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Grain size and sample size interact to determine strength in a soft metal
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ii Abstract: Understanding the strengthening of small-scale materials and structures is one of the key issues in nanotechnology. Many theories exist, each addressing a small domain of experimentally observed size effects and invoking different mechanisms. Measurements of the stress-strain relationship of nickel foils in flexure by the load-unload method provide strikingly accurate data from the elastic region through the yield point and to high plastic strain. The data shows that the effects on the rate of work-hardening due to crystallite size and sample size interact, while in existing theories they should be independent. Existing theories cannot be complete. The symmetry of the dependence of flow stress on grain size and structure size suggests that strengthening effects are due to a finite strained volume however this is delimited. 

Introduction

A key aspect of nanotechnology is the effect of small-scale phenomena on the mechanics of materials. A wide variety of size effects have been reported over the years in the strength of small structures, microstructured materials, and in materials under localised loading leading to high strain gradients. The size effect in brittle materials is described by the classic Griffith's theory of cracking [1]. The concept of critical thickness for a uniformly strained epitaxial crystal layer, in which the yield stress follows an inverse dependence on the thickness h, was proposed initially for metals in 1949 [2], and the theory has been developed since then primarily for semiconductors [3,4]. In the Hall-Petch effect, the flow stress of a metal follows accurately a dependence on the inverse square root of the crystallite (grain) size d. It has been known since 1951 [5,6], and rather naturally attributed to interactions between dislocations and grain boundaries. It is most directly observed in the yield stress or the flow stress at small plastic strain, but many authors also report that the work-hardening rate shows the same inverse square-root dependence on the grain size. Strain-gradient plasticity was identified much more recently. In this phenomenon, a term in the plastic strain gradient is added to the expression for the flow stress. It is considered to arise from the geometrically necessary dislocations that have to be present if there is to be a plastic strain gradient. The best experimental evidence for it comes from measurements of the stress-strain relationship for thin copper wires in torsion [7] and for thin nickel foils in flexure (bending) [8].

However, these reported experimental results do not cover a sufficient range of strains and grain sizes. In this paper, we extend the foil flexure method of Stölken and Evans [8] to a range of nickel foils with grain sizes d extending from less than the foil thickness h to more than h, and to a range of strains from below yield to values near 0.1, to obtain data orders of magnitude better than previous data in both accuracy and range. Although Armstrong identified the coexistence of a structure size effect with the grain size effect [9], the Hall-Petch effect has not been systematically studied in small structures (i.e. structures with a characteristic length h ~ d). Venkateswaran and Bravman studied aluminium films on silicon substrates and obtained the flow stress and its dependence on film thickness [10]. However, they had only two grain sizes and were not able to distinguish between the Hall-Petch d -½ dependence and the d -1 dependence that they considered more plausible. They assumed that the effects of h and d are separable. Thompson explained their results using critical thickness theory (and introducing a critical grain size as well as a critical thickness) but the theory necessarily yields a d -1 dependence rather than the Hall-Petch d -½ [11]. Other than this, critical thickness effects have not been studied as a function of grain size. Strain-gradient plasticity has not been studied through the yield point, nor as a function of grain size. Mechanistic explanations or theoretical explanations for these effects do not consider interaction between them.

In this paper, we report data for thin nickel foils with a range of grain sizes, so that h and d are both varied in the crucial range of tens of microns. Using bending techniques, data was obtained from the elastic regime through the yield stress to plastic strains of nearly 10%.

The effect of critical thickness on the yield stress and also the classic Hall-Petch effect on the yield stress are both clearly seen. However, in the plastic regime, our data show that the strain-gradient or critical thickness effects and the Hall-Petch effect on the work-hardening and the flow stress are intimately linked. This linkage has not been explored in strain-gradient plasticity theory. It requires a reconsideration of the mechanisms both of the Hall-Petch effect and of strain gradient plasticity. Recently, remarkably high compressive yield strengths have been reported in small nickel [12,13] and gold pillars [14,15]. Volkert and Lilleodden [15] found that the yield strengths of gold micro-pillars varied approximately with the inverse square-root of the pillar diameter a. Taken together with these data, our results imply that all 3 the size effects could be unified into a single size effect in which a small stressed volume is stronger than bulk material however the small volume is delimited. However, a theory of a single size effect remains to be established.

Stress-Strain Experiments

Stress-strain data around the yield point of soft metals is notoriously hard to obtain, yet is crucial for developing an understanding the data at higher strain. We use the load-unload technique familiar in materials testing, but introduced in the present context of the flexural strength of thin metal foils by Stölken and Evans [8]. A foil of thickness h and width w is wrapped round a mandrel or former of known radius R 1 (Fig. 1) giving a surface strain, S = ½ h/R 1 . This introduces a known strain, which is partly elastic and partly plastic. The foil is then unloaded, and it relaxes elastically to a larger radius of curvature R 2 (Fig. 1) with a reduced surface strain S = ½ h/R 2 . The increase in radius provides a determination of the bending moment M at the radius R 1. At the radius R 2 the bending moment is zero. At the radius R 1 simple elastic beam theory gives, for the bending moment normalised by wh 2 ,

S 2 1 2 n 6 1 1 12 = = = E R R Eh wh M M (1) where ) 1 /( / 2 11 2 12 11 = = Y c c c E
is the relevant elastic modulus for a wide beam where the lateral strain is zero, and for nickel, the Young's modulus Y = 200 GPa, the Poisson's ratio = 0.31 giving E = 220 GPa.

Fig.1 around here

With a suitable range of formers and mandrels and using non-contact optical profilometry to measure curvatures, the load-unload technique can give excellent data over a very wide range of surface strain. A single foil is used to generate a stress-strain curve, by starting with the largest radius of curvature and carrying out the load-unload sequence of This set of specimens gave nine sets of data for bending stress against surface strain; all nine datasets are tabulated in the supplementary on-line material. Figure 2 shows the data for foils of thicknesses h = 10µm, 50µm and 125µm, and of grain size d about 30µm in all three foils, in log-log form to cover the large range of strain from about 10 -5 to 10 -1 . The inset the earlier data reported by Stölken and Evans [8] are also shown.

Fig.2 near here

We fit these data using classical plasticity theory (solid lines in Fig. 2), with linear work-hardening, using

0 p 0 0 ) ( ) ( + = = k E ( 2 
)
where 0 is the yield stress (in tension and in compression: we assume the material behaves identically), k is the rate of linear work hardening, and p = -0 /E is used as a close approximation (for k << E) to the true plastic strain, -( )/E. In classical plasticity theory, plastic yield occurs when the stress reaches the yield stress. The beam is deformed elastically from the centre, z = 0, to z = ± z 0 where z 0 is defined by

0 1 0 / = R Ez
. From ± z 0 to the free surfaces at z = ± ½h the deformation is plastic. This gives the following expression for the bending stress when plasticity occurs,
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and this is the function fitted to our data in Fig. 2. Linear work hardening is adequate to describe the data as can be seen from Fig. 2 at large strains. Close inspection around the yield point (Fig. 2 inset) shows that the onset of yield is more complicated than the model assumes. There can be some plastic yield at as little as half the bending stress corresponding to 0 . In what follows, therefore, we refer to 0 as the 'fitted yield stress' -this can be considered to represent the onset of gross plasticity. h for the critical thickness effect which increases the yield stress in the thinner foils, independent of grain size [19]. The critical thickness term has been previously observed by Moreau et al [15], and the full theory was given in Ref. 19. It is particularly interesting that the natural size for critical thickness theory in beam-bending is not the beam thickness h itself, but the thickness h plast within which critical thickness theory predicts plasticity is initiated. A characteristic length in critical thickness theory may be defined as L C = bE/ 0 = b/ 0 where b is the Burgers vector and 0 is the bulk yield strain.

Then ( )

C C plast / 1 1 L h L h + + = [19]
. This is approximately 2 µm in our 10 µm foils and approximately 8 µm in our 125 µm foils. Other fits are possible. For example, a square-root work-hardening law might be used at small plastic strains instead of the linear work-hardening of Eqn.2. This would fit the data around the elbow in Fig. 2 more accurately and it would yield different values for the fitted yield point 0 . Going further, one may be sceptical of the physical meaning of a yield stress in a soft metal. What is observed may be interpreted not as a yield stress but merely as the flow stress at the lowest resolved plastic strain. Then it may be more instructive to plot the raw data differently. We follow Thompson [11] in supposing that the flow stress should depend upon grain size and structure size as d -1 + h -1 . Figure 5 shows a log-log plot of bending moment at a wide range of strains against an effective length or size eff l given by

1 1 1 ff + = h d e l
. At all strains, the data are consistent with straight-line fits. However, at low strains the gradients are very close to -½, indicating a Hall-Petch like dependence on the effective size eff l . At high strains, the gradients are very close to -1 as in Thompson's theory [11]. This is interesting, as Thompson's theory would be expected to be valid at small plastic strains rather than at high. Their theory certainly does not predict the power l eff -1/2 observed here at small strains. However, these results are perhaps consistent with the approach of Narutani and Takamura [20] and others if the geometrically necessary dislocation density is to be added to the normal dislocation density. 

Discussion

No existing theories predict the totality of the results we report here. Indeed, a comprehensive and accurate data set such as we report here (and make available to other workers as on-line supplementary material) puts much higher constraints on any theoretical explanation of strength in small volumes than the data sets that theories have previously been confronted with. Nevertheless, it seems that still better data around the yield point would be desirable.

It The data for three foils of thickness 10µm, 50µm and 125µm and grain size near 30µm are shown in Fig. 2 of the main paper. To confirm the characterisation of the foils, we present some metallurgical images and a surface profile (Figs 1 to 4). For the convenience of workers who wish to use this data to test theoretical ideas, we tabulate below the strains and normalised bending moments (bending stresses) obtained for all nine combinations of thickness and grain size (Tables 1 to 9) together with the parameters obtained by fitting with eq.4 (Table 10) 
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Fig. 3 : 4 .Fig. 4 :

 344 Fig.3:The fitted yield stress 0 is plotted against the inverse square root of the grain size for
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 5 Fig.5: The data for the bending stress at three different values of strain and all nine

  Fig. S1 (a) An EBSD image obtained from the cross section of a 10 μm nickel foil, with grain

Fig. S4 .

 S4 Fig. S2. As Fig. S1, for a 50 μm foil with grain size 30 μm.

  

  

  

  

  

Table S10 below . Table S1 :

 S10.S1 Foil

		Philosophical Magazine & Philosophical Magazine Letters	Page 22 of 27
	F o	
		r	
		P	
		e e r	
		R e v i e w
	Surface strain 1 S / ½ R h = ε 0.00020	thickness 10µm, grain size 6µm Normalized moment M n from eq.1 (MPa) 7.33	O n l y
	0.00035	12.8	
	0.00060	22.0	
	0.00085	31.2	
	0.00104	38.0	
	0.0050	61	
	0.010	91	
	0.030	217	
		http://mc.manuscriptcentral.com/pm-pml

Table S2 :

 S2 Foil thickness 10µm, grain size 12µm

	Page 23 of 27	Philosophical Magazine & Philosophical Magazine Letters
	Surface strain 1 S / ½ R h = ε	Normalized moment M n from eq. 1 (MPa)
	0.00020	7.33	
	0.00035	12.8	
	0.00060	22.0	
	0.00085	31.2	
	0.0050	48	
	0.010	67	
	0.030 Table S3: Foil thickness 10µm, grain size 22µm 140 F o Surface strain 1 S / ½ R h = r Normalized moment ε M n from eq. 1 (MPa) 0.000012 0.42 P
	0.000046 0.000085 0.000126 0.000143 0.000180	1.70 2.90 4.54 4.94 6.58 e e r
	0.000208 0.000228 0.000261 0.000284 0.000316 0.000335 0.000336 0.000358 0.000374 0.000416	7.62 8.03 9.13 10.1 11.3 11.9 12.3 13.0 13.3 15.1	R e v i e w
	0.000441 0.000444 0.000461 0.000517 0.000638 0.000685	16.2 16.1 16.6 17.5 19.0 20.3	O n l y
	0.00072	20.9	
	0.00086	22.5	
	0.00091	23.0	
	0.00104	25.1	
	0.0050	35	
	0.010	53	
	0.030	108	
	0.045	147	

http://mc.manuscriptcentral.com/pm-pml

Table S4 :

 S4 Foil thickness 50µm, grain size 14µm

	Surface strain 1 S / ½ R h = ε	Normalized moment M n from eq. 1 (MPa)
	0.000329	11.5
	0.000360	12.6
	0.000400	13.5
	0.000443	14.8
	0.000583	18.1
	0.000700	19.4
	0.000788	19.5
	0.000867	20.7
	0.001053	22.5
	0.001262	22.4
	0.001613	23.7
	0.001896	24.2
	0.025	63
	0.050	98

Table S5 :

 S5 Foil thickness 50µm, grain size 30µm

		Philosophical Magazine & Philosophical Magazine Letters	Page 24 of 27
	0.050	70	
	F o	
		r	
		P	
	Surface strain 1 S / ½ R h = ε	Normalized moment M n from eq. 1 (MPa) e e r
	0.000070 0.000179 0.000203 0.000231 0.000267 0.000320 0.000325 0.000389 0.000410 0.000472	2.55 5.97 6.73 8.24 8.21 10.1 9.24 11.7 10.9 12.9	R e v i e w
	0.000563 0.000578 0.000691 0.000746 0.000864 0.000916	14.7 13.0 16.4 13.9 14.7 17.6	O n l y
	0.000962	17.9	
	0.00103	16.9	
	0.00100	18.8	
	0.00115	18.5	
	0.00115	16.7	
	0.00120	19.0	
	0.00129	17.3	
	0.00178	19.6	
	0.00188	19.8	
	0.025	43	

http://mc.manuscriptcentral.com/pm-pml

Table S6 :

 S6 Foil thickness 50µm, grain size 50µm Surface strain

	ε	S	=	1 ½ R / h	Normalized moment M n from eq. 1 (MPa)
		0.000333	8.88
		0.000359	9.81
		0.000447	11.4
		0.000565	12.7
		0.000586	12.2
		0.000662	13.1
		0.000982	14.1
		0.00110	14.2
		0.00125	14.4
		0.00137	14.1
		0.00153	15.7
		0.00159	14.9
		0.00185	15.7
		0.00207	16.3
		0.00227	15.9
			0.025	34
			0.050	52

Table S7 :

 S7 Foil thickness 125µm, grain size 27µm Surface strain

	ε	S	=	1 ½ R / h	Normalized moment M n from eq. 1 (MPa)
		0.000052	1.89
		0.000243	6.56
		0.000421	9.82
		0.000500	11.6
		0.000601	13.6
		0.000751	14.9
		0.000801	15.4
		0.000919	16.1
		0.00110	16.4
		0.00781	20.6
			0.0112	22.8
			0.0136	24.7
			0.0164	25.7
			0.0179	28.6
			0.0284	32.1
			0.0588	52.4
			0.050	47
			0.036	36

Table S8 :

 S8 Foil thickness 125µm, grain size 85µm

	Page 25 of 27		Philosophical Magazine & Philosophical Magazine Letters
	Surface strain 1 S / ½ R h = ε	Normalized moment M n from eq. 1 (MPa)
	0.000491		5.02
	0.000660		5.96
	0.000961		7.35
	0.00154			7.94
	0.00195			8.29
	0.00237			8.79
	0.00271			8.81
	0.00322 0.00428 0.00515 0.0588 0.0357	F o r F o r	9.72 10.0 10.6 28.5 21.5
	Dataset 125.220:	P P
	e e r R e v i e w Table S9: Foil thickness 125µm, grain size 220µm Thickness 125µm Grain size 220µm Surface strain 1 S / ½ R h = e e r Normalized moment ε M n from eq. 1 (MPa) 0.000081 1.41 0.000206 3.57 0.000533 5.20 0.000924 5.73 0.001291 6.51 0.001550 5.80 0.001929 6.37 0.002800 6.90 0.003535 6.91 R e v i e w
	0.00411 0.0588 0.0357			7.04 18 15	O n O n
				l y l y

http://mc.manuscriptcentral.com/pm-pml

Table S10 : Fitting parameters using linear work-hardening (eq. 4)

 S10 

	Page 27 of 27				
	Thickness (µm)	Grain size (µm) Average surface	Yield stress σ 0	Hardening rate k
			roughness (µm)	(MPa)	(MPa)
	10	6	0.27	180	150
	10	12	0.36	150	100
	10	22	0.45	100	75
	50	14	0.59	95	42
	50	30	0.34	70	29
	50	50	0.14	55	22
	125	27	0.09	65	16.5
	125	85	0.03	30	10
	125	220	0.04	25	6

http://mc.manuscriptcentral.com/pm-pml Philosophical Magazine & Philosophical Magazine Letters
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