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Ground-state configurations of dipolar quasicrystals

Introduction

Locally decagonal patches of a binary dipole mixtures have been observed in experiments [START_REF] König | AIP Conf. Proc[END_REF]. Paramagnetic colloidal spheres of two sizes are suspended on a surface prepared to be as flat as possible to avoid gravitational and surface interactions [START_REF] König | [END_REF]. A vertical magnetic field is applied which induces dipoles proportional to the susceptibility of the two types of spheres. At low temperatures or strong magnetic fields stable patterns emerge, including locally decagonal patterns. Typically the composition of the structure is not homogeneous: at the same time there are mono-hexagonal, binary-tetragonal and quasicrystalline patches present which extend up to about five inter-dipolar distances (see [3]). In simulations [4] we have shown that for a mixture of dipoles A and B with composition A 447 B 553 and relative dipole strength D = m A /m B quasicrystals are most competitive with crystal structures around D = 4.5. The search for ground states was limited to a single binary tiling model.

In this article we want to increase our search space. We successively introduce other tiling versions, phase separation into approximants, and deformation of the tiles. By simulated annealing we show that the quasicrystal decays into approximant phases.

At the end of this part we discuss why the quasicrystals are nonetheless found in experiment.

In a second part we carry out similar calculations for dodecagonal binary dipolar quasicrystals. We conclude that the square-triangle model is not competitive with competing crystal phases and not likely to be observed in experiment.

Energy calculations

The interaction energies of two types of dipoles are given by E AA (r) = D/r 3 , E AB (r) = 1/r 3 , and E BB (r) = 1/Dr 3 if scaled units are used (See Ref. [4] for details). The total energy per particle of a pure phase can then be calculated using where n αβ (r) denotes the number of α-dipoles around a β-dipole at distance r. The equation may be written as E(D) = V AA D + V AB + V BB /D where V AA , V AB , and V BB are constants depending on structure and density only. The minimum of the energy

E min = 2 √ V AA V BB + V AB is found at D min = V BB /V AA .
To avoid complications, all coordinates are scaled such that the number per area densities ρ = N/A of the pure phases are equal to unity.

In simulations the samples are always finite which requires terminating the energy calculation at a certain cutoff radius r c . A long-range correction is applied by setting the radial distribution function n(r)/2πr to 1 beyond r c . For the dipole potential v(r) = 1/r 3 the correction is v lrc = πρ/r c . If the potential is cut off and shifted such that it is zero at r = r c , an additional correction exists which can be estimated crudely by setting the radial distribution function equal to 1 within the cutoff radius r c . The correction is v s = πρ/2r c for the dipole potential. If samples of different size are to be compared the same r c has to be used for all of them. Thus if r c is larger than the simulation box, the samples have to be replicated. For a sample with composition A x B y , x + y = 1, the long-range correction v lrc is split among the V αβ according to the square of the fractions:

v AA,lrc = x 2 v lrc , v AB,lrc = 2xyv lrc , v BB,lrc = y 2 v lrc .
For a mixed phase A x B y formed from pure phases A x1 B y1 and A x2 B y2 , x i + y i = 1, the composition fraction c i of phase i is obtained by solving the equation

c 1 A x1 B y1 + c 2 A x2 B y2 = A x B y . With the abbreviation V i = c 5/2 i (DV AA,i + V AB,i + V BB,i /D) the total energy per particle E(D) = (V 2/5 1 + V 2/5
2 ) 5/2 is found by energy minimization. The area fractions ν i = A i /A of the two phases is given by ν

i (D) = V 2/5 i /(V 2/5 1 + V 2/5
2 ) The pressures P i in both phases are the equal since the condition for equal pressures is the same as for energy minimization.

Decagonal quasicrystals

Stability of various binary tiling versions. In Ref. [4] we have studied dipoles on binary tilings of the Lançon-Billard-1 (LB1) [5] type. An important observation was that ten-fold stars of thin rhombi are unstable (Fig. 1). Since ten-fold stars are not necessarily required in binary tilings we suggest to compare tiling versions with different densities of ten-fold stars. Simulations of the Mikulla-Roth (MR) or standard binary tiling [6], the Gähler-Baake (GB) [6] version, random tilings (RT) and the Lançon-Billard-2 decoration (LB2) [5] have been carried out. The energies of GB, MR, and LB1 at D = 4.5 are rather similar (7.91358, 7.91352, 7.91543), RT is better (7.91260) since it contains fewer ten-fold stars, and LB2 is the best (7.91240) as it lacks ten-fold stars completely. A minor improvement can be achieved if the Anti-Penrose tiling is used in the LB construction (ALB1 7.91329, ALB2 7.91234). Phase separation of tiles permitted but rhombus shape fixed. How can we improve the stability further? An obvious possibility is to test approximants made of the basic tiles only. For binary tiling these are hexagons h (skinny Penrose rhombi decorated with an A-and 2 B-dipoles) and boats b (fat Penrose rhombi decorated with 2 A-and 2 B-dipoles) as shown in Fig. 2. To generate the right composition one has to mix both approximants. As shown in Fig. 3 we find that a mixture of b and h is indeed more stable than the quasicrystal at D min while it is slightly less stable at D = 4.5.

Continuous deformations of rhombi permitted. A tiling of hexagons h can be deformed into a centered hexagonal lattice HexAB 2 and a tiling with of b into a centered square lattice TetAB lattice as shown in Fig. 2. If we start from the b configuration and move to the centered square configuration we find that V AA and V BB first decrease strongly up to half the way to the centered square configuration but then stay almost constant, while V AB increases weakly over the whole deformation range. Therefore the total energy decreases for all dipole strengths D. A similar energy change occurs if we start from the h configuration and go to the centered triangles. Now V AA and V BB decrease continuously while V AB increases, leading again to a decrease in energy for all dipole strengths D.

Phase separated and deformed configurations. If we combine both procedures, we can reduce the energy of the system in a sequence from the quasicrystal through approximant mixtures to the TetAB-HexAB 2 mixture. Since the energy differences are really tiny we plot them relative to the energy of LB1 (Fig. 4).

Simulated annealing of the quasicrystals. In Ref. [4] we studied the stability of quasicrystals with Monte-Carlo simulations. The dipoles were free to move and to adjust their position. First we carry out simulated annealing simulations were tiles of fixed shape can be flipped but the dipoles are attached firmly to the ideal vertex positions. In the binary tiling a flip exchanges an A-dipole with a nearby pair of B-dipoles. For the simulations a fixed dipole strength of D = 4.5 has to be used and a cutoff radius has to be applied. The results are quite independent of system size but dependent strongly on the cutoff radius. For r c = 1.2 (shortest possible) and 1.92 (size of the ten-fold stars) the system behaves similar to a Lennard-Jones system [START_REF] Koschella | Phason-elastische Energie in dekagonalen Quasikristallen[END_REF]: fine grain mixtures of boats and hexagons are observed. At r c = 3.0 and 4.0 supertilings are formed and for larger r c large crystallites and multiple twins of boats separated by chains of hexagons are found. From the end configurations of the simulations we can calculate the full interaction energy adding the long-range correction and find that the structures with r c = 1.92 have the lowest energies while the supertilings have the highest. If the results are compared to the other cases (Fig. 4) we find that the energies of the configurations range between LB2 and bh-b.

Vertex type configurations. Let us denote the vertex types by the type of dipole in the center followed by a number giving the tiles that meet at this vertex. In the simulated annealing simulations all vertex types with many skinny rhombi (A10, A8) are eliminated (Fig. 5). Only those with one and a few with two skinny rhombi (A6, A4) are left over since they are required to form the hexagons. The five-fold stars of fat rhombi (B5) are also eliminated but those with four fat rhombi (B4), which form the center of the boats, increase strongly in number. The frequency of vertices with one fat rhombus (B3) at the center of the hexagons decreases weakly. The changes are obviously induced by the geometric restrictions imposed by crystallization. possess two analytic quadratic phason elastic constants (for details see Ref. [START_REF] Koschella | [END_REF]), but also a linear and quadratic nonanalytic term (Ref. [START_REF] Koschella | Phason-elastische Energie in dekagonalen Quasikristallen[END_REF]).

For pair interactions the elastic constants are given as the sum of all contributions of the pair potential at distance r times the frequency of this distance. The frequency on the other hand is given by the overlap of the acceptance domains of the dipoles at distance r in perpendicular space and depends on the tiling model (Ref. [9]).

We have computed the phason elastic constants as a function of D summing up all contributions up to a dipole distance of 8 for the MR tiling since this possesses the simplest acceptance domains. Interestingly, both analytic elastic constants vanish near D = 4.426 which tells us that all tilings with the same composition are degenerate and no matching rules are valid at this dipole strength. The average of the two phason elastic constants, which is the only analytic constant that exists at fixed stoichiometry, is negative for all dipole strengths but very small near D = 4.0. Thus the system tends to phason distortions.

Since there is also a linear nonanalytic elastic constant one could assume that it will dominate the elastic behavior for small phason distortions. This is indeed the case, but the prefactor of this term is five orders of magnitude smaller than the average of the analytic quadratic constants. Furthermore it is also negative and small near D = 0 and thus only enhances the trend of the quadratic terms. The same is true for the nonanalytic quadratic term.

Simulated annealing and pointwise relaxation. As a final step we removed from the dipoles the constraint to stay at the tiling vertices and permitted them to move to an optimal position. Now the energy of the samples with large crystallites improved stronger than the energy of the fine grain samples. The displacement of the dipoles are concentrated in the parts with high h densities and especially at grain boundaries between h and b (Fig. 6). If the total energy with long-range correction is calculated (Fig. 4) we find that it even beats TetAB-HexAB2 between D = 2.5 and 5.5. Some caution may be advised since the energy differences are really small and the approximations and conditions may not agree exactly for all structures.

Discussion of the decagonal case. In our search for ground states we found a sequence which leads from improved binary quasicrystals via phase separated approximants to the mixed TetAB-HexAB 2 crystal. Since the latter was found to be optimal in the vicinity of D = 4.5 in Ref. [4] we have proved that the binary quasicrystal cannot be the ground state for an infinite system in a true mathematical sense.

One has to keep in mind, however, that the energy differences are really tiny: the relative energy advan- tage of TetAB-HexAB 2 is only 0.003 compared to the quasicrystal, and 0.0002 between the quasicrystal and the approximants. These differences can easily be exceeded by temperature fluctuations or defects. The conjectured existence is well supported since local quasicrystalline order has been observed in experiment and confirmed in simulations [START_REF] König | AIP Conf. Proc[END_REF]4]. A further reason might be that at fixed quasicrystal composition competing crystalline phases always have to form costly phase boundaries while they be can avoided in the quasicrystals. Moreover, the systems studied in experiment are by no means infinite but of the order of several thousand dipoles. Thus interfaces play an important role. And last but not least, experiments are always carried out at finite temperature where entropy may further stabilize the quasicrystal.

The parameter governing the structures observed in experiment is the relation between magnetic and thermal energy [START_REF] König | [END_REF]. Since this parameter is large but not infinite the true ground state cannot be observed. The problem is even worse: since the parameter is also responsible for the dynamics of the system we find that the motion of the dipoles freezes in which permits several metastable phases to coexist.

Dodecagonal quasicrystals

A structure with twelve-fold symmetry can be constructed similar to the binary decagonal quasicrystal model. Leung et al [10] have proposed a decoration of the square-triangle tiling and have found in molecular dynamics simulations that the structure is stable with simple pair potentials. In this model A-dipoles are placed on all vertices and B-dipoles at the centers of the squares. The ideal composition is A 683 B 317 but now the A-dipoles form the majority and it turns out that they are the weak dipoles at optimal dipole strength.

Generation of dodecagonal quasicrystals. We use inflation to generate the tilings. Starting with a square lattice patch we place regular dodecagons centered at the corners such that their edges touch. At the center of a square a gap is left which can be subdivided into a smaller square and four triangles. If a triangle is decorated with dodecagons later on in the inflation process a small triangle is created at its center. The dodecagon itself is filled with a hexagon of triangles at its center surrounded by six squares and six triangles. The procedure is then repeated for the smaller tiles until the desired tiling size has been reached. The crucial point are the rules for orienting the hexagons in the interior of the dodecagons. Different versions will lead to hexagonal crystals, dodecagonal quasicrystals and random tilings, all with different frequencies of pairs of squares. We have used combinations of the rules given by Smith [START_REF] Smith | Structure and cohesion of metallic quasicrystals[END_REF] and Paredes et al [START_REF] Paredes | [END_REF] to generate tilings with various densities of square pairs. Influence of the square pairs. We observe that the energy of the quasicrystals depends linearly on the number of pairs of squares up to a frequency of 0.18 square pairs per tile, but is independent of the mutual distance of the square pairs. The reason is easy to state: the first neighbor shell of B-dipoles disappears completely if there are no square pairs and this is favorable since the interaction is purely repulsive. The frequency of other distances has to increase but this does not matter too much since the distances are larger and the repulsion is weaker. The lowest frequency of square pairs generated was about 0.06 per tile.

As long as dodecagons are present one can show that all possible inflation rules will necessarily lead to square pairs.

Phase separation. Square pairs can be avoided in approximants. The simplest crystal structure is the sigma-phase where two squares and three triangles meet at each vertex and the squares are separated by triangles. Since the sigma-phase contains too few B-dipoles it has to be mixed with a pure B-dipole hexagonal crystal HexB. Comparison with mixtures of h, b, TetAB, and HexAB 2 show that a HexAB 2 -HexB crystal has the lowest energy (Fig. 7) and is about ∆E = 0.7 better than the quasicrystal in a broad range of D.

Discussion of the dodecagonal case. No dodecagonal dipolar quasicrystals have been observed in experiment, and our results indicate that most probably they will not exist. The reason is that in contrast to the decagonal case where the energy differences to competing phases were tiny for some dipole strengths, there is no range of dipole strength values in the dodecagonal case where the energy is competitive. As shown in Fig. 7 there is always an energy difference of at least 1 to the best structure.

Discussion and Conclusion

Very recently Assoud et al [13] studied the ground states of planar binary dipole configurations and derived a phase diagram as a function of dipole strength and composition. They showed that TetAB-HexAB 2 is not the ground state for the decagonal case. The situation is much more complicated: The TetAB structure is slightly distorted at D = 4.5 towards the b structure but with optimized dipole positions, and HexAB 2 is distorted towards the h structure. This result explains why the b-h configurations obtained by simulated annealing and relaxation are better in energy than TetAB-HexAB 2 .

For the dodecagonal composition Assoud et al get mixtures of phases which are completely unrelated to the square-triangle tiling. This supports our conclusion that dodecagonal square-triangle quasicrystals are not stable. Some caution may be advisable considering the results of Assoud et al. Although they have searched through a huge set of possible configurations, there is no proof that they have not overlooked promising configurations.

Summary and Outlook. We have searched for energetically optimized structures of decagonal and dodecagonal quasicrystals. For infinite size the decagonal quasicrystals are not the energetic ground states, but locally decagonal quasicrystals are found in experiment and simulations since they are very close to ground state structures and their defects are less costly than those of competing crystal phase mixtures. Dodecagonal quasicrystals may not be observed in experiment since their energy is much worse than that of competing mixtures of crystalline phase .

An interesting question for the decagonal case remains open, namely if it is possible to modify the interaction such that the quasicrystal becomes more stable than the crystalline phases. It is quite natural that the pure dipole law may be screened for the colloids. Some speculations exist (See Ref. [4]) but this question has not been studied in detail up to now. 
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 1 Figure 1. Sample configuration at low temperatures. Circles: A-dipoles, dots: B-dipoles. Note the decay of rings of 10 B-particles in the shaded regions. Lines: ideal tiling.

3 Figure 2 .

 32 Figure 2. Tile deformation. Left: h -→ HexAB 2 , right: b -→ TetAB. Dashed: hexagon and boat, full lines: Penrose rhombs and new unit cells.
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 3 Figure 3. Energy vs. fraction of A dipoles N A for small approximants formed from b and h and combinations of b and h.
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 4 Figure 4. Energy divided by the energy of LB1 for phase separated configurations (b,h,bh), configurations with deformed tiles (TetAB, HexAB2), and configurations from simulated annealing (SimAnn, SimRel).

Fig. 5 Figure 5 .

 55 Figure 5. Vertex frequency in the configurations obtained by simulated annealing vs. energy at the minimum of D. The naming code is described in the text.
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 6 Figure 6. Simulated annealing configuration with a large crystallite in the center. Left: configuration. Right: displacement of dipoles in energy relaxation.
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 7 Figure 7. Energy density of quasicrystals and phase mixtures for the dodecagonal model. Quasicrystal energies lie between Min andMax. The sequence is the same as in the legend.
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 12347 Figure 1. Sample configuration at low temperatures. Circles: A-dipoles, dots: B-dipoles. Note the decay of rings of 10 B-particles in the shaded regions. Lines: ideal tiling. 127x89mm (600 x 600 DPI)

  

  

  

  

Table 1 .

 1 Vertex frequencies for different samples. QC: standard binary tiling, RT. random tiling, D: annealed tiling. The numbers indicate how many tiles meet at a dipole of type A and B, resp.

	type	QC	RT	D min D = 4.5
	A4	0.41	0.35	0.33	0.36
	A6	0.02	0.09	0.1	0.08
	A8	0.01	0.01	0	0.02
	A10	0.03	0	0	0
	B3	0.33	0.27	0.31	0.26
	B4	0.015 0.23	0.33	0.27
	B5	0.12	0.06	0	0.04
	E(D min ) 6.415 6.403 6.396 -
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