shear banding and simple shear non-coaxial flow rules[END_REF]. In addition, a simple approximation of a system of complex-shaped particles by an assembly of spherical grains typically reproduces the qualitative response of the system rather well, even under fairly complicated loading paths [START_REF] Thornton | Quasi-static deformation of a soft particle system[END_REF], although recent studies have demonstrated that the accurate simulation of systems composed of nonspherical particles is also possible [START_REF] Alonso-Marroquin | Role of anisotropy in the elastoplastic response of a polygonal packing[END_REF][START_REF] D'addetta | On the application of a discrete model to the fracture process of cohesive granular materials[END_REF]. Nonetheless, for reasons of simplicity, in the present study systems of spherical particles are considered.

Sintering contact model

The particulate samples used in the present study are (i) prepared and (ii) selfhealed through the application of a sintering process. For this purpose, the nonlinear sintering contact model recently proposed by Luding et al. [START_REF] Luding | A discrete model for long time sintering[END_REF] and Luding [START_REF] Luding | Cohesive, frictional powders: contact models for tension[END_REF][START_REF] Luding | About contact force-laws for cohesive frictional materials in 2D and 3D, in: Behavior of Granular Media[END_REF] is used. (For the interested reader, these references can provide much more detail than the discussion below.) As sketched in Fig. 1, the normal contact force f directed parallel to the line connecting the centers of two contacting particles is governed by the evolution of the contact overlap, > 0. If < 0, there is no contact between particles, and thus f = 0. The sign convention is such that positive (negative) values of the contact displacement relate to particle overlap (separation) and positive (negative) values of the contact force f relate to compression (tension). During initial compressive loading, the contact force increases proportionally with the contact overlap as f=k 1 , where k 1 is the elasto-plastic contact stiffness. At a specific maximum contact overlap max , the contact stiffness increases instantaneously to a value k 2 . Further loading as well as unloading are defined by the force-displacement relation f = k 2 ( f ). Elastic unloading to a zero contact force leads to a contact overlap equal to the maximum plastic contact indentation, = f . When the contact overlap is further decreased, the contact force enters the tensile regime, with the maximum tensile contact force f t,max = -k t t,max corresponding to a contact displacement = t,max . The final part of the tensile regime is characterized by an unstable softening branch, with the tensile contact force dropping from its maximum value towards zero in accordance with f= -k t .

For the sake of brevity, the tensile softening parameter k t hereafter is referred to as the "contact adhesion". In addition to the loading and unloading branches reflected by the outer triangle in Fig. 1 (Right), loading and unloading may also occur within this triangle, as characterised by a branch with stiffness k * that follows from a linear interpolation of the stiffnesses k 1 and k 2 . For more details, see [START_REF] Luding | A discrete model for long time sintering[END_REF][START_REF] Luding | Cohesive, frictional powders: contact models for tension[END_REF][START_REF] Luding | About contact force-laws for cohesive frictional materials in 2D and 3D, in: Behavior of Granular Media[END_REF].

In summary, the model has three ("stiffness") k-parameters in the model describe three physical effects like (1) elasticity, (2) plastic deformation, (3) contactadhesion. Furthermore, the model involves (4) nonlinear contact stiffness via the choice of k * . This piece-wise linear model is a compromise between simplicity and the need to model physical effects. There is no literature available to our knowledge that provides detailed information involving all four physical contact properties above and their nonlinear, history-dependent behavior. The tangential contact force parallel to the particle contact plane is related to the tangential contact displacement by means of a linear elastic contact law, with the tangential stiffness equal to k s . The tangential contact displacement depends both on the translations and rotations of the contacting particles. A Coulomb friction law determines the maximum value of the tangential contact force: During sliding the ratio between the tangential contact force and the normal contact force is assumed to be limited and equal to a (constant) friction coefficient µ. In a similar fashion, the elastic contact behaviour related to rolling and twisting (torsion) is set by elastic constants k r and k o , respectively, and the maximum values of the corresponding contact torques depend on the normal contact force through a Coulomb-type law with "friction" coefficients µ r and µ o , respectively. More details on the contact model can be found in Refs. [START_REF] Luding | A discrete model for long time sintering[END_REF][START_REF] Luding | Cohesive, frictional powders: contact models for tension[END_REF][START_REF] Luding | About contact force-laws for cohesive frictional materials in 2D and 3D, in: Behavior of Granular Media[END_REF].

The overall solution of the non-linear DEM problem is obtained by incrementally solving Newton's equations of motion for the translational and rotational particle degrees of freedom. In the case of short-range particle interactions, which are present in particulate media such as powders and sands, a considerable decrease in computational time can be achieved using a linked-cell method that allows for a more efficient particle neighborhood search. Hence, this procedure is applied for the present simulations, and more details on the algorithm can be found in, for example Ref. [START_REF] Allen | Computer simulation of liquids[END_REF].

Loading conditions and material parameters

The DEM simulations consist of four subsequent stages, namely (i) a sample preparation stage, (ii) a uniaxial (tensile or compressive) loading stage, (iii) a selfhealing stage, and (iv) a continuation of the uniaxial (tensile or compressive) loading stage. The samples used in the study are composed of 1728 polydispersed, spherical particles. The radii R i of the particles are drawn from a Gaussian distribution around a mean value R = 0.005 mm [START_REF] David | Hysteresis and Creep in Powders and Grains[END_REF][START_REF] Luding | Cohesive, frictional powders: contact models for tension[END_REF]. Six outer walls forming a cuboidal volume with side lengths of 0.115 mm prescribe the geometry of the sample. The overall size of the sample was -at least for adhesionless particles -large enough to show only weak boundary effects. The issue of a statistically representative volume element (RVE) is far from the scope of this first paper, so that we chose a system where the computational time remains manageable. More detailed studies of the system size, different compression rates and also different (local) sintering procedures are in progress [START_REF] Herbst | Modelling particulate self-healing materials and application to uniaxial compression[END_REF].

The sample preparation is carried out subjecting a loose assembly of particles to (isotropic) pressure sintering (as discussed below in more detail), such that a coherent and solid particulate sample is obtained that can be subsequently subjected to a uniaxial tensile or uniaxial compressive test. In a uniaxial compressive test, one of the two outer walls, with its normal parallel to the axial (loading) direction, is slowly moved towards the opposite wall. The change of the wall displacement in time is prescribed by a cosine function. The time period of the cosine function is taken relatively large in order to limit inertia effects [START_REF] Luding | Micro-Macro Transition for Cohesive Granular Media[END_REF][START_REF] Luding | Micro-macro transition for anisotropic, frictional granular packings[END_REF][START_REF] Luding | Anisotropy in cohesive, frictional granular media[END_REF]. Uniaxial tension is applied in a similar fashion as uniaxial compression, i.e., one of the two outer walls is slowly moved away from the Here, the connection between the "boundary particles" and the walls is warranted through using an artificially large contact adhesion k t at the two walls with normals in loading direction. After some deformation, the sample has experienced a certain amount of fracture. The uniaxial loading then is temporarily stopped, and self-healing is activated. The self-healing is achieved by an instantaneous increase of the particle contact adhesion k t , see Fig. 2, which is assumed to be the net effect of a sintering cycle. Observe from Fig. 2 that an increase of the contact adhesion k t corresponds to an increase of the maximum tensile strength f t,max , and a decrease of the corresponding displacement t,max .

Fig. 2 The particle contact law in the tensile regime, before (solid line) and after (dashed line) selfhealing through sintering has been applied.

After the application of the sintering cycle, the uniaxial loading is resumed, where the effect of self-healing on the effective stress-strain response of the sample becomes apparent through a comparison of its response with that of the unhealed, reference sample.

The material simulated represents a fine, stiff adhesive powder, with a particle size in the order of a few micrometers. The particle density used in the simulations is =2000 kg/m 3 . The maximum elastic contact stiffness is k 2 =5.10 4 N/m, which determines the response time scale, t c = m k 2

, of particles with mass m. The initial elasto-plastic stiffness (normalized by k 2 ) is k 1 /k 2 =1/2, and the contact adhesion k t /k 2 is varied in the simulations. The maximum plastic contact indentation for two contacting particles with radii R 1 and R 2 is computed as f = f 2R 1 R 2 /(R 1 +R 2 ), with the maximum plastic indentation strain equal to f = 0.05.

The tangential stiffness, rolling stiffness and twisting stiffness have the (normalized) values k s /k 2 =1/5, k r /k 2 =1/10, and k o /k 2 =1/10, respectively, and the friction coefficients corresponding to these deformation modes are µ=1.0, µ r =0.0 and µ o =0.0. In order to account for velocity-dependent dissipation and to limit the computational time necessary for reaching static equilibrium, the model is extended with viscous damping, with the damping coefficient in the normal direction being equal to = 5 kg/s, and the tangential, rolling and twisting damping (expressed in the same units as the normal contact damping) equal to s / = 1/5, r / =1/10 and o / = 1/10, respectively. Furthermore, translational and rotational background viscosities are introduced when computing the overall forces and torques acting on individual particles. This is done in order to efficiently dissipate dynamic response contributions related to relatively long wavelengths. The values of the translational and rotational background viscosities are b / = 4 and br / = 1, respectively. When the loading rate is set a factor of two lower, the change in the peak strength is small -thus it is assumed that the response is close to the quasi-static limit. More explanations and studies of the above material parameters can be found in [START_REF] Luding | Cohesive, frictional powders: contact models for tension[END_REF][START_REF] Luding | About contact force-laws for cohesive frictional materials in 2D and 3D, in: Behavior of Granular Media[END_REF]. Note however that the choice of parameters is empirical -most of them are chosen and kept fixed while the effect of a few (presumably most relevant for sintering) is studied.

From the viewpoint of computational efficiency the incremental time step used in the DEM simulations should be as large as possible; however, in practice the magnitude of the time-step is limited by numerical stability requirements. The critical time-step for numerical stability can be estimated from the response period of a linear spring-dashpot-mass system subjected to an initial displacement [START_REF]Physics of Dry Granular Media[END_REF][START_REF] Luding | Cohesive, frictional powders: contact models for tension[END_REF]. With this procedure, the integration time step has been determined as t = 5.10 -10 s, which is about 100 times smaller than this response period t c . The present choice of the time step warrants the stability of the numerical procedure under arbitrary loading conditions and deformation paths.

Sample preparation

As already mentioned briefly, the sample is prepared subjecting the particulate structure to a pressure sintering process, which is characterized by two stages. The first stage reflects the application of a hydrostatic (or isotropic) pressure p s / 0 = 10 -2 (with the reference stress 0 = k 2 / R , where R = 0.005 mm is the average particle radius) to a loose assembly of particles. The desired stress is applied to the six outer walls; see e.g. Ref. [START_REF] Luding | Micro-Macro Transition for Cohesive Granular Media[END_REF] for more details. In the normal direction of the particle contacts, the particles deform plastically as a result of the relatively large value of the hydrostatic stress p s . In the tangential direction and the rolling directions of the particle contacts, the particles are subjected to sliding when the contact frictional resistance is exceeded, where the friction coefficients are in accordance with the values mentioned in Section 2.3. The walls are considered to be virtually frictionless, i.e., µ wall = 0.01. The contact adhesion is set to zero (k t /k 2 = 0) for all particle-wall contacts, except for the particle-wall contacts in the direction of the uniaxial loading applied later (i.e., after the sample preparation phase has finished). For these walls, a relatively high contact adhesion of k t /k 2 =20 is used in order to force the "wall particles" to directly follow the prescribed uniaxial deformation. The other contact parameters have the same values as mentioned in Section 2.3. During the application of the hydrostatic pressure, the value of the particle contact adhesion hardly affects the response, since most particles are loaded in compression. In fact, additional simulations not presented here have shown that virtually identical simulation results are obtained for contact adhesion values in the range 0 < k t /k 2 < 0.5. The hydrostatic loading process is considered to be finished when the kinetic energy of the sample is negligible compared to the potential energy. The solid volume fraction at the end of the hydrostatic loading process is = 0.676 (which relates to a porosity of 1-= 0.324), and the average particle coordination number is C = 7.17.

The second stage of the pressure sintering process is reflected by a stress relaxation phase, where the adhesion at all particle contacts is increased to k t /k 2 = 1/5, and the external hydrostatic pressure is reduced to virtually zero, p s / 0 = 10 -5 . Due to the presence of a particle contact adhesion, the lateral stability of the specimen remains preserved when the hydrostatic pressure is released; i.e., a coherent and stable particulate structure is obtained that can be subsequently used in the analysis of damage and healing under uniaxial loading conditions. The solid volume fraction of the sample after stress relaxation is = 0.63 and the coordination number is C = 6.09.

Numerical results

Damage response under uniaxial loading

The responses of the sample under uniaxial compression and uniaxial tension are shown in Fig. 3 (Left). The normal axial stress (normalized by the reference stress 0 = k 2 / R ) is plotted as a function of the normal axial strain , where positive stress (strain) values relate to compression (contraction). The stressstrain curves are depicted for different values of k t (normalized by k 2 ), which quantifies the adhesion at the particle contacts, see Figs. 1 and2, and thus when changing k t the self-healing potential of the material. It can be observed that a larger particle contact adhesion increases the effective strength of the sample, both under uniaxial tension and compression. Furthermore, the overall strain at which the effective stress reaches its maximum increases with increasing value of k t . Observe that the maximum stress under uniaxial compression is about 5 times larger than under unaxial tension. A relatively high compressive strength in relation to the tensile strength is typical of various sintered materials, such as ceramics [START_REF] Lee | Ceramic Microstructures, Property Control by Processing[END_REF]. As can be further noticed from Fig. 3, the softening branch under uniaxial tension is somewhat steeper than under uniaxial compression. For larger compression rates, the system displays strong dynamic effects while for much smaller rates, the peak strength is not changed much for tension, but reduced a few per-cent for compression. Thus we use a rate here that is close to the quasi-static regime, as studied in more detail by [START_REF] Herbst | Modelling particulate self-healing materials and application to uniaxial compression[END_REF]. The initial (elastic) axial stiffnesses C t in tension and compression are determined by the sample preparation procedure, and are approximately equal for all the cases considered here, i.e., C t / 0 = 0.26. The quantity C t can be used to compare the present data with real experiments. All tensile responses plotted in Fig. 3 (Right) are characterized by local failure at the center of the sample. However, additional simulations not presented here have shown that local failure may also occur nearby one of the outer walls in the axial direction if the particle adhesion is equal or higher than the value k t /k 2 =20 used for the "wall particles". In addition, changing the rolling and twisting friction parameters from µ r =µ o =0.0 to µ r =µ o =0.2 increased the tensile peak strength of the sample with about 20%, but a further increase of these friction parameters altered the tensile stress-strain response only little, see Ref. [START_REF] Luding | Cohesive, frictional powders: contact models for tension[END_REF] for details. 

Self-healing under uniaxial compression

Under uniaxial compression the self-healing behaviour of the initial sample with k t /k 2 = 1/5 is simulated by instantaneously increasing the contact adhesion to k t /k 2 = 1. The self-healing mechanism is activated uniformly at all particle contacts, and is initiated at different deformation levels of the sample. Fig. 4 shows the response curves after the initiation of self-healing (dashed lines, labeled with the abbreviation 'SH'), together with the stress-strain responses of the relatively weak (k t /k 2 = 1/5, solid squares) and strong (k t /k 2 = 1, triangles) samples, taken from Fig. 2. Note that the maximum compressive strength reached after self-healing is larger if self-healing is initiated at smaller axial deformation. Furthermore, for all self-healing cases considered the response eventually converges with the damage response of the "strong" sample with k t /k 2 = 1. This is, because the damage response of the strong sample essentially may be interpreted as the response of a "self-healed" sample where the increase in contact adhesion to k t /k 2 = 1 is initiated at the onset of mechanical loading. Consequently, the failure response of the sample with k t /k 2 = 1 acts as an envelope for the failure responses of the selfhealed samples with k t /k 2 increased from 1/5 to 1 at any deformation level. 

Self-healing under uniaxial tension

In the case of uniaxial tension, self-healing is investigated by increasing the contact adhesion at various deformation levels from k t /k 2 = 1/5 to k t /k 2 = 1 (Fig. 5, Left) and to k t /k 2 = 20 (Fig. 5, Right). Similar to the self-healing responses under uniaxial compression (see Fig. 4), the maximum tensile strength of a self-healed sample is larger if self-healing is initiated at lower axial deformation. Furthermore, the responses of the self-healed samples eventually coincide with the damage responses of the relatively "strong" sample with k t /k 2 =1 (Fig. 5, Left) and the "very strong" sample with k t /k 2 =20 (Fig. 5, Right). A comparison of the self-healing curves in Figs. 5 (Left) and (Right) shows that a stronger increase in contact adhesion clearly gives rise to a higher overall sample strength, and thus to an improved self-healing performance. In order to quantify the efficiency of self-healing, a dimensionless healing strength, s= SH / max , and healing strain, e= SH / max are introduced. Here, SH is the strain at which self-healing is initiated and max is the strain at which the reference sample without self-healing reaches its peak strength. Further, SH and max are the peak strengths of the self-healed sample and the reference sample, respectively. In Fig. 6 the self-healing strength s is plotted against the self-healing strain e, using the data presented in Figs. 4 and5 (Left), where the particle contact strength after self-healing is k t /k 2 =1. It can be observed that the self-healing strength is maximal for small strains, i.e., s 1 for e<0.5, and gradually drops to a value of about 0.4 for strain values between 0.5<e<1.5. Accordingly, in order to (almost) recover the maximum strength of the original reference sample, selfhealing needs to be activated early in the fracture process. Interestingly, the differences between the data for the uniaxial compression (solid triangles) and tension (open triangles) tests are rather small, especially during the early stage of deformation. In other words, the self-healing efficiency only marginally depends on the direction of uniaxial loading. Nonetheless, for deformations e>1.5 a noticeable difference can be expected between the two responses plotted in Fig. 6. This is, since samples loaded under uniaxial compression asymptote to a finite, residual strength under continued deformation, whereas samples loaded in uniaxial tension will eventually break completely, thus having zero residual strength. Hence, under continued compression, the asymptotic value for the healing strength SH will be finite, whereas it is zero under continued tension.

Concluding remarks and application

Self-healing processes in damaged particulate materials have been studied under uniaxial compression and uniaxial tension using DEM simulations. The selfhealing is generated through a (global) sintering process, as modeled by increasing the particle contact adhesion from relatively "weak" to relatively "strong". The stress-strain response obtained from self-healed samples eventually converges to the envelope curve that represents the damage response of a sample that has the "strong" contact adhesion since the onset of loading. This feature is independent of the deformation level at which the self-healing mechanism is activated, a property that can be tested experimentally in order to challenge our model: For which class of materials one can observe the same behavior? Furthermore, this is a reference-result for new/different sintering models: Does the model reach the envelope curve, or (as a challenge) is there a self-healing mechanism/model that can do better? An important outcome of the simulations is that the maximum sample strength reached after self-healing very much depends on the deformation level at which self-healing is activated: If self-healing is activated before the peak-stress is reached, the maximum sample strength will be (virtually) equal to peak strength of the envelope curve. In contrast, if self-healing is initiated in the softening regime, the sample strength may be considerably smaller than the maximum strength following from the envelope curve. Hence, for an optimal strength increase, the healing mechanism should be activated during the early stage of damage growth, before the sample reaches its peak strength. The approach taken in the present study is relatively straightforward, in a sense that the self-healing mechanism is instantaneously activated at a specific deformation level, and is applied uniformly across the specimen (i.e., at all particle contacts). More refined analyses will be presented in forthcoming work, where the self-healing mechanism is applied only at particle contacts experiencing severe damage, and the influence of more parameters like the sensitivity and healing repetition rate will be investigated [START_REF] Herbst | Modelling particulate self-healing materials and application to uniaxial compression[END_REF]. An application of the present study relates to increasing the durability of thermal barrier coating (TBC) systems used for the thermal protection of gas turbine engines, thereby allowing these engines to operate at higher temperatures. Currently the lifetime of TBC systems is limited by failure of the brittle ceramic top coating, which occurs through continuous development and coalescence of thermally induced cracks, eventually leading to spallation of parts of the coating [START_REF] Evans | Mechanisms controlling the durability of thermal barrier coatings[END_REF]. In order to reduce ultimate failure by spallation and to increase the lifetime of TBC systems, new self-healing TBC systems are currently being studied [START_REF] Sloof | Self healing in coatings at high temperatures[END_REF], where one of the promising concepts focuses upon the local healing of cracks in the ceramic top coating through sintering at high operational temperatures. If the self-healing mechanism examined in the present study is adequately applied within a TBC system, it may lead to a substantial improvement of the overall thermo-mechanical performance of a turbine engine. 

  applying the sintering process at different stages of mechanical deformation. Finally, in Section 4 some concluding remarks and an application of the present study are given.

Fig. 1 (

 1 Fig. 1 (Left) Two-particle contact with contact overlap . (Right) Particle contact model in terms of the normal contact force plotted against the contact overlap (compression is assumed positive).For more details, see[START_REF] Luding | A discrete model for long time sintering[END_REF][START_REF] Luding | Cohesive, frictional powders: contact models for tension[END_REF][START_REF] Luding | About contact force-laws for cohesive frictional materials in 2D and 3D, in: Behavior of Granular Media[END_REF].

Fig. 3 (

 3 Fig. 3 (Left) Axial stress versus axial strain during uniaxial compression (positive stress and strain values) and uniaxial tension (negative stress and strain values), for different particle contact adhesions k t (normalized by k 2 ). (Right) Magnification of the tensile responses plotted in the left figure.

Fig. 4 (

 4 Fig. 4 (Left) Axial stress versus axial strain during uniaxial compression. Lines with solid squares and open triangles represent the damage responses of the relatively weak (k t /k 2 =1/5) and strong (k t /k 2 =1) samples, respectively, as taken from Fig. 3. The dashed lines reflect the responses after the initiation of self-healing (which occurs by increasing the particle contact adhesion to k t k 2 =1) at various deformation levels. (Right) Magnification of the responses plotted in the left figure; the initiation of self-healing occurs at axial strains 0.016, 0.019, 0.022, 0.026, 0.045, and 0.12.

Fig. 5

 5 Fig.5Axial stress versus axial strain during uniaxial tension. The lines with solid squares, open triangles, and solid circles represent the damage responses of the relatively "weak" (k t /k 2 =1/5), "strong" (k t /k 2 =1) and "very strong" (k t /k 2 =20) samples, respectively, as taken from Fig.3. The dashed lines reflect the responses after the initiation of self-healing, which occurs by increasing the contact adhesion to k t /k 2 =1 (Left) and k t /k 2 =20 (Right) at various deformation levels ( -0.005, -0.006 and -0.007).

Fig. 6

 6 Fig. 6 Self-healing strength s plotted against the self-healing strain e, for the uniaxial compressive (C) and tensile (T) tests -see text for the definitions of s and e.
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