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(May, 2008)

Electric and magnetic multipole moments are important quantities in studies of intermolecular forces, electrostatic and magnetostatic
potentials. The experimental determination of multipole moments in multipole-multipole coupling is difficult and therefore the theoretical
prediction of these quantities is important. The aim of the present review is to give a general theoretical description of multipolar ordering
on two-dimensional periodic and aperiodic lattices. After an introduction to the role of multipolar interactions in magnetic nanoarrays in
the first part of this manuscript the static multipole expansion in cartesian and spherical coordinates are outlined. Next, the established
numerical approach for the calculation of multipolar ground states; i.e., Monte Carlo simulations are summarized. Special emphasis is
put on the review of ground states in multipolar systems consisting of moments of odd parity relevant for the magnetized or polarized
particle ensembles. We demonstrate that higher-order interactions considerably change the dipolar ground states of in-plane magnetized
arrays. While in periodic triangular, square and kagome arrays the higher order interactions induce three or four-fold in-plane anisotropy,
on a Penrose tiling with ten-fold symmetry the multipolar terms do not seriously affect the dipolar order.

1 Introduction

The appearance of new experimental techniques like spin resolved scanning tunnelling microscopy (SP-
STM), magnetic force microscopy (MFM), atomic force microscopy (AFM) and magnetic exchange force
microscopy (MExFM) enable the fabrication and manipulation of nanosystems and rapid rise of the scien-
tific research on ever-smaller magnets. Exploring the nanoworld has created an urgent need for a quanti-
tative and qualitative understanding of matter at the atomic scale. One of the interesting aspects vividly
discussed nowadays is the interparticle interaction in magnetic nanoarrays. Magnetic properties of artifi-
cially structured and self-organized magnetic media belong to the central questions of nanomagnetism as
they give access to new phenomena that can be used in technology for a number of applications as storage,
high speed non-volatile magnetic memory (MRAM), and logic functions for computations [1–4]. Different
applications require different properties of an array. While in storage applications every particle should be
addressed individually; i.e. the nanoelements should not interact, for logic schemes strong interactions are
necessary. In both cases the control of interactions between nanoparticles is crucial.

To identify effects of long-range interaction on magnetic behavior extensive experimental [3–9] and
theoretical [10–12] studies of magnetic nanoarrays have been performed. The derivation of the theory of
these interactions requires knowledge of the magnetic charge distribution of a particle. Recently it has
been demonstrated that one of the simplest and effective ways to do this is to describe a distribution of
charges as a series of multipole moments [13,14].

The magnetic moment (magnetic charge) of an island is determined by the magnetization distribution
in the interior of a particle, its shape, the single- or polycrystalline character, and so on. For example,
the magnetic moment of a sphere which is homogeneously magnetized along one of its principal axes is
identical to that of an equivalent dipole positioned at its center. At the same time the magnetic moment
of a homogeneously magnetized rhombic prism possess higher order multipolar contributions [15]. The
higher order multipole terms change the magnetostatic interparticle coupling and, hence, the magnetization
reversal in densely packed ensembles of particles [10,13,16–18]. When the interdot distance is comparable
to the dot size magnetostatic interaction between the dots may introduce cooperative ordering in dot arrays
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and change the nucleation fields due to the stabilization of magnetization near the edges of neighboring
particles.

The examples given above underline the importance of knowledge of multipolar phase transitions and
ground states for applications as well as for fundamental understanding of physics and chemistry of solid
state systems. In this article the collective ordering of magnetostatically coupled ensembles on lattices of
different symmetry will be reviewed.

Generally, the magnetic/electric charge distributions of uniformly polarized magnetic and ferroelectric
nanoparticles possess a mix of multipolar contributions of the odd rank including dipolar Q1m, octopolar
Q3m, dotriacontapolar Q5m and possibly even higher-order terms. However, for certain geometries some
of the multipole moments may become extinct. For example, a tetragonal prism with equal height, width,
and length—which is therefore a cube—possesses strong dipolar but a zero octopole moment, while its
strongly elongated or very flat counterparts have strong octopolar contributions. The dependence of the
strength of multipole moments on the effective aspect ratio and shape of a particle can be found in [19,20].
To the experimental systems possessing multipoles of even order belong molecular adsorbates including
H2, N2, CO on salts (e.g. boron nitride) or metal surfaces, organic PTCDA molecules on Ag, and methane
on graphite. As our primary interest lies in the description of collective phenomena in magnetic arrays
only odd-rank contributions will be addressed below. We We start with the outline of basic theoretical
techniques. The second part of this review is devoted to the theoretical study of the ground states of
magnetostatically interacting periodic nanoarrays, while in the last part frustrated aperiodic multipole
arrangements are considered. All calculations described in this paper concern arrays of two-dimensional
symmetry like, e.g., a square lattice of magnetic dots. The magnetic moments, however, possess O(3)
symmetry. In the following the term ”two-dimensional” will be used just in the sense of lattice geometry
but not as a full quantum mechanical treatment.

2 Static Multipole Expansion of Interaction Energy in Cartesian and Spherical Coordinates

The collective behavior of magnetic nanoarrays is governed by two main contributions to the magnetostatic
interactions: the static coupling between magnetization distributions of individual elements as well as
dynamic effects coming from the off-diagonal terms in the interaction matrix due to spin-spin correlations,
fluctuations and spin-wave excitations [21]. In the following we focus on the theoretical description of the
static part of magnetostatic interactions only.

Beyond the approximation of potentials the framework of multipole expansion allows the calculation of
the interaction energy of two charge distributions ρA and ρB. In the following the charge distributions
around A and B are considered non intersecting ; i.e., two spheres surrounding ρA and ρB do not overlap.
The distance between the two charge distributions is ~RAB = ~rc,B−~rc,A, where ~rc,A and ~rc,B are the centers
of charge of ρA and ρB, respectively. The interaction energy of these distributions is given by

4πκEint =
∫

d~rA

∫
d~rB

ρA(~rA)ρB(~rB)

‖ ~RAB − ~rA + ~rB ‖
(1)

The two integrations are performed with respect to different coordinate systems; the coordinate axes are
chosen to be mutually parallel while the origins are defined by the centers of charge.

In cartesian coordinates the denominator can be rearranged and Taylor expanded.

1

‖ ~RAB − ~rA + ~rB ‖
=

1

‖ ~RAB ‖
1√

1 + 2~n · ~τAB+ ‖ ~τAB ‖2
, (2)

where ~n is the unit vector pointing in direction of ~RAB and ~τAB =‖ ~RAB ‖−1 (~rB − ~rA). The square root
of Eq. 2 is expanded analogously to f(x) = (

√
1 + x)−1. Within the expansion one has to identify the
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multipole moments. For the low order moments; i.e., charge q, dipole ~p, and quadrupole
←→
Q , one finds

4πκEint =
qAqB

‖ ~RAB ‖
+ ~RAB · qA~pB + qB~pA

‖ ~RAB ‖3
+

+
qAQB + qBQA

‖ ~RAB ‖3
+
‖ ~RAB ‖2 ~pA · ~pB − 3(~RAB~pA)(~RAB~pB)

‖ ~RAB ‖5
+

+O[‖ ~RAB ‖−4], (3)

where 2QA,B = (~n)2i (
←→
Q A,B)ii is a direction weighted trace.

In spherical coordinates the first step of the expansion is

1

‖ ~RAB − ~rA + ~rB ‖
=

∑

L,M

R∗
LM (~rA − ~rB)ILM (~RAB), (4)

where RLM and ILM are regular and irregular normalized spherical harmonics correspondingly. In the next
step one has to apply the so-called addition theorem to separate ~rA and ~rB [22]. Eventually the interaction
energy reads

4πκEint =
∫

d~rAρA(~rA)
∫

d~rBρB(~rB)×

×
∑

lA,lB ,mA,mB

(−1)lA

√
(2lA + 2lB + 1)!

(2lA)!(2lB)!
RlAmA

(~rA)RlBmB
(~rB)×

×IlA+lB−(mA+mB)(~RAB)
(

lA lB lA + lB
mA mB −(mA + mB)

)

=
∑

lA,lB ,mA,mB

(−1)lA

√
(2lA + 2lB + 1)!

(2lA)!(2lM )!
QA

lAmA
QB

lBmB
×

×IlA+lB−(mA+mB)(~RAB)
(

lA lB lA + lB
mA mB −(mA + mB)

)
. (5)

Note that—in contrast to cartesian coordinates—it is very easy to identify the multipole moments QA
lAmA

and QB
lBmB

of non–intersecting charge distributions A and B.

3 Methods

Both expressions derived above can be used for the evaluation of the multipolar ground states. For such
complicated, many-sided interactions like multipolar ones the configurational space is very large and the
analytical methods for the description of ground states are often inapplicable. For that reason the Monte
Carlo (MC) approach frequently gives a unique possibility to derive the thermodynamic properties and
ground states of multipolar systems. The MC scheme is based on minimization of a system’s free energy by
performing statistical sampling experiments on a computer. Statistical sampling or ”importance sampling”
is the technique for picking out the important states from the very large number of possibilities [23, 24].
The general strategy is to pick the states µ not randomly, but with probability pµ = Z−1e−βEµ , where Z
is the partition function and β = 1/(kBT ) with kB the Boltzmann constant. In a properly equilibrated
Monte-Carlo system all chosen states have to appear with their correct Boltzmann probability.

Generally, both Hamiltonians Eq. (5) or Eq. (3) can be introduced into a MC scheme [23] for the
derivation of the stable low temperature configurations of an ensemble of classical multipolar rotors. The
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first order element of the cartesian version of the multipolar interaction tensor (the fourth summand of
Eq. 3) is widely used for the numerical description of the dipole-dipole interaction playing an important
role in magnetic or polar systems [25–28]. In very few cases [29,30] one uses cartesian representation of the
quadrupolar interaction (O[‖ ~RAB ‖−4]) for energy calculations of certain states of molecular ensembles.
However, already the quadrupolar term is never used for MC simulations not to mention the higher order
contributions. The main reason for this is that the complexity of calculations drastically increases with
increasing order of the expansion. In addition to already rather complicated, long range terms of the
dipolar contribution (~RAB · ~pA)(~RAB · ~pB) expressions like (~RAB · ~p)2 and/or (~pA · ~pB)2 emerge. This leads
to additional nested summations and the energy minimization becomes a formidable task.

The spherical coordinates allow a much easier treatment of higher order moments and their inter-
action energies (see Eq. (5)). For example, the fifth order, dotriacontapole moment has components
Q5 m with −5 ≤ m ≤ 5 in spherical coordinates while it would be a tensor of the form Di j k l m with
(i, j, k, l, m) ∈ {x, y, z} in cartesian coordinates. Even though the number of independent tensor compo-
nents is the same the number of nested summations in the spherical representation does not increase for
higher order moments. Therefore, the technique of spherical coordinates is much more appropriate for the
MC simulations of ensembles consisting of particles with non–intersecting charge distributions [31–33].

The theoretical treatments of multipolar ground states are still very rare and are mostly restricted to
classical, rotationally symmetric multipole moments Qlm with l = 1...4 and m = 0 (generally m = −l...l),
where l and m correspond to the two degrees of freedom on a sphere. In order to calculate any order
of interactions within reasonable effort often spherical coordinates are used [31, 33]. According to the
expression (5) the Hamiltonian of the multipolar interaction reads

H =
1

4πµ0

∑

A6=B
lAlBmAmB

TlAlBmAmB
(~RAB)QA

lAmA
QB

lBmB
(6)

where QA
lAmA

and QB
lBmB

are the moments of multipoles A and B expressed in spherical harmonics and
TlAlBmAmB

(~RAB) is the geometric interaction tensor depending on the interparticle distance vector ~RAB

between multipoles on sites A and B

TlAlBmAmB
(~RAB) = (−1)lBI∗lA+lB mA+mB

(~RAB)

×
√

(lA + lB −mA −mB)!
(lA −mA)!(lB −mB)!

(lA + lB + mA + mB)!
(lA + mA)!(lB + mB)!

, (7)

where the dependency on the distance is given by the complex conjugate of the irregular normalized
spherical harmonic function Il m(~r) =

√
4π

2l+1
Yl m(θ,ϕ)

rl+1 . The Heisenberg exchange can be added as well.
The most difficult problem encountered in Monte-Carlo simulations is related to the limited and strongly

biased sampling of the configurational space occurring when the temperature is lower than the critical
temperature of the model. Below the critical temperature the system can be trapped in local minima,
separated by energy barriers that are rarely overtaken by thermal fluctuations. Most of the widely used
computational methods designed to avoid this problem are simulated annealing [34], genetic algorithms
[35], and stochastic tunneling [36]. With increasing sample size these methods become inefficient because
of very long relaxation times. To overcome this problem algorithms like cluster flip schemes [37–39] or
multicanonical ensemble methods [40–42] have been proposed. Novel Monte-Carlo algorithms for large
systems use a random walk in energy space instead of the configurational space to obtain a very accurate
estimate of the density of states for classical statistical models [43,44].

The MC simulations of multipolar systems are still very rare. For that reason and because many of
multipolar ground states are strongly non–collinear the cluster algorithms have not been implemented
yet for this class of problems. Almost all MC simulations on multipolar ensembles have been done in the
framework of the single flip Metropolis scheme with a very slow simulated annealing [32, 33]. In older
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calculations the rotational space has been restricted to Ising like or in-plane orientations. In the recent
simulations [33] the rotational space was sampled uniformly and was not restricted, i.e. a moment can
access any new angle. To avoid metastable states several different simulations of the same system have
been performed. Simultaneously starting them at different ”seeds” for the random number generator, one
ensures that the samples take different paths to the equilibrium. Only when all samples reached the same
stable energy level it has been deduced that the system has reached equilibrium.

In addition to effective computational algorithms special attention has to be paid to the calculation of
the long-range character of the multipolar interactions. Ideally, for the long-range interactions one needs
to calculate the interaction energy between each pair of moments on a lattice. For N moments a CPU
time proportional to N2 per one Monte Carlo step is required in the single spin-flip algorithm. This means
that large samples can be treated only with periodic boundary conditions in order to reduce the size of
a sample to the size of the periodically repeated unit cell. The periodic boundary conditions are now
implemented only for dipolar systems [45]. For higher order multipoles the periodic conditions are not so
important because of the faster decrease of the interaction energy as a function of interparticle separation.
In addition, the periodic boundaries in many cases can introduce artificial periodicity and other unwanted
effects. For those reasons the most part of MC studies on multipolar systems have been performed with
open boundary conditions but without any cut-off in interaction; i.e., all pair interactions all over the
lattice have been considered [13,33].

To overcome the problem of the very consuming CPU time several alternative approaches have been
proposed [27,46,47]. The most straightforward one is the discrete update method of Ref. [27]. Most of the
CPU time is consumed for calculating the interaction with far moments. However, when the equilibrium is
realized, the change of the effective field in updating individual spins will be small, because the strength of
the interactions between two moments decays as R−2l−1

AB . Therefore, the effective interaction energy Ei of
the site i can be separated into the sum of the interactions up to second-nearest-neighbors Enear

i and that
from the other moments Efar

i . Enear
i is then updated for every spin-update trial, while Efar

i for every m
Monte-Carlo sweeps. In this procedure the CPU time can be reduced by a factor m−1. Combination of the
discrete update method with the Fast Fourier Transform (FFT) technique [48] permits even more efficient
numerical treatments of dipolar fields for open boundaries [47]. For a dipolar case, using FFT techniques
the algorithm needs only of the order of N log N calculations instead of N2 calculations which one would
need for the straightforward calculation of the double sum in the second summand of Eq. 3. For higher
order interactions this method has not been applied so far. Apart from the described scheme a very helpful
procedure to increase the efficiency of the slow cooling is an exponential increase of the number of MC
steps and/or number of temperature steps with decreasing temperature. At higher temperatures almost
each trial move is accepted; i.e., the calculation time per number of MC steps is large. At the same time
the relaxation to the equilibrium is quick; i.e., rather few MC steps are needed. At lower temperatures
only few moves are accepted and the relaxation time is large. Thus, it is reasonable to use a larger number
of MC steps per temperature (NMC(T )) at lower temperatures for a constant amount of temperature steps
(N(T )) or a larger N(T ) for a constant NMC. The latter can be, e.g., accomplished by the function

τ(n) = τ2 + (τ1 − τ2)
e−γ(n−1) − e−γ(N−1)

1− e−γ(N−1)
, (8)

where τ1 = kBT1 and τ2 = kBT2 are the start and end thermal energy respectively, N is the total number
of temperatures steps while γ controls the speed of the exponential temperature decrease. Ideally, both
procedures have to be superimposed and the convergence of the relaxation process towards an equilibrium
at each temperature step has to be ensured.

The data on critical thermodynamic properties of multipolar systems, which can in principle be obtained
from the MC simulations, are very limited even for the dipolar interactions. In a recent MC study of a
dipolar ensemble on a triangular lattice with vanishing disorder critical exponents α = 1.73 ± 0.02 and
γ = 2.64± 0.1 have been reported in very good agreement with experimental data on Heusler alloys [49].
Those exponents are very large as compared to values for isotropic 3D ferromagnets [50]. These first
calculations show that the multipolar systems possess a very interesting critical behavior and theoretical
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Figure 1. Rotationally symmetric dipole (Q10), quadrupole (Q20), octopole (Q30), hexadecapole (Q40) and dotriacontapole (Q50) in
the real spherical harmonic representation.

 

a b d c 

Figure 2. Pure dipolar coupling: top view of (a) a central portion of low-temperature Monte-Carlo configuration on a square lattice
(kBT = 0.05Edd with Edd dipole-dipole interaction energy); (b) an experimental dipolar model on a square lattice made at the

Max-Planck Institute of Microstructure Physics, Halle, Germany; (c) a central portion of low-temperature Monte-Carlo configuration
on a triangular lattice (kBT = 0.05Edd); (d) an experimental dipolar model on a triangular lattice.

predictions on such systems are highly required.
There is no unified representation of multipole moments in the literature. While dipoles are usually

represented by arrows it becomes more and more difficult to find similar representation for higher order
moments. Therefore the sticks, double arrows etc. are used. We propose to represent all kind of multipoles
by real spherical harmonics corresponding to equipotential surfaces of moments. The color of equipotential
surfaces reflects the sign of the potential. The first five rotationally symmetric multipole moments in this
representation are shown in Fig. 1. An important advantage of the spherical harmonics representation is a
very direct visualization of the charge distribution in a system under investigation as will be demonstrated
below.

4 Thermodynamic Ground States of Classical, Odd-Parity Multipolar Rotors

This section is devoted to the Monte Carlo results on equilibrium states of magnetic arrays of different
geometry. All configurations given in Fig. 2,3,4,5, 6 result from a careful finite size scaling analysis and are
thermodynamic ground states. Some of these structures; for example, dipolar configurations on a triangular
and a kagome lattice Figs. 2, 4 are very ordered. Another like octopoles on a kagome 4 (b) and a Penrose
tiling Fig. 5 possess a significant degree of disorder. Nevertheless, all structures have a minimal possible
energy for a given temperature; i.e., they are in thermal equilibrium. Degree of disorder as will be described
below is mainly determined by the phase space of each concrete system. In case of ordered structures the
thermodynamic ground configuration is unique, while disordered configurations belong to the manifold of
energetically degenerated states.

4.1 A Square and a Triangular Lattice

Several studies of dipolar ground state on a square lattice demonstrated that the ground configuration of an
infinite square lattice is highly degenerate and defines a continuous manifold of spin configurations at T = 0,
although the dipolar coupling itself is not rotationally invariant. A typical configuration obtained by Monte-
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a b 

Figure 3. Dipolar and octopolar coupling (Q3 0 > /Q1 0 = 0.5):(a) top view of an experimental model and a low-temperature
Monte-Carlo configuration on a square lattice(kBT = 0.05Edd with Edd dipole-dipole interaction energy); (b) the same on a triangular

lattice.

Carlo simulations for a finite square lattice at finite temperature is given in Fig. 2(a). Lines of dipoles are
observed at the edges which are formed due to the pole avoidance principle. The microvortex configuration
is formed in the center. Hence, the finite size and temperature remove the continuous degeneracy of the
dipolar ground state on a square lattice.

The ground state of an infinite dipolar array on a triangular lattice is a ferromagnetic-like monodomain
structure as follows from Monte-Carlo simulations and mean-field approach. For open boundary conditions
a planar vortex structure appears, which is formed to avoid free magnetic poles at the boundaries of the
sample (see Fig. 2(c)). In Fig. 2 (b), (d) an experimental model of the square and triangular dipolar
arrays is shown. The Monte-Carlo simulations and the experiment reveal identical structures. Thus, due
to the geometric frustration of the lattice, which commonly leads to a disorder or a non–collinearity [18],
a perfectly ordered vortex on a triangular lattice and an ordered microvortex structure on a square lattice
are formed.

While the dipolar ground states on many periodic lattices are known for several decades ground states
of two-dimensional arrays of multipoles or their combinations have been considered only recently [33]. The
octopolar moments (Q3 0 >> Q1 0) are unidirectional, i.e. the components of an octopole moment behave
themselves like the components of a vector. Therefore, they can be still represented by arrows. It has been
found [33] that on a square lattice octopoles form lines being aligned antiparallel while on a triangular
lattice the moments are ferromagnetically ordered (see Fig. 3).

As shown in [20], the in-plane magnetized nanodiscs with height-to-diameter ratio h/a = 0.5, that are
often used in modern experimental studies on nanoarrays, possess dipolar and octopolar moments with
Q3 0/Q1 0 ≈ 0.5. Hence, for a real nanomagnetic array neither pure dipolar, nor pure octopolar configura-
tions are relevant. Instead, ground states of an ensemble of combined multipoles should be calculated. Our
recent results [33] demonstrate that the ground state of a system of particles possessing both multipolar
contributions Q10 + Q30 is similar to a pure octopolar pattern. The main difference is the appearance of
rotational domains and alternating regions of parallel and antiparallel chains as can be seen in Fig. 3.

The lines are oriented in principal crystallographic directions. Hence, the octopolar interaction on a
triangular and a square lattice introduces an easy-plane and a tri- and a biaxial in-plane anisotropy,
respectively. In contrast to finite dipolar systems avoiding uncompensated poles by vortex or domain
formation, a finite octopolar system is not sensitive to the formation of free poles in most geometries of a
sample. To understand the reason for such a behavior one has to bear in mind that in general dipoles only
interact with the field, i.e. the first derivative of the potential Hi = − ∂Φ

∂ri
. Higher order moments interact

with higher derivatives, i.e. quadrupoles with ∂2Φ
∂ri∂rj

, octopoles with ∂3Φ
∂ri∂rj∂rk

etc. Hence, octopoles do not
interact with a demagnetizing field but with the field curvature. Therefore, the gain in the internal energy
due to the compensation of free magnetic poles at the sample boundary is not so strong as for pure dipolar
systems and low-temperature configurations in finite samples are still parallel lines for a triangular and
antiparallel lines for a square lattice. Thus, the interaction of dipoles with the demagnetizing field is still
too weak in comparison to the anisotropy induced due to the octopole-octopole coupling.
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b 

c 

a 

Figure 4. Top-view of a stable dipolar (a) and octopolar (b) configuration on a kagome lattice at kT = 0.1E‖; (c) the same portion of
an infinite dipolar system in arrow and spherical harmonics representation. Different colors mean different surface charges.

4.2 A Kagome Lattice

A kagome symmetry provides a genuine representation of geometric frustration. As well known there is no
finite-temperature transition to a phase with a static ordering for an antiferromagnet with only nearest-
neighbor exchange interactions on a kagome lattice [51]. It is also well known that the dipolar coupling has
an antiferromagnetic nature [52]. On the other hand, in contrast to the direct exchange interactions, any
multipolar coupling has a long range character which can significantly change the microscopic ordering of
a system. Hence, the question of dipolar and general multipolar ground states on frustrated geometries
seems not to be trivial, while it is of great importance due to the increasing number of corresponding
two-dimensional experimental systems [53,54].

In a system of pure dipolar rotors on a kagome lattice a ferromagnetic-like pattern is formed. In an infinite
array with periodic boundary conditions a single domain configuration was found while for finite samples a
macroscopic planar vortex is obtained as shown in Fig. 4 (a). At first glance the dipolar pattern of Fig. 4 (a)
seems to be just a ferromagnetic configuration, slightly disordered by frustration. In reality, however, the
situation is more subtle. In Fig. 4 (c) one and the same portion of a pattern is represented with two different
visualization techniques. The upper inset gives a usual arrow representation stressing the unidirectionality
of the dipoles while at the bottom the equipotential surfaces of the dipolar moments are shown. The color
reflects the sign of the potential. The whole pattern can be divided into three sublattices of identical energy
but different orientation which can be clearly seen in Fig. 4 (c). The orientation of moments in a sublattice
corresponding to more diluted rows coincides with one of the principal crystallographic directions. Two
other sublattices make an angle α with the selected orientation. Generally, α depends on the ratio between
the dipolar and the exchange coupling. For the pure dipolar case it reaches αmax = (3/4)π due to the lattice
symmetry. Hence, in contrast to an antiferromagnetic system a dipolar ensemble with kagome symmetry
shows a stable, unfrustrated behavior.

In the next step we pass to the octopolar rotors on a kagome lattice given in Fig. 4 (b). In spite of
the evident similarities of dipolar and octopolar charge distributions a pure octopolar configuration differs
ultimately from that of a dipolar one. First, the macroscopic vortex is not formed; second, the ordered
sublattices found in a pure dipolar case do not exist; and third, in contrast to the dipolar case the collinear
lines are formed along the dense packed rows instead of the looser packed ones. The whole structure is
strongly frustrated: a lot of energetically degenerated configurations exist. At low temperatures a system
freezes into one of those states. The strong difference between the dipolar and the octopolar ordering stems
from the different symmetry of the equipotential surfaces (see Fig. 4 (b)). In contrast to dipoles octopolar
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moments possess two additional charged ”collars” which have to be compensated to decrease the total
energy of a system. This requirement forces the parallel alignment of the close packed rows of moments.

Similar to previously discussed triangular and square arrays a finite octopolar kagome ensemble is not
sensitive to the formation of free poles in most sample geometries. Indeed, while all dipoles at the edge of
a finite sample in Fig. 4 (a) are parallel to the sample boundary it is not always the case for octopoles in
Fig. 4 (b).

5 A Penrose Tiling

While a kagome lattice is frustrated but perfectly periodic,another class of geometrically frustrated, non-
periodic systems exists. These are quasicrystals. The quasicrystals can be structurally ranked in-between
the periodic lattices and completely disordered media. Starting from the famous pattern of Roger Penrose
it has been found many different ways to tile the plane non-periodically with a similar set of regular
polygons [55, 56]. Later many of these purely mathematical constructions have found their prototypes in
real materials. Nevertheless two most popular quasiperiodic tilings remain the ten-fold Penrose [57] and
the eight-fold Ammann-Beenker [58] structures.

Considering that the magnetic/electric moments are localized on the vertices of a tiling one finds six
different types of vertices in a Penrose lattice. For an octagonal tiling eight different local atomic arrange-
ments exist. The number of nearest neighbors in quasicrystals varies widely from one vertex to another like
in disordered matter. The Penrose tiling, for example, has atoms with coordination number changing from
three to seven. Consequently, the energy per magnetic moment in quasicrystals also varies. Several of these
vertices are frustrated in the case of antiferromagnetic or dipolar interactions as each rhombic tile consists
of two triangles; i.e., magnetic moments are unable to find an orientation satisfying the interactions with
all neighbors.

The frustration in quasicrystals is different from that of periodic systems and that of disordered media.
In highly ordered magnets like kagome or pyrochlores the frustration is uniform, i.e., equal for all lattice
points. In disordered materials the frustration is random. In quasicrystals the change in coordination
number leads to spatial alternation of the local energy and, thus, the degree of frustration. However, the
nonuniform magnetic frustration is not random.

In previous theoretical studies of dipolar ordering (multipole moments of rank one Q1m) on the Penrose
tiling, performed in Cartesian coordinates [59], a decagonal pattern with long-range order was proposed as
the ground state. Later, after careful and extensive analysis, a clear evidence for short-range order, with
very interesting geometric properties, yet no evidence for the emergence of long-range multipolar order
has been found [60]. The ground-state configurations of odd-parity multipoles are shown in Fig. 6. At
first sight these configurations seem to possess very nice long-range multipolar order, as one clearly sees a
superstructure in the form of the familiar decagonal Hexagon-Boat-Star (HBS) tiling shown in Fig. 5 (a).
Decagonal rings are clearly visible in both cases, each subdivided into a single boat and a pair of hexagonal
tiles. Between the decagons one easily identifies the star-shaped tiles. This aesthetic arrangement of the
multipoles found also experimentally (see Fig. 5 (b)) may lead one to the incorrect conclusion that long-
range order of the multipoles on the underlying Penrose tiling exists. Yet careful analysis shows that this
arrangement stems from the short-range head-to-tail attraction of neighboring multipoles and exhibits no
long-range order [60].

As it turns out, the HBS tiling is simply outlined by pairs and triplets of multipoles that are separated
by the short diagonals of the thin (36◦) rhombic tiles of the Penrose tiling. This separation, which is the
shortest interparticle separation on the Penrose tiling, sets the largest energy scale in the system. As such,
these pair and triplet chains are the first to order as the temperature is lowered. Because their positions
and orientations are strictly inherited from the Penrose tiling, their ordering on the short scale suffices
to outline the HBS tiling that one clearly observes. The existence of short-range order in the orientation
of the multipoles is verified quantitatively through a statistical analysis. The absolute orientation of the
multipoles, projected onto the plane, is clearly peaked along the 20 directions (nπ/10 for n = 1 . . . 20),
dictated by the Penrose tiling. The dipolar histogram is more strongly peaked relative to the octopolar one
owing to the fact that the octopolar ground state possesses, on average, a larger out-of-plane component.
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 a b 

Figure 5. (a) Hexagon–Boat–Star tiling (courtesy of R. Lifshitz); (b) A portion of an experimental dipolar model on the Penrose tiling
made at the Max-Planck Institute of Microstructure Physics, Halle, Germany.

 

Figure 6. (Color online) Ground-state configurations of odd-parity multipolar rotors. (Left) dipole moments; (Right) octopole
moments. These configurations possess short-range order, owing to the strong head-to-tail attraction of neighboring multipoles, which

is sufficient to highlight the decagonal Hexagon-Boat-Star Tiling.

A frequency distribution of the angle between nearest neighboring moments is also peaked at the char-
acteristic angles inherited from the relative orientation of thin rhombic tiles on the Penrose tiling, and is
significantly less-pronounced for the octopolar moments due to their substantial out-of plane protrusion.
Though the octopolar arrangement contains a larger average out-of-plane component, and a slightly less-
perfect short-range order within the plane, the two cases are quite similar. The difference stems from the
fact that there is some amount of attraction of the arrow heads to the central oppositely-charged regions
of neighboring octopoles (see Fig. 1).

We note that in magnetic systems the strength of the multipolar interactions can be tuned by the shape
of the particles, or their size relative to the interparticle separations. The octopolar contribution may
become very large for RAB < s, with s being the lateral size of a particle. The dipolar contributions are
sizable for RAB < 5s− 10s. For very small interparticle separations the decagonal structure might become
disordered due to the octopolar contributions, while for very large separations disorder may appear because
of the weakness of the dipolar coupling. This implies that there exists a critical separation Rc

AB for which
the short-range ordering of odd-parity multipoles on the Penrose tiling is maximal. For typical particle
shapes used in experiments [33] this critical distance is of the order of 1s− 2s.

The multipoles that lie within the HBS tiles are disordered, as can be verified by simple inspection.
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Nevertheless, one could still imagine a situation in which the multipoles that lie on the edges of the HBS
tiles are long-range ordered while the internal multipoles are not. Yet upon further inspection one finds that
multipoles lying on the edges of the HBS tiles are disordered as well, as their direction changes randomly
from one pair or triplet chain to the next. This disorder is a direct consequence of the frustration that arises
whenever the ends of three such chains meet together. This can be seen, for example, at the five vertices of
the central star tile in both configurations, shown in Fig. 6. The observation of the lack of long-range order
is confirmed quantitatively by performing a Fourier analysis of the ground state configurations [60]. By
examining the different components of the multipolar fields, as well as various functions of the components,
one can say with certainty that such order is lacking, as the calculated Fourier spectra show no additional
Bragg peaks when compared to the Fourier spectrum of the tiling itself. Thus, the only long-range order that
is observed is related to the positions of the multipoles, inherited from the Penrose tiling, and not to their
relative orientation. To verify this conclusion, the Fourier spectrum of a randomly oriented configuration
of multipole moments on the vertices of the Penrose tiling, created using a random number generator, has
also been calculated. The outcome strongly resembles that of the ground-state configurations.

6 Summary

Low-temperature stable multipolar ordering on a square, a triangular, a kagome lattice and a Penrose
tiling has been reviewed. Emphasize has been put on the multipolar contributions of odd parity relevant
for ensembles of polarized or magnetized particles. It is demonstrated that the dipolar interactions partially
relieve strong frustration characteristic for antiferromagnetic systems on a triangular and a kagome lattice,
while dipolar ensembles with a Penrose symmetry possess a manifold of energetically equivalent, frustrated
configurations. The pure dipolar coupling leads to a long-range order on periodic lattices and to a short
range one on a Penrose tiling. In octopolar tenfold systems the decagonal short range ordering remains but
is less pronounced because of frustration arising from the complicated form of the charge distributions.
All above mentioned multipolar configurations are at most planar. The octopolar contribution introduces
a strong additional three- and four-fold anisotropy on triangular and square lattices, respectively. Tuning
the multipole moments by changing the geometry of nanoparticles offers a new route to the control of the
coupling behaviour and therefore the hysteretic properties of magnetic nanoparticle arrays.

* Financial support from the Deutsche Forschungsgemeinschaft in the framework of the part project
A11 of the SFB 668 is gratefully acknowledged.
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