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One dimensional model of strained epitaxy of a binary alloy
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(June 3, 2008)

We discuss the self-assembly of monatomic chains composed of atoms of two kinds on a
periodic substrate. We assume that there exists small positive misfit between the average
atomic diameter of the deposited atoms and the substrate lattice parameter. This may cause
the chain size calibration. Our model calculations show that if the interatomic interactions are
of ordering type, at low temperature the distribution of chain lengths at thermal equilibrium
is more strongly peaked around the optimum length than in the case of chains composed from
identical atoms.

Keywords: strained epitaxy; self-assembly; size distribution; monatomic chains; binary
alloy; thermal equilibrium

1. Introduction

Controlled self-assembly and self-organization are expected to became major tools
in nanoscale engineering [1]. One of the perspective technological processes is the
self-assembly of size-calibrated islands taking place in some strained heteroepitaxial
systems [2]. From the technological point of view, the goal is to grow structures with
prescribed properties. However, our ability to control the growth is restricted to
only indirect influences via the external conditions, such as the deposition flux, the
substrate temperature, the coverage, etc. Therefore, it is important to thoroughly
investigate all awailable possibilities of influencing the growth process.

In Ref. [3] for the case of one component deposit we showed that the ordered al-
loyed substrate can both facilitate the self-assembly and make the size distribution
more narrow.

The aim of the present paper is to investigate how the size calibration is affected
if the deposited material instead of the substrate is a mixture (or an alloy) of two
atomic species. As in the above paper, we will study a one dimensional (1D) model
which is useful not only as a simplest theoretical model to study the qualitative
behavior in all dimentions, but is also of practical interest because 1D structures
are being extensively studied to serve as nanowires [4] and atomic-scale magnets [5]
for application in nanoscale devices. On the theoretical side, the simplicity inherent
to 1D will allow us to use powerful analytical techniques [3, 6, 7].

*Corresponding author. Email: tokar@ipcms.u-strasbg.fr

ISSN: 1478-6435 print/ISSN 1478-6443 online
© 2008 Taylor & Francis

DOI: 10.1080/1478643Y Y XXXXXXXX
http://www.informaworld.com

http://mc.manuscriptcentral.com/pm-pml



June 3, 2008

20:11

Philosophical Magazine iccms
Philosophical Magazine & Philosophical Magazine Letters
2 Taylor & Francis and I.T. Consultant

2. A simple model of misfit

To illustrate the physics of misfit let us consider the deposition of adatoms on a
1D periodic substrate. Assuming for simplicity that the adatoms are of the same
kind, let us choose the substrate potential as in the Frenkel-Kontorova model

Vi(z) = k <1 _ cosm> , (1)

a

where k is the strength of the potential and a the substrate lattice constant. The
interatomic interaction between the adatoms is in general quite complex. In Ref.
[8] we assumed that in the case of small misfit it can be treated in the harmonic
approximation. This reduced the interaction to the nearest neighbor “chemical”
part Vyn and to the harmonic part as in the Frenkel-Kontorova model.

In the present paper we further simplify this model by assuming that the spring
constant of the interatomic harmonic interaction is very large which means that
the adatoms interact as impenetrable spheres of some diameter d. The difference
with the Frenkel-Kontorova model is that the atoms when in contact add to the
system energy the (usually negative) “chemical” contribution V.

Let us assume that there exists small positive misfit Aa < a between the adatom
diameter d and the substrate lattice spacing

d=a+ Aa=a(l+f), (2)

where f is the relative misfit Aa/a. It is easy to show that in this model the energy
of an atomic chain consisting of | adjacent atoms is

E=V¥N(1-1)+k {z _ sin{mlf)

= Eh + B, 3

Sln(ﬂ'f) :| l l ( )
where the first “chemical bond” term on the right hand side is the sum of interac-
tions between nearest neighbor atoms and the elastic term

l
B =3 V() (4)
i=1

is due to the interaction with the substrate. The equilibrium positions of the atoms
x; in this equation are easily found from symmetry considerations.

The size calibration of the chains takes place when the reduced energy F;/I has
a global minimum as the function of [ [7-9]. This case is illustrated by the solid
curve in Fig. 1 corresponding to the misfit value f = 5%. The oscillations on the
reduced energy curves correspond to the appearance of the dislocations which in the
presence of misfit and the are inevitable for rigid atoms in sufficiently long chains.
We note that the global minimum of the solid curve corresponds to a coherent
island. Coherent structures are considered to be more suitable for application in
nanoelectronics because of their better quality. The dashed curve, however, does not
have a global minimum at finite /. This means that if the misfit exceeds ~ 10% the
atoms tend to gather into dislocated chains with their length growing at diminishing
temperature.

According to the approximate theory of Ref. [9] and to the exact solutions of
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Figure 1. Reduced per atom energy of the chains of adsorbed atoms for two values of the misfit f. The
substrate potential strength k in Eq. (1) was chosen to be equal to 0.3|Vyn|. The horizontal line
corresponds to the asymptotic value of E;/l as | — oo [see Eq. (3)]. The dashed curve which passes above
this curve does not have a global minimum at finite I.

Refs. [3, 7, 8], the size distribution of islands at finite temperature is

| —F
Aok exp (“kBT ’) , (5)

where ¢; is the concentration of islands of size [ and p a parameter to fix the
total coverage. From this equation it can be seen that at low temperature the
size distribution is strongly peaked around the size corresponding to the global
minimum of the reduced energy [9]. Furthermore, the very monomodal character
of the distribution depends on the positive curvature of the function E; in the
vicinity of the minimum [10].

3. Equilibrium statistics of alloyed chains

As was noted in the Introduction, in 1D there is a lot of techniques for solving
statistical problems exactly. At the hart of these techniques lies the transfer matrix
method which is extremely efficient in the case of short-range interactions because
it allows to reduce many-body statistical problems to the diagonalization of a
transfer matrix of a size which is small in the case of short range interactions (e.
g., the size is 2% in the binary alloy case where L is the radius of the interaction
[15, Ch. II]). Elastic interactions, however, are not short range. For example, the
chain energy of the form (3) can be shown to contain an infinite number of cluster
interactions of the form

Vipiv1piv2 - - - Piti, (6)

where p; = 0,1 is the occupation number of adatom on site ¢ and V] is the second
discrete derivative of Ej [7]. Thus, if the nonlinear term in Eq. (3) is not of a
polynomial type, V; # 0 for all . In this case the transfer matrix has infinite size
and the problem cannot be solved within conventional approach.

In Refs. [6-8], however, it was shown that Hamiltonians with interactions of the
type of Eq. (6) are also exactly solvable and two methods for their solution were
developed. In Refs. [3, 11] these methods were applied to the strained epitaxy
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on alloyed substrates. Within these techniques the exact solutions were expressed
through the chain energies E; alone. The calculation of the partition function es-
sentially consists in the counting of the configurations with a given distribution of
the atoms between the chains of different lengths.

Our main observation in the present paper is that if (i) the elastic part of the
energy of an alloyed chain is independent of the chain composition and (ii) the
“chemical” interatomic interactions are restricted to the nearest-neighbor atoms
then the elastic part factors out so that the statistical averaging within the chain
can be performed by the usual means (see Appendix A for details).

The most speculative is, of course, the first of the above assumptions, i. e.,
that the elastic energy is independent of the chain composition. In terms of the
simple model of section 2 this means that A and B atoms have the same diameter.
While in general this may seem unrealistic, in many cases this can be a good
approximation [12]. For example, according to Ref. [12] in the case of the CuAu
system the empirical radii of the two atoms are identical. Thus, at least in some
cases the above assumption is approximately fulfilled.

In Appendix A and below we show that the intrachain averaging over the alloy
species amounts to effective introduction of chain energies E; which formally enter
into the formalism as the energies of a pure specie. This allows us to apply all the
machinery developed for the pure case also in the alloy case.

To gain insight into the qualitative picture of the alloyed self-assembly, let us
consider the simplest case of equiatomic alloy with the interatomic interactions
between similar species being also equal (notation is explained in the Appendix):
pt = pP and VA4 = VBB which, in particular, means that a = ¢ in Eq. (A2).

According to Eq. (A10)
1 . 7
) <>\+> ] ®

This chemical part of the chain partition function can be formally expressed as
corresponding to the following contribution into the chain energy

ZW0 — oalt

ch(AB JkpT = —(1—1)InA; —In [1 + ()‘—//\J“)l_l} ®

which together with the elastic term can be substituted into Eq. (5) to find the
size distribution. [In Eq. (8) we neglected a constant term which is irrelevant to
our purposes.|

From the explicit expression for the T-matrix eigenvalues [see Eq. (A5)]

Ay = e =VE)/ksT (1 + ev/%BT) (9)

it is easy to see that depending on whether the ordering potential V' in Eq. (A7) is
positive (ordering case) or negative (phase separation case) the ratio of eigenvalues
at lowering temperature will tend towards -1 or +1, respectively.

Let us first consider the second case (V' < 0). In this case from Eq. (9) is easy
to see that the first, linear in [ term in Eq. (8) at low 7" will correspond to the
Van = Ve [a = A or B; we assume that the u® term will contribute to u in Eq.
(5)]. This is rather natural because in the phase separation case atoms of different
kinds are rarely found together and the majority of interatomic interactions is
between the like atoms. The second nonlinear term may influence the shape of the
size distribution [10]. However, because the ratio of the transfer matrix eigenvalues
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Figure 2. Non-linear in [ contribution to the effective interaction Eq. (8) for alloyed chains of different
length. For further explanations see the text.

tend to unity at small temperature, the nonlinearity weakens and its influence on
the shape of the size distribution becomes negligible.

In contrast, in the ordering case (V' > 0) the nonlinearity grows with lowering
temperature because the eigenvalue ratio tend to -1, so the amplitude of the oscil-
lating term in Eq. (8) grows. This is illustrated in Fig. 2 where a moderate value
exp(—V/kpT) = 5 was chosen. The physical value of the potential would corre-
spond at room temperature to V' =~ 0.13eV. Also from Eq. (9) it is easy to see that
in this case Vyn ~ VAB as expected.

With these parameters, as can be seen from Fig. 2, the nonlinearity is most
pronounced at small values of [ < 10. The chains of similar size were observed
experimentally in Refs. [13, 14] for pure deposits. We expect that when alloyed
with an appropriate second component (e. g., with copper in the case of gold) they
can exhibit the same kind of narrowing the size distribution as was predicted by us
for the self-assembly on the alloyed substrate [3]. Namely, assuming the optimum
chain length dictated by the non-oscillating part of the Hamiltonian is seven (as in
Refs. [10, 13]), the oscillating part will suppress the concentrations of the nearest
chains of lengths 6 and 8 in addition to the usual suppression due to the Gaussian
dependence of the distribution at low temperatures [9] dictated by the elastic and
chemical parts.

4. Conclusion

In this paper we discussed possible influence of alloying on the size distribution
of atomic chains. Our solution of a simplified 1D model showed that if the atoms
inside the chains tend to order at low temperatures, the size distribution became
more narrowly peaked near the most probable chain length. This is similar to
the case of the self-assembly of one-specie islands on alloyed substrates considered
in Ref. [3]. The calculations show that the phenomenon is more pronounced at
lower temperatures, in particular, it extends to longer optimum chain lengths.
However, at low temperatures too long time may be needed to equilibrate the
system. Therefore, it would be more reasonable to seek the confirmation of our
theory in systems where the chains are very short, such as the Ag/Pt system
studied in Refs. [10, 13] or the Au chains grown in Ref. [14]. Of course, it would
be necessary to find the second component which under alloying would provide an
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ordering alloy. In the bulk the copper would be a natural chose in the case of Au
[see, e. g., 15, and references therein], but in 1D surface structures the interatomic
interactions may significantly differ from those in 3D alloys [see discussion in §].
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Appendix A. Transfer matrix for binary alloy

The partition function for a strained chain composed of a binary alloy with compo-
nents A and B of equal atomic diameters and pairwise nearest neighbor interatomic
“chemical” interactions V°’, where a, 3 = A, B, is (cf. [15, Ch. IIJ)

i
O ) l -1
_Fet _ _
Zchain =e 7 Trexp Z Zufép? o Z Zp?-ﬂ-lvzi[izpzﬁ
a=A,B i=1 af=A,B i=1
= FUT ) = P ), (A1)

where the trace is taken over the occupation numbers {p$'} which are equal to one
if site ¢ is occupied by atom of kind « and are equal to zero otherwise. To simplify
notation, we denoted by the bars the division by kgT'. For example, Efl = Efl /kpT,
where Elel is the elastic energy from Eq. (3). On the second line we introduced the
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transfer matrix

. eﬂA_‘_/AA eﬂA/z_‘_/ABﬂB/z _ a b
- (e“A/QvAB“B/Q eﬂsvas > = (b C> ) (A2)
where
{1 = (eﬁ*‘/2’6;13/2) (A3)

and [1) = ((I|)T. Furthermore, by the last equality in Eq. (A1) we separated the
chain partition function into the elastic and the “chemical” parts.
To diagonalize the transfer matrix we need to solve the characteristic equation

M —Xa+c)+ac—b* =0, (A4)

2
)\i:a—l—ci\/(a—i-c) 02— ac

2 4
:“;‘3(& 1+R(eV—1)>, (A5)
where
, 2
N EE "
and

L e e L (A7)

[see Eqs. (A2) and (A3)]. The orthogonal matrix O which diagonalizes the transfer
matrix

OPﬂﬁ::(A+()) (A8)

is composed from normalized eigenvectors of T (which can be easily found) as

b b
A 1
O:ﬁ VIAr —al VA~ 4 (A9)
A\ U =l VI —d
1 befta/? ’
zH = < ten2 Iy —al | A
ch )\+_/\_ (m ’ + ‘ +
_ 2
Fa/2 _
b +efB/2\ IN_—a| ] N (A10)
p—l
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Reduced per atom energy of the chains of adsorbed atoms for two values of the misfit
$f$. The substrate potential strength $k$ in Eq.\ (\ref{ V_s}) was chosen to be equal to
$0.3|V_{NN}|$. The horizontal line corresponds to the asymptotic value of $E_1/1$ as
$I\to\infty$ [see Eq.\ (\ref{ E_I})]. The dashed curve which passes above this curve
does not have a global minimum at finite $I$.
215x279mm (600 x 600 DPI)

http://mc.manuscriptcentral.com/pm-pml

Page 8 of 9



Page 9 of 9 Philosophical Magazine & Philosophical Magazine Letters

2.5 | b .

15 t 1

~Il+ (A= /A

Chain length I (atoms)

Non-linear in $I$ contribution to the effective interaction Eq.\ (\ref{ dEch}) for alloyed
chains of different length. For further explanations see the text
215x279mm (600 x 600 DPI)

http://mc.manuscriptcentral.com/pm-pml



