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Korringa-Kohn-Rostoker Green function method
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Germany
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A complex-energy broadening scheme with quartic dependence on the broadening parameter is
presented for Green-function density-functional electronic-structure calculations. The scheme
is applied in a recently developed linear-scaling algorithm based on the tight-binding Korringa-
Kohn-Rostoker Green function method where it leads to considerable computational saving
compared to the standard Fermi-Dirac broadening with quadratic dependence. The linear-
scaling algorithm is applied for total-energy and spin-moment calculations for large supercells
and the advantages of quartic broadening scheme are discussed.

Keywords: electronic structure; linear scaling; iterative solution; complex energies

1. Introduction

Standard density-functional calculations are usually restricted to about a thousand
atoms even on the best supercomputers available today, since the computational
effort increases with the third power of the number of atoms in the system. In the
last years a number of codes have appeared [1–4] which overcome this bottleneck
and achieve linear-scaling effort by utilizing the decay of the density matrix [5],
which is exponential in semiconducting and insulating materials. For metallic sys-
tems, where (at zero temperature) the decay is only algebraical, a linear-scaling
algorithm based on the tight-binding (TB) Korringa-Kohn-Rostoker (KKR) Green
function method has been suggested recently [6]. This algorithm exploits the spar-
sity of the TB-KKR matrix, uses an iterative solution technique for the KKR
matrix equations and applies a spatial truncation of the Green function to achieve
linear scaling. For large Cu and Pd supercells as model systems it has been found
[6] that the quasi-minimal residual (QMR) method [7, 8] leads to convergent it-
erations, if the charge density is obtained by complex-energy integration [9] with
non-zero electronic temperature [10], and that the total-energy error introduced by
the spatial truncation of the Green function is in the meV range, if the truncation
region contains about a few thousand atoms.

Here the previous study, which was limited to the minimal choice lmax = 2 for
the angular-momentum cut-off, is extended to lmax = 3, which is more reasonable
for total-energy calculations, and to a spin-polarized material to illustrate that
the algorithm is also useful for the calculation of spin moments. Since the main
computational effort for the iterative solution appears at the complex energy with
smallest imaginary part, which is proportional to temperature T , it is important
that T can be chosen as large as acceptable for the desired total-energy accuracy.
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Therefore, it is one aim of this paper to present and explain a complex-energy
integration scheme, where the usual T 2 behaviour of the calculated energy is re-
placed by a T 4 behaviour, and to show that this scheme considerably reduces the
computational cost for the iterative solution.

2. Basic equations

In the full-potential KKR Green function method space is divided into non-
overlapping space-filling cells around the atomic positions R

n. In each cell the
Green function can be written [11] in a multiple-scattering representation as

G(r + R
n, r′ + R

n′

;E) = δnn′

Gn
s (r, r′;E) +

∑

LL′

Rn
L(r;E)Gnn′

LL′(E)Rn′

L′(r′;E), (1)

where r and r
′ are cell centred coordinates and L stands for the angular-momentum

indices l and m and r and r
′ are cell centred coordinates. Gn

s (r, r′;E) and Rn
L(r;E)

denote single-scattering Green function and wavefunctions which depend only on
the potential V (r) inside cell n and can be calculated with linear-scaling effort by
solving single-site integral equations as described in [11, 12] or in [13]. For spin-
polarized potentials the Green function and wavefunctions carry an additional spin
index which, however, will be suppressed in the following to simplify the notation.
The density n(r + R

n) inside cell n is obtained [10, 11] by integration

n(r + R
n) = − 1

π
Im

∫

∞

−∞

dEf(E − EF , T )G(r + R
n, r + R

n;E + iε), (2)

where f(E − EF , T ) = (1 + exp((E − EF )/kT ))−1 is the Fermi-Dirac function
for temperature T and EF denotes the Fermi energy. The infinitesimal quantity
ε → 0+ guarantees that the singularities of the Green function on the real energy
axis are avoided and that the Green function in the correct energy half plane is
used. The Green function matrix elements Gnn′

LL′(E) are obtained by solving the
matrix equation

Gnn′

LL′(E) = Gr,nn′

LL′ (E) +
∑

n′′L′′L′′′

Gr,nn′′

LL′′ (E)∆tn
′′

L′′L′′′(E)Gn′′n′

L′′′L′(E), (3)

where Gr,nn′′

LL′ (E) are the Green function matrix elements of suitably chosen refer-
ence system and ∆tnLL′(E) are t-matrix differences which can be calculated from
the potential and the reference potential, both restricted to cell n. The system
(3) of linear equations represents an algebraic Dyson equation with complex, non-
Hermitian matrices of dimension N(lmax + 1)2.

The standard reference system in the KKR method is free space. Here the Green

function matrix elements G0,nn′

LL′ (E), traditionally called structure constants, are
known analytically, but decay unfavourably slowly with distance between site n
and n′. Because of the slow decay all elements in the KKR matrix t−1−G0 have to
be taken into account and because of that iterative solution of (3) is much more ex-
pensive than direct solution since both require a computational effort proportional
to N3, which must be repeated in each iteration, whereas it is needed only once
for direct solution. A useful reference system [14] with rapidly decaying structure
constants in the energy range relevant for density-functional calculations consists
of an infinite array of repulsive potentials (here chosen with a constant height of 8
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Ry), which are confined to nonoverlapping muffin-tin spheres around the sites R
n.

The Green function matrix elements of the reference system, also called screened
structure constants, can be calculated in real space with linear scaling effort by
solving the Dyson equation

Gr,nn′

LL′ (E) = G0,nn′

LL′ (E) +
∑

n′′L′′L′′′

G0,nn′′

LL′′ (E)tr,n
′′

L′′L′′′(E)Gr,n′′n′

L′′′L′ (E) (4)

separately for each site n′ by use of a finite cluster of Ncl repulsive potentials with

the t matrices tr,n
′′

L′′L′′′(E). For the present study the choice Ncl = 13 was used which
includes the central site and its nearest neighbours. Due to the rapid decay of

Gr,n′′n′

L′′′L′ (E) with distance |Rn′′ − R
n′ | other sites n′′ were neglected in (4). This

neglect reduces the dimension of the linear system (4) to Ncl(lmax +1)2, leads to a
sparse TB-KKR matrix with sparsity degree Ncl/N and makes the computational
effort proportional to NitNclN

2 for the iterative solution of (3) compared to N 3 for
the direct solution so that essentially N 2 scaling is achieved by iterative solution
as has been discussed already by Smirnov and Johnson [15].

An important feature of iterative solutions is that for each site n the Green func-
tion matrix elements can be determined independently so that iterative solutions
are ideally suited for massively parallel computing. A straightforward iteration of
(3) corresponds to the Born iteration of scattering theory which often diverges,
in particular for energies with small imaginary part. This problem can be avoided
if one of the known iterative solution techniques for systems of linear equations
is used which works for non-Hermitian matrices. One such technique, which was
used successfully in the current investigation, is the quasi-minimal residual (QMR)
method [7, 8] in its transpose free version, which was used also by Smirnov and
Johnson [15].

In order to arrive at a linear-scaling algorithm the principle of nearsightedness of
electronic matter [16, 17], which is exploited in other linear-scaling methods [1–5]
for the density matrix, was used for the Green function G(r, r ′;E) which decays
at the complex energy mesh points in a similar fashion as the finite-temperature
single-particle density matrix ρ(r, r ′, T ) as can be seen from the equation

ρ(r, r′, T ) = − 1

π
Im

∫

∞

−∞

dEf(E − EF , T )G(r, r′;E). (5)

If this integral is evaluated by using the integrand at the Matsubara energies and on
the complex-energy contour as described in the appendix, the decay of ρ(r, r ′, T ) is
mainly determined by the decay of G(r, r ′;EF +iπkT ), where EF +iπkT is the first
Matsubara energy with smallest imaginary part, since the Green function decays
faster on all other integration mesh points Ei which have larger values of ImEi.
Thus a neglect of the Green function in (2) for large distances |r − r

′| corresponds
to a neglect of the finite-temperature density matrix for similar distances.

Since the single-scattering wavefunctions in (1) are only multiplicative factors, a
truncation of the Green function directly corresponds to a neglect of Green function
matrix elements Gnn′

LL′ beyond a chosen distance dcut, which means that in (3) only
O(NtrN) elements Gnn′

LL′ appear instead of O(N 2) so that the computational effort
is reduced by a factor Ntr/N . Here Ntr is the number of atoms which are included
in the truncation region given by |Rn − R

n′ | < dcut. The total effort for all N
atoms is then proportional to NitNclNtrN . This increases linearly with N since Nit

approaches a constant value for large N as will be illustrated in the next section.
It should be pointed out that because of the singularities of the Green function
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Table 1. Parameters determined by fitting the number of iterations required to

obtain a relative residual norm ||r|| < 10−6 at the Matsubara energy EF +iπkT

to a function of the form (6) for the temperatures T = 800 K and T = 1600 K.

N∞

it
(800) α(800) γ(800) N∞

it
(1600) α(1600) γ(1600)

Ni− 7568 7679 -0.0066 694 781 -0.0506
Ni+ 1151 1292 -0.0401 518 597 -0.0591
Cu 1347 1630 -0.0537 519 707 -0.0985
Pd 2339 2563 -0.0271 566 673 -0.0661

on the real energy axis the use of complex energies is unavoidable and that the
required number Nit of iterations increases with decreasing imaginary part of Ei.

3. Total-energy results and iteration behaviour

Previously [6] the proposed linear-scaling algorithm has been studied for large
Cu and Pd supercells for the minimal choice lmax = 2 of the angular-momentum
cut-off. Here similarly large supercells were studied with lmax = 3, which is more
relevant for total-energy calculations. The supercells contained 4 × 323 = 131072
atoms arranged in the appropriate face-centred-cubic geometry and were obtained
by repeating a simple cubic unit with four atoms 32 times in the three space
directions. A single point k = (1/4, 1/4, 1/4) × 2π/a was used in the irreducible
part of the Brillouin zone. The supercell lattice constant a was chosen as 11.276,
11.568 and 124.74 nm for Ni, Cu and Pd, which is 32 times the experimental
lattice constant of these elements. Since all atoms in the supercells are equivalent,
the iterative solution of the Dyson equation (3) is needed for only one value of n ′.
This represents an enormous reduction of the computational effort in the present
model study compared to realistic systems with inequivalent atoms. According to
the concept of equivalent k point meshes [18] the self-consistent potentials for the
supercells agree with the ones of the simple cubic unit cells with four atoms if 5984
k points in the irreducible part of the simple cubic Brillouin zone are used. This
means that self-consistent potentials for the large supercells could be obtained in
an rather inexpensive way.

An important issue for the proposed algorithm is how fast the iterations converge.
The main computational work consists in matrix-vector multiplications, which were
repeated for each site n′ and angular-momentum component L′ independently until
the solution is obtained with the prescribed precision, here specified by the residual
norm ||r|| = 10−6 for the QMR iterations. The number Nit of iterations depends
on system size and on the imaginary part of the energy Ei. The highest number
of iterations is required at the first Matsubara energy EF + iπkT . In the previous
investigation [6] for lmax = 2 it has been found that the dependence of Nit on the
number Ntr of atoms in the truncation region could be fitted to an exponential
function of the form

Nit(Ntr) = N∞

it − α exp(γN
1/3
tr ) (6)

with three temperature dependent parameters N∞

it , α and γ. In the present study
for lmax = 3 the same behaviour was found for T = 800 K and T = 1600 K.
For truncation regions with more than 20000 atoms, the results of Nit(Ntr) for
T = 400 K scattered too much so that the fits became ill-defined and reliable fit
parameters could not be extracted. Note that the values for N∞

it given in Table
1, which correspond to averages over the (lmax + 1)2 = 16 angular-momentum
components, are larger than the values obtained previously for lmax = 2. However,
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Figure 1. Total-energy error per atom as function of the number of atoms contained in the truncation
region. Solid and open squares are for T = 800 K and 1600 K, diamonds for T = 400 K. The lines, which

connect the results for T = 800 K, serve as guide for the eye.

those values, which stood for the number of QMR iterations, cannot be compared
directly to the ones in Table 1, since here the more meaningful numbers of matrix-
vector multiplications are displayed which are about twice as large as the numbers
of calls to the QMR subroutines displayed previously.

An important issue for the proposed linear-scaling algorithm concerns the ques-
tion how accurate the total energy can be calculated if spatial truncation for the
Green function is applied. Figure 1 shows the total-energy error as function of
the number Ntr of atoms in the truncation region and illustrates that the error
is smaller than 2 meV if truncation regions with a few thousand atoms are used
and that the proposed algorithm thus can be expected to be useful for linear-
scaling total-energy calculations for large metallic systems. Another effect seen in
figure 1 is that, for truncation regions with up to 10000 atoms, higher electronic
temperature does not lead to substantially lower total-energy errors. Probably the
zero-temperature algebraical decay of the Green function (and density matrix)
dominates the additional exponential decay caused by temperature up to trunca-
tion distances of approximately 10 times the face-centred-cubic lattice constant.

It should be mentioned that it was not necessary to make self-consistent calcula-
tion for the total-energy error caused by the truncation because the modified energy
functional Ẽ[n(r)] = E[n(r)]−EF

(∫

n(r) − Nel

)

was used instead of the standard
energy functional E[n(r)]. This functional is extremal for density variations, even
if the total number Nel of electrons changes, and has been demonstrated to yield
accurate results in impurity calculations [19], where charge-neutrality deviations
of about 0.01 to 0.1 electrons exist.

4. Quartic broadening scheme

From the results in Table 1 it is clear that the computational effort, which is
proportional to the number of iterations (matrix-vector multiplications), is con-
siderably reduced for higher electronic temperature. It has been argued [20] that
large temperature can be detrimental for total-energy calculations, in particular for
magnetic systems, where magnetism vanishes at higher temperature. Therefore, if
one is interested in the total energy Etot = E(0), it is advantageous to replace the
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Figure 2. Energy difference ∆2 = Etot − E(T ) and ∆4 = 4/3E(T ) − 1/3E(2T ) − Etot per atom as
function of temperature. Solid and open squares are for ∆2 and ∆4 and the lines are fitted to a T 2 and

T 4 behaviour.

broadening function f(E−EF , T ) in (2), which leads to the temperature expansion

E(T ) = Etot + α2T
2 + α4T

4 + ... (7)

(see e. g. [21]) by a more powerful broadening scheme without T 2 term. This has
been recognized in the past and various schemes have been suggested [22–24].
Another, perhaps obvious idea, which was investigated here, is to calculate the
energy E(T ) at two different temperatures and to eliminate the T 2 term in (7) by
subtraction, for instance as

4

3
E(T ) − 1

3
E(2T ) = Etot − 4α4T

4 − ... . (8)

It is of course impractical to subtract the two large numbers on the left hand side
of (8) and the calculation for the right hand side of (8) must be implemented
directly in the charge density integration (2) by replacing f(E − EF , T ) with
4f(E − EF , T )/3 − f(E − EF , 2T )/3 in the integrand. On the real energy axis
this difference introduces negative occupancies as the Methfessel-Paxton scheme
[22], which are avoided in the cold-smearing T 3 scheme of Marzari et al. [23]. For
the complex-energy integration over the Green function the negative values occur-
ring in the difference of two Fermi-Dirac functions are practically unimportant as
will be explained in the appendix. In this way a useful T 4 scheme is obtained which
also avoids cumbersome entropy calculation needed if Etot is approximated [24] by
adding energy and free energy and dividing by two.

The advantage of (7) over (8) is illustrated in figure 2, where the differences
∆2 = Etot − E(T ) and ∆4 = 4E(T )/3 − E(2T )/3 − Etot for several temperatures
are plotted for face-centred-cubic Cu and Ni. The lines in figure 2 are fits to the
functions Etot + α2T

2 or Etot + α4T
4 with two fit parameters each, Etot and α2 or

Etot and α4. Here it is important to note that enough k points and enough mesh
points on the complex energy contours were used. Otherwise the calculated total
energies are not accurate enough to obtain reasonable fits, which extrapolate the
T 2 and T 4 behaviour to almost the same values for E(0) = Etot.

Figure 2 clearly shows that (8) leads to considerably better results than (7), for
instance, the values for T = 1600 K obtained by (8) are nearer to Etot than the val-
ues for T = 800 obtained by (7). This is of importance for the computational effort
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Figure 3. (a) Moment difference M(T ) − M(0) as function of temperature. Solid and open squares are
for the T 2 nd T 4 schemes. The values up to 1200 K were used to obtain the lines by fitting a T 2 and T 4

behaviour. (b) Moment error per atom as function of the number of atoms contained in the truncation
region. Solid and open squares are for 800 K calculated with (7) and 1600 K calculated with (8). The

lines, which connect the results for T = 800 K, serve as guide for the eye.

in the proposed linear-scaling algorithm since the necessary number of iterations
is considerably smaller if T can be doubled (see Table 1).

An interesting issue concerns the question whether the advantage of (8) over
(7) appears also for other physical quantities, for instance for the spin moments
in magnetic materials. This question was studied here for face-centred-cubic Ni.
Whereas total-energy calculation did not require self-consistent results because of
the modified functional Ẽ[n(r)] used, self-consistency was necessary for calcula-
tion of spin moments. The spin moments calculated with broadening functions
f(E − EF , T ) and 4f(E − EF , T )/3 − f(E − EF , 2T )/3 are plotted in figure 3a.
This figure shows that spin moments moments are reasonably well described for
not too large temperature, in particular if the T 4 scheme is used. (Note that the
Curie temperature Tc of Ni is not determined by vanishing spin moments, but by
disorder of the moments so that temperatures larger than Tc can be used). Figure
3b shows that the additional error introduced by the truncation of the Green func-
tion required for the linear-scaling algorithm is smaller than the temperature error
so that the linear-scaling algorithm can be expected to be useful also for magnetic
properties of large systems if the truncation region contains enough atoms.

5. Discussion and summary

It was shown for the example of large supercells that iterative solution of the KKR
Dyson equation and a spatial truncation of the Green function lead to an algo-
rithm useful for linear-scaling total-energy calculations for large metallic systems.
The requirements for the algorithm are the sparsity of TB-KKR matrix, the prin-
ciple of nearsightedness of electronic matter utilized by the truncation, iterative
solution, and the use of finite-temperature complex-energy integration to obtain
the charge density. The behaviour of the algorithm was illustrated for model sys-
tems consisting of large Cu, Pd and Ni supercells which could be particularly easily
studied because all atoms in the supercells were equivalent and because an appro-
priate choice of k points in the Brillouin zone facilitated the determination of the
self-consistent potential for the supercells. It was shown that total-energy and spin-
moment errors introduced by truncation can be smaller than 2 meV and 10−3 µB if
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the truncation region contains about a few thousand atoms. It would be desirable
to extend the present model study to realistic systems with inequivalent atoms,
where obviously much more computing power is needed, which is expected to be
available on massively parallel supercomputers.
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Appendix A. Construction of complex-energy integration rules

Instead of integrating (2) along the real energy axis, the integral can be evaluated
in the complex energy plane because the Green function is an analytical function
except for singularities for real energies. For the present study the contour starts
on the negative real energy axis at energy E0 below the valence and above the core
states and thus includes only contributions of valence states. Contributions of core
states were calculated separately by treating these states in an atomic like fashion.
From E0 the contour goes parallel to the imaginary axis up to E0 +2J iπkT , where
J was a chosen small even integer. On this part of the contour the Fermi-Dirac
function was replaced by the constant value 1 since for the temperatures used
the quantity exp((E0 − EF )/(2kT )) was smaller than 10−20. From E0 + 2J iπkT
the contour goes parallel to the real axis to infinity. Compared to the integral
from E0 to infinity along the real axis, the integral on the contour differs by the
contribution of the residues arising from the poles of the Fermi-Dirac function at
the first J Matsubara energies Ej = EF +(2j−1)iπkT with j = 1, 2, ..., J , which are
added separately. Compared to other broadening functions [22, 23] the Fermi-Dirac
function is more advantageous in the complex-energy plane despite the necessity to
include pole contributions, which do not exist if a Gauss function is used. Due to
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the exponential dependence on E, both functions have high amplitude oscillations
for complex energies, which, however, do not exist on the contour for the Fermi-
Dirac function because of its periodicity f(E + 2J iπkT, T ) = f(E, T ) so that the
Fermi-Dirac function on the contour is real and as well behaving as on the real
energy axis.

For the numerical integration the contour interval from E0 + 2J iπkT to in-
finity was divided into several subintervals. On part of these subintervals the
Fermi-Dirac function could be replaced by 1 and standard Gauss-Legendre inte-
gration rules could be used, whereas for other subintervals special Gauss rules
had to be constructed for the weight functions w1(E) = f(E − EF , T ) and
w2(E) = 4f(E − EF , T )/3 − f(EF − E, 2T )/3. For w1(E) one subinterval was
chosen from EF + 2J iπkT to infinity and for w2(E) from EF + x0 + 2J iπkT to
infinity. Here x0 = 2 ln(2 +

√
7)kT ≈ 3.071906kT is the only point on the con-

tour, where w2(E) changes sign, so that the construction of Gauss rules was not
complicated by sign changes of the weight function. Thus the correct choice of
subintervals in the complex-energy plane with x0 being at the boundary of two
subintervals completely removes the problem of negative values of the broadening
function which leads to the trouble of negative occupancies in basis-set methods
[23]. The construction of Gauss integration rules is straightforward (see e. g. [25]),
although numerical steps might be susceptible to rounding errors because of ill-
conditioning. Here the rules were constructed according to the following prescrip-
tion. Monic orthogonal polynomials pn(x) = xn + ... satisfy a three term recurrence
pn+1(x) = (x − αn)pn(x) − βnpn−1(x) starting with p−1 = 0 and p0 = 1, where
the coefficients are given by αn = C−1

n

∫

xp2
n(x)w(x)dx and βn = C−1

n−1Cn with Cn

defined as Cn =
∫

p2
n(x)w(x)dx and β0 =

∫

w(x)dx. For an N point integration
rule the mesh points xi are given by the roots of the polynomial pN (x) and the
integration weights are determined by

wi =
Cn−1

p′N (xi)pN−1(xi)
, (A1)

where the prime denotes derivative with respect to x. Numerically the values of
xi and wi were obtained by a computer algebra system with 90 digits precision to
avoid rounding error problems. In total the number of Gauss points on the contour
was about 50, which kept the total-energy errors arising from energy integration
below 1 µRy.
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