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Abstract

The theory of the small-angle scattering is reviewed with special attention paid to the anomalous scattering 
and multiphase systems. A general equation describing the scattering of a multiphase system as a sum of 
scattering functions of each of the phases, as if it scattered alone in a two phase system, and interphase 
interference scattering functions is derived. These scattering functions depend only on the spatial distribution 
of the phase boundaries, but not on the scattering density. Contrast variation techniques are most rewarding
when the scattering density of only one phase can be varied. For ASAXS, this means the most favorable is the 
case in which resonant atoms are contained in one phase only. The general equation involves n(p-1) unknown 
partial atomic number density differences, where p is the number of phases and n - the number of the different 
atom types in the sample. These partial atomic number density differences can be found if a suitable structure 
model is applied to calculate the phase scattering functions. Then, the phase compositions and densities can be 
calculated by solving a system of linear equations incorporating the atom number conservation law. The 
partial structure factors formalism is also reviewed. Corresponding equations for a system of n types of atoms 
and p phases are derived. The number of independent partial structure factors is p(p-1)/2 and depends on the 
number of phases, but not on the number of the types of the atoms in the sample, as in the case of wide angle 
scattering.

Keywords: anomalous small-angle scattering; multiphase systems; partial structure factors

_____________________
*Email: dragomir.tatchev@hmi.de; dtachev@ipc.bas.bg

Deleted: ,

Deleted: that 

Page 1 of 27

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

mailto:dragomir.tatchev@hmi.de


For Peer Review
 O

nly

2

Structure Analysis of Multiphase Systems by ASAXS Philosophical Magazine

Running heads (verso)

(recto) Philosophical Magazine

REVIEW ARTICLE

Structure Analysis of Multiphase Systems by Anomalous Small-Angle X-ray Scattering

Abstract

The theory of the small-angle scattering is reviewed with special attention paid to the anomalous scattering 
and multiphase systems. A general equation describing the scattering of a multiphase system as a sum of 
scattering functions of each of the phases, as if it scattered alone in a two phase system, and interphase 
interference scattering functions is derived. These scattering functions depend only on the spatial distribution 
of the phase boundaries, but not on the scattering density. Contrast variation techniques are most rewarding
when the scattering density of only one phase can be varied. For ASAXS, this means the most favorable is the 
case in which resonant atoms are contained in one phase only. The general equation involves n(p-1) unknown 
partial atomic number density differences, where p is the number of phases and n - the number of the different 
atom types in the sample. These partial atomic number density differences can be found if a suitable structure 
model is applied to calculate the phase scattering functions. Then, the phase compositions and densities can be 
calculated by solving a system of linear equations incorporating the atom number conservation law. The 
partial structure factors formalism is also reviewed. Corresponding equations for a system of n types of atoms 
and p phases are derived. The number of independent partial structure factors is p(p-1)/2 and depends on the 
number of phases, but not on the number of the types of the atoms in the sample, as in the case of wide angle 
scattering.

Keywords: anomalous small-angle scattering; multiphase systems; partial structure factors

_____________________
*Email: 

Deleted: ,

Deleted: that 

Deleted: 

Page 2 of 27

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

3

1. Introduction

Small-angle scattering (SAS) of x-rays (SAXS) or neutrons (SANS) is a versatile tool for studying the 

structure of condensed mater on nanoscale dimensions.  It is a technique sensitive to variation of the electron 

density or neutron scattering length density at distances of 1-1000 nm, and has applications in soft condensed 

mater, materials science and nanotechnology. The emergence of the synchrotron radiation enables the 

investigation of matter with anomalous small angle scattering (ASAXS). ASAXS uses tuneable x-ray energy 

near an absorption edge of a chemical element contained in the sample. This leads to reduction of the intensity 

scattered by the atoms of this element rendering the technique sensitive to chemical composition. ASAXS 

requires the investigated object to contain at least one element with a X-ray absorption edge in the 

instrumentally available energy range. Thus, it is used mainly to study solid matter; alloys [1-9], glasses 

[10,11], metal catalysts [12-14] and polymer composites [15,16].  ASAXS investigations of charged 

colloids [17-19] and soft mater objects [20] were also published. ASAXS has been done even at the S, P and 

Si absorption edges [21-23].

Since the 80-s, when the ASAXS appeared, three main approaches to the data interpretation were 

developed. Two of them borrow the partial structure factors (PSFs) formalism that is used in wide angle x-ray 

scattering (WAXS) [24]. De Fontaine, Lyon, and Simon and Regan and Bienenstock applied the partial 

structure factors, that are Fourier transforms of the atomic pair correlation functions, to the ASAXS data 

analysis [25-33]. The second method was proposed by Haubold [34,35], and is often referred as the “Bhatia-

Thornton” method. The method also determines partial structure factors. For a binary alloy, these three partial 

structure factors describe pure density (or topological) fluctuations, pure chemical fluctuations and a 

correlation factor.  

An alternative method was devised by Stuhrmann [36]. Three scattering functions, resonant, non-

resonant (or off-resonant) and a cross-term, are determined from at least three scattering curves at each 

available absorption edge. The resonant function originates from the spatial arrangement of the resonant 

atoms only, while the non-resonant is thought to be the scattering one could obtain by scattering of X-rays 

with energy far from any absorption edge [10,18]. Similar equations were reported also by Epperson and 

Thiyagarajan [37]. 

All three methods treat scattering curves obtained near one and the same absorption edge. An attempt to 

generalize for two absorption edges was done only by Simon and Lyon [29]. Normally, one assumes the 

absorption edges are remote enough from each other, and the scattering curves measured at one edge are 

considered independent of the presence of the atoms that have remote absorption edges. Thus the mentioned 
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data analysis methods are applied separately for each absorption edge. Simon and Lyon investigated ternary 

alloys, so they developed their method for binary and ternary alloys, though their equations also apply to 

multicomponent alloys. The use of Stuhrmann’s method always supposes some pseudo binary representation 

of the studied object. The possible relations between the scattering functions obtained at different edges were 

never revealed. Haubold derived his equations for binary systems. He also mentioned the possibility to extend 

his method to ternary systems. Equations for close absorption edges were never derived.

All these methods form a system of linear equations for three unknown variables. The coefficients of the 

equations are being calculated from the atomic scattering factors of the resonant atoms. However, the system 

is often ill-conditioned [26,28], and a number of methods were proposed to solve it, including 

overdetermination by measuring at more then three energies, or omitting the smallest term in the system. 

The two-phase approximation is dominating the small-angle scattering data analysis. Small-angle 

scattering of three phase systems were treated first by Peterlin [38]. Multiphase systems were considered in 

terms of "stick probability functions" [39-41]. The main concern was the evaluation of the correlation 

function for three phase system. This theory of three phase systems was applied mainly to catalysts supported 

by porous media [13,42], but coal [43] or zeolite studies are also available. Experimental data fitting with 

multiphase structures like core-shell particles is widespread. Turning to ASAXS, one seeks to fit the scattering

contrasts at all x-ray energies, but they are not independent. General treatment of the anomalous scattering 

from multiphase systems is not available.  

Many of the industrially important materials are multicomponent and often multiphase systems and 

ASAXS, as well as other types of contrast variation, is capable of revealing systems that do not comply with 

the two phase approximation. Anyway, the ASAXS theory and the theory of small-angle scattering from 

multiphase systems were never reviewed. These two topics are also only briefly mentioned or completely 

missing in the most popular monographs on small angle scattering [44-47]. This paper briefly revises the 

anomalous small angle scattering theory, with special accent to the multiphase systems. 

2. Theory

2.1. Small-angle scattering intensity

The elastic scattering of X-rays proceeds through interaction with the electrons of the atoms. The small-

angle X-ray scattering is sensitive to the electron density fluctuations in the sample. The scattering contrast is 

calculated by products of the atom number density, in , and the number of electrons iZ  of each type, i, of 
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atoms. This stems from the assumption that the atomic scattering factor far from absorption edge equals the 

number of electrons of the atom. However, this treatment prohibits the energy dependence of the scattering 

contrast. Near an absorption edge the atomic scattering factors, if , take complex values and deviate 

significantly from the number of electrons

)()()( 0 εεε iiii fifff ′′+′+= (1)

where ii Zf =0  and ε  denotes the X-ray energy. The angular dependence of if  is insignificant at small 

scattering angles. The energy variation of the atomic scattering factors at zero scattering angle are tabulated in 

the literature [48]. The tables of )(εif ′  show that it is different from zero for many elements even far from 

their absorption edges. Thus, it is more suitable to use the partial atomic number density 

)()()( rrxrn ii

rrr η=  (2)

rather than electron density. Here, ix  denotes the atomic part of the atoms of type i and η - the number 

density of all types of atoms, 

)(/)()( rxMNrdr iia

rrr ∑=η  (3)

where )(rd
r

is the mass density, iM - the corresponding atomic weights, and aN  is the Avogadro’s number. 

The scattering amplitude from irradiated sample volume, V, reads [45]

∫∑ −=
V i

qri
ii rdernfqF 3)()(),(

rrr rr

εε (4)

with q
r

 being the scattering vector with magnitude

)sin(
4 θ
λ
π

== qq
r

where θ2  is the scattering angle and λ  is the X-ray wavelength. The scattered intensity is then

2

3* )()(),(),(),( ∫∑ −==
V i

qri
ii rdernfqFqFqI

rrrrr rr

εεεε . (5)

In the last two equations r
r

 represents the radius vector of a point of the sample with atomic density of the i-th 

atom type equal to )(rni

r
. With ii Zf = , the sum ∑

i
ii rnf )()(
r

ε  obviously equals the electron density and 

represents the SAXS case. The energy dependence can be taken out of the integral sign  

2

)()(),( qAfqI i
i

i

rr ∑= εε (6)

where

Deleted: then 

Deleted: kinds

Deleted: denotes 

Page 5 of 27

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

6

3)()( rdernqA
V

qri
ii

rrr rr

∫ −= . (7)

Expression (6) shows that the energy and the, q, dependence can be decoupled. There are several ways to do 

it. They all lead to a system of linear equations with coefficients that are functions of the parameters if 0 , 

)(εif ′  and )(εif ′′  of the atomic scattering factors. The solution of the systems are partial structure factors. 

They all have the form *)()(. qAqAconst ji

rr
 and can be an object of the usual SAXS formalism. 

2.2 ASAXS partial structure factors (ASAXS-PSF) formalism

The most straightforward approach to equation (6) is the direct calculation. Thus one obtains the 

expression 

)()()(),(
,

* qSffqI ij
ji

ji

rr ∑= εεε  (8)

with partial structure factors defined as

∫ −−==
V

ba
qrri

bjaijiij rdrdernrnqAqAqS ba 33)(* )()()()()(
rrrrrrr rr

. (9)

Though the PSF formalism is the same in SAXS and WAXS this definition of the partial structure factors, (8), 

does not coincide with any of the WAXS formalisms. The closest match is the Ashcrofth-Langreth (AL) PSF 

formalism [24,49] AL
ijjiij SxxS =  where ix  denotes the mean sample composition. Obviously, 

*)()( qSqS jiij

rr
=  and )(qSii

r
 is real, )(qSij

r
 form an nn×  Hermitian matrix. Therefore we could also write

∑∑∑
−

= +==

+=
1

1 1

*

1

2
)Re(2),(

n

i

n

ij
ijji

n

i
iii SffSfqI εr

.  (10)

Keeping in mind (2), we see that )(qSii

r
 results from the spatial arrangement of the atoms of type i only. 

Equation (9) can be written in terms of cross- and selfconvolution, )(~ rnij

r
, of the atomic densities 

∫ −=
V

qri
ijij rdernqS 3)(~)(

rrr rr

(11)

where 

∫ +=
V

bbjbiij rdrnrrnrn 3)()()(~ rrrrr
.  (12)

The convolution functions can be safely replaced by a convolution of the atomic density differences. 

Within a quite good approximation the average atom density of species i can be defined as
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ηii xn = (13)

and

iii nrnrn +∆= )()(
rr

 , (14)

one obtains

.)()()(~ 3 constrdrnrrnrn
V

bbjbiij +∆+∆= ∫
rrrrr

 (15)

The Fourier transform of a constant is a delta function, so the contribution of the constant to the scattering 

curve is only at 0=q
r

. It is not measurable so the constant in (15) can be safely omitted. Thus, we can write 

also

2

3)()(),( ∫∑ −∆=
V i

qri
ii rdernfqI

rrr rr

εε . (16)

As the partial structure factors are Fourier transforms of the atom density convolutions ijn~ , which are real, the 

former will be real when the later are even functions. This is the case of centrosymmetric objects. Another 

case with real PSFs are the statistically isotropic media. Then the scattering is an average over all spatial 

directions and the cosine part of the Fourier transform gives a )/()sin( qrqr  term, but the sine part (i.e the 

imaginary part) equals zero. Therefore, partial correlation functions and invariants can be introduced. 

Obviously, the SAXS invariant depends on the energy and is expressed by the partial invariants

ij
ji

ji QffdqqqIQ ∑∫ ==
∞

,

*

0

2 )()(),()( εεεε  , (17)

where the partial invariants, ijQ , are

∫ ∆∆=
V

jiij rdrnrnQ 32 )()(2
rrrπ , (18)

As an example for the use of equation (8) we could consider a system of two types of atoms. Equation 

(8) then reads

[ ] )()()()()(Re2)()(),( 22

2

212
*

2111

2

1 qSfqSffqSfqI
rrrr εεεεε ++= (19)

or

[ ] [ ] )()()(Im)()(Re)()()(),( 22

2

21212121211

2

1 qSfqShqSoqSfqI
rrrrr εεεεε +++=  (20)

[ ]*
2112 )()(Re2)( εεε ffo = [ ]*

2112 )()(Im2)( εεε ffh −= .
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A system of linear equations for the partial structure factors is formed by scattering curves measured at at 

least four energies near one or both edges.  Thus, it seems possible to determine even the imaginary 

part [ ])(Im 12 qS
r

. The majority of the studied systems are either isotropic or contain centrosymetric particles. 

Then the PSFs are real, and three scattering curves measured at three different energies are enough to 

determine the system (20). 

 For an n-component system we obtain from (10) 

[ ] [ ])(Im)()(Re)()()(),(
1

1 1

1

1 11

2
qShqSoqSfqI ij

n

i

n

ij
ijij

n

i

n

ij
ij

n

i
iii

rrrr ∑∑∑∑∑
−

= +=

−

= +==

++= εεεε . (21)

Measuring at several X-ray energies, also at different absorption edges, one obtains a system of linear 

equations (21) from which at least in principle the partial structure factors can be determined. The atomic 

scattering factors, however, are dominated mainly by if0  even in the vicinity of the absorption edges. 

2.3 The dispersion analysis or curve separation technique (Stuhrmann’s method) [36]

It is possible to distinguish if0  from )(εif ′  and )(εif ′′ . By substituting (1) in (21) and collecting the 

energy dependent terms, one obtains  

( ) ( )[ ]

( ) ( )[ ] ∑∑∑∑∑

∑∑∑∑
−

= +==

−

= +=

−

= +===

++′′−′′+′′′−′′′−

+′+′+′′′′+′′+′+′′+′=

1

1 1
00

1

2
0

1

1 1
00

1

1 1
00

1
0

1

22

)Re(2)Im(2

)Re(22)(),(

n

i

n

ij
ijjiii

n

i
i

n

i

n

ij
ijjijijiji

n

i

n

ij
ijjijijiji

n

i
iiiiii

n

i
ii

SffSfSffffffff

SffffffffSffSffqI ε
. (22)

This is a generalized multiatom equation for the dispersion analysis method. Here we recognize resonant 

terms and a pure non-resonant energy independent term

∑∑∑
−

= +==

+=

=
1

1 1
00

1

2
00 )Re(2

n

i

n

ij
ijjiii

n

n
i

iiRi

SffSfI

SI

.  (23)

It is easy to be seen from (10) and (19) that the non-resonant term is the SAXS scattering far from all edges 

and within the approximation 0=′′=′ ii ff . The other terms of (22) may form their own contribution or add to 

the non-resonant term, depending on the change of  the corresponding f ′  and f ′′  near the selected 

absorption edge(s). To illustrate this, we will consider the case of curves obtained only near one edge, say of 

atom type 1. Then (22) takes the form

)()()()()(),( 011011011
2

1
2

1 qIqIfqIfqIffqI RRR

rrrrr
+′′′′+′′+′′+′=ε    (24)
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where

( )[ ]

( )[ ]
)22(

)Im()Re(2

)Im()Re(2

001

2
10110

2
110110110

111

fromtermsremainingallII

SffSfI

SfSffSfI

SI

n

j
jjjjjR

n

j
jjjjjR

R

+=

′+−′′=′′









′′+′++=′

=

∑

∑

=

= . (25)

The last equation shows that the non-resonant scattering curves determined at different edges should in 

principle not be equal. A term proportional to 1f ′′ will be present even for real ijS  If one uses x-ray energies 

only at one side of the absorption edge then 1f ′′  may be considered as a constant and its contribution adds to 

01I . A simplification can be obtained if we consider the SAXS approximation 0=′′=′ ii ff  for all atoms except 

the resonant ones. Then

001

2
1010

2
10110110

111

)Im(2

)Re(2

II

SfI

SfSfI

SI

n

j
jjR

n

j
jjR

R

=

−=′′









+=′

=

∑

∑

=

= (26)

and 010 =′′ RI  for centrosymetric objects and statistically isotropic media so that (24) reduces to its usual form 

[10,36]. Anyway, for multiatom systems containing elements with closely situated edges (25) or (22) should 

be used. 

2.4 The Bhatia-Thornton partial structure factors (BT-PSF) formalism

Equations (2) and (8)-(16) show that all scattering functions depend on the product of the variations of 

the atomic fractions )(rxi

r
∆  and atomic number density )(r

rη∆  of all types of atoms. A partial scattering 

factor depending only on )(r
r

η∆  can be constructed by the following way. The atomic density difference is 

)()()()( rrxrxrn iii

rrrr ηη ∆+∆=∆ .  (27)

Defining a composition average of the atomic scattering factor as 

∑=
i

ii xff )()( εε .  (28)
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and accounting also that ∑
=

=∆
n

i
ix

1

0  we can replace nx∆ with ∑
−

=

∆−
1

1

n

i
ix ,

so that the scattering amplitude is

∫ ∑ −
−

=








∆∆+∆=

V

qri
n

i
ii rderrxfrfqF 3

1

1

)()()()()(),(
rrrrr rr

ηεηεε (29)

with nii fff −=∆  .

The following numbering convention can be applied

∫ −∆=′
V

qri
n rderqA 3)()(

rrr rr

η  and  3)()()( rderrxqA
V

qri
ii

rrrr rr

∫ −∆=′ η 11 −≤≤ ni (30)

and equations equivalent to (8) and (9) can be written

)()()(),(
,

* qSggqI ij
ji

ji

rr ′=∑ εεε  (31)

with 

)()( εε ii fg ∆= , 11 −≤≤ ni , )()( εε fgn =  and *)()()( qAqAqS jiij

rrr ′′=′ (32)

keeping the indexes i and j running from 1 to n. This means that all equations derived for ijS  in the previous 

sections hold also for ijS ′ . Namely, a system of equations can be formed and ijS ′  can be found. Moreover, 

since )(εig  can also be written as 

)()()( 0 εεε iii giggg ′′+′+=  , (33)

a new decomposition follows from (22) with the corresponding f-s replaced by g-s 

Equation (31) could be easily recognized as the Bhatia-Thornton decomposition if rewritten in the form

∑∑∑
−

= +=

−

=

′+′∆+′=
1

1 1

*
1

1

22
)Re(2),(

n

i

n

ij
ijji

n

i
iiinn SggSfSfqI εr

(34)

In ASAXS, this decomposition scheme was firstly proposed by Haubold [34] for binary systems n=2  

)Re(2),( 12
*

111

2

22

2
SffSfSfqI i ′∆+′∆+′=εr

 (35)

or for centrosymetric particles or statistically isotropic media ijij SS ′=′ )Re(  so that

12
*

111

2

122

2
)Re(2),( SffSfSfqI ′∆+′∆+′=ε  (36)

[35]. 

Using (15) and (27), a connections between ijS  and ijS ′  can be found similarly to the WAXS case. They 

are
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k
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k
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SSxSxS

niSS

niSSxSSxxS

njiSSxSxSxxS

. (37)

The relations for binary system given by Haubold [34] are obtainable directly from (37),. 

2.5 Multiphase systems

No any assumption about the nature of the scattering object was made so far. The derived equations are 

valid for any multiatom system suitable for ASAXS. We will consider now a system consisting of p

homogeneous phases divided by sharp interfaces. This means that the differences of the atomic number 

densities can be described as [40]



 ∈

=Π

Π∆=∆

otherwise

Vrofendtheif
r

rnrn ii

0

1
)(

)()(

α
α

ααα
r

r

rr

. (38)

Here, α  is an index designating the phase and αV  is the volume of this phase. The function )(r
r

αΠ  differs 

from zero only if the end of r
r

 is within the volume of the phase α . )(rni

r
α∆  represent correspondingly the 

difference of the atomic density of the component i in the phase α  from the average ηii xn = . Obviously, 

)(r
r

αΠ  describes the geometry (or topology) of the phase α . Then from equations (15) and (16) we obtain

∑∑
= =

∆∆=
p p

jiij qSnnqS
1 1

)(ˆ)(
α β

αββα
rr

 (39)

where

∫ −Π=
V

rqi rderqS 3)(
~

)(ˆ rrr rr

αβαβ , *)(ˆ)(ˆ)(ˆ qSqSqS
rrr

αβαββα =−= (40)

and 

βαβααβ Π•Π=Π+Π=Π ∫
V

bbb rdrrrr 3)()()(
~ rrrrr

 (41)

is the convolution of the geometry functions of the phases α  and β  that we will denote with •  for 

convenience. The functions )(ˆ qS
r

αβ  can be named phase scattering functions ( βα = ), or cross-phase 
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scattering functions ( βα ≠ ). The functions )(
~

r
r

αβΠ  differ from the "stick probability functions" as defined 

by [40,43] only by multiplier and directional averaging. Within a normalization factor, )(
~

r
r

αβΠ  represent 

correlation functions that can be named phase correlation functions ( βα = ) or cross-phase correlation 

functions ( βα ≠ ). Equation similar to (39) is given by Simon and Lyon [26], but with βα ji xx ∆∆  instead of 

βα ji nn ∆∆ . This is justified as long as the density difference between the phases is zero, as in the cases they 

studied. 

The simplest case is [ ]2,1, =βα

11
3

1122

11111
3

11
*
2112

3
1111

ˆ)1()1(ˆ

ˆˆ)()1(ˆˆ

ˆ

SrdeS

SSqVrdeSS

rdeS

V

rqi

V

rqi

V

rqi

=Π−•Π−=

−=−=Π−•Π==

Π•Π=

∫

∫

∫

−

−

−

r

r

r

rr

rr

rr

δ . (42)

which means that for two phase systems all three partial structure factors will be real and proportional to each 

other. This result was also obtained earlier [26]. Indeed from (39)

( ) ( ) ( )
( )( ) ( )( ) 1122112211112121

11
2

221111
2

2111
2

21

ˆˆ

ˆˆˆ

SxxxxSnnnnSS

SxxSnnSnnS

jjiijjiijiij

iiiiiiii

ηηηη

ηη

−−=∆−∆∆−∆==

−=−=∆−∆=
(43)

As expected, only differences of the atomic number density between the two phases take part in the last 

equations. 

The same approach can be applied to the Bhatia-Thornton PSFs. From (27) and (44)

)()()(

)()(

rxrrx

rr

ii

rrr

rr

ααααα

ααα

ηη
ηη

Π∆=∆
Π∆=∆

(44)

and substitution in (30) and (32) results in

αββ
α β

α

αββα
α β

α

αβββα
α β

α

ηη

ηη

ηη

SS

niSxSS

njiSxxS

p p

nn

p p

iniin

j

p p

iij

ˆ

11ˆ

1,1ˆ

1 1

1 1

*

1 1

∑∑

∑∑

∑∑

= =

= =

= =

∆∆=′

−≤≤∆∆=′=′

−≤≤∆∆=′

. (45)

Again, for two phase systems, we have 112112
ˆˆˆ SSS −==  and 1122

ˆˆ SS =  so that
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 (46)

which means that the BT-PSFs will also be proportional to each other. The quantity αη in these equations is 

also defined by equation (3) applied to the phase α .

Since each point of the sample belongs to only one phase  

∑
=

∀=Π
p

rr
1

1)(
α

α
rr

(47)

the  )(ˆ qS
r

αβ  functions are not independent 

0ˆˆ ==∑∑
pp

SS
β

αβ
α

αβ .  (48)

Solving equation (47) against pΠ  and substituting in (39) - (41) one obtains a general expression

)(ˆ)(
1

1

1

1

qSqS
p p

jiij

rr
αβ

α β
βα ξξ∑∑

−

=

−

=

∆∆= (49)

for the ASAXS-PSFs and

)(ˆ)(
1

1

1

1

qSqS
p p

jiij

rr
αβ

α β
βα ζζ∑∑

−

=

−

=

∆∆=′ (50)

for BT-PSFs, where

11;1 −≤≤≤≤−=∆ pnixx pipii αηηξ ααα (51)

and 

11;

1111

−≤≤=−=∆

−≤≤−≤≤∆−∆=∆

pni

pnixx

pn

pipii

αηηζ

αηηζ

αα

ααα
(52)

The relation 

11;1 −≤≤≤≤∆−∆=∆ pnix niii αζξζ ααα (53)

holds. Equations (49) and (50) are mathematically equivalent to (8) and can be also presented in the form of 

(10). Since *)(ˆ)(ˆ)(ˆ qSqSqS
rrr

αβαββα =−=  (49) and (50) show that there are p(p-1)/2 independent αβŜ  functions 

which is exactly the number of the linearly independent "stick probability functions" [39,41]. We should also 
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note that equation (39) is symmetric regarding the phases in the sample, but αβŜ are not independent. 

Equations (49) and (50) are not symmetric regarding the phases, since one phase, p, is selected and all atom 

number density differences are calculated against this phase, but  αβŜ  are independent. 

2.6 Conservation of the number of atoms

In an ex situ small-angle scattering experiment, the sample does not usually change. The number of 

atoms of each type per unit volume is preserved which invokes the atom number conservation law. The 

average system composition ix  and the average atom density η  are usually known or can be easily 

determined. These values refer to the sample as if it was homogeneous. Whatever the distribution of the atoms 

among the phases is, these average values should remain constant. Therefore some new relations should be 

introduced. For the case of homogeneous phases, these are

nixxorxx
p

ipipi

p

ii ≤≤∆=−= ∑∑
−

==

1
1

11 α
αα

α
ααα ξϕηηηϕη  (54)

∑∑
−

==

∆=−=
1

11

p

np

p

or
α

αα
α

αα ζϕηηηϕη (55)

where αϕ  represents the volume fractions of the phases. Additional relations must be included in case the 

components of the system are molecules in order to account for the molecule stoichiometry. Alternatively, one 

can calculate average molecular scattering factor, molecular fractions and number densities and use them 

instead of atomic ones. This applies for small molecules which structure does not contribute to the SAXS 

pattern. Macromolecules should be treated differently. According (38) ,

∫Π==
V

rdr
V

VV 3)(
1

/
rr

αααϕ (56)

with V denoting the irradiated sample volume. Equations connecting the volume fractions can be obtained by 

using the partial invariants, ijQ . Using (18) and (38), we obtain relations similar to (39) 

∫∑∑ ΠΠ∆∆=
= = V

p p

jiij rdrrnnQ 3

1 1

2 )()(2
rrr

βα
α β

βαπ . (57)

However, all integrals with βα ≠  will give zero since the different phases have no common points. The 

integrals with βα =  will give the volume, αV , of the corresponding phase. Thus, per unit sample volume one 

obtains

Deleted:  is

Deleted:  In case the components of the 
system are molecules,

Deleted: a

Deleted: ,

Page 14 of 27

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

15

α
α

αα ϕπ ∑
=

∆∆=
p
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Using (54) the last equation can be rewritten in variables αξi∆
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For 2-component two phase systems (n=2, p=2) one obtains 

)1(2 1111
2 ϕϕξξπ −∆∆= jiijQ  (60)

from (59) and 

)1()()(2)( 1111
,

*2 ϕϕξξεεπε −







∆∆= ∑ ji

ji
ji ffQ  (61)

which is the well known relation [45]. Similar decomposition is available for the BT formalism and can be 

obtained from (59) using (53).

2.7 Models

For a completely unknown system under study, both the scattering functions αβŜ  and the atomic number 

density differences αξi∆ and αζ i∆ in equations (49)-(53) are unknown. One needs other methods to determine 

the phase compositions and densities and therefore αξi∆  and αζ i∆ . Then, αβŜ can be determined by solving 

the system of linear equations (49) or (50). Alternatively, one may use electron microscopy to determine the 

geometrical structure and to try to calculate the phase scattering functions αβŜ .  The later approach is often 

followed since the compositions of the phases can also be an aim of the ASAXS experiment. The calculation 

of αβŜ  for different geometries is beyond the scope of this paper. We will limit ourselves to two simple 

examples of dilute systems of randomly distributed particles from which, however, more general conclusions 

can be derived. 

2.7.1 Homogeneous spherical particles in a homogeneous matrix
The scattering from a system of homogeneous particles in a homogeneous matrix is described by [46]
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dRRqRVRNqI ),()()()(),( 22

0

2 Ψ∆= ∫
∞

ερε (62)

where ),( RqΨ  is the normalized scattering amplitude of a sphere with radius R, )(RN  is the size distribution 

and )(RV  is the particle volume. As far as the squared contrast, )(2 ερ∆ , does not depend on the particle 

radius, it can be taken out of the integral sign. The system has obviously only two phases. By definition

( ) ( )
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2 )( 







−








−=∆ ∑∑

==

n

i
iii

n

i
iii xxfxxf ββααββαα ηηηηερ . (63)

Performing the multiplication and rearranging the terms, we obtain

( )( )ββααββαα ηηηηερ ii

n

i

n

j
iiji xxxxff −−=∆ ∑∑

= =1 1

*2 )(  (64)
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∞
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0
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* ),()()(),( dRRqRVRNxxxxffqI jj

n

i

n

j
iiji ββααββαα ηηηηε (65)

and comparing with (8) and (40), we find 

∫
∞

Ψ=
0

22
11 ),()()()(ˆ dRRqRVRNqS (66)

and of course all PSF are given by (43). The same derivation can be done for the BT-PSFs and the

corresponding result is obtained; 11Ŝ  is given by (66), ijS ′  by (46) and the scattering curve by (36). Thus, the 

relationship between the model-free PSF (curve separation) techniques and model fit parameters, the 

scattering contrast in this case, are established. 

2.7.2 Core-shell spherical particles in a homogeneous matrix
Core-shell particles in a matrix are an example of a three phase system. The scattered intensity is 

dRRqRqRVRNqI mscsC

23

0

2 ),(),()()(),( γγρρε Ψ∆+Ψ∆= ∫
∞

(67)

where αβρ∆ msc ,,=α  is the (complex) contrast between the core, c, the shell, s, and the matrix, m, 1>γ  is 

the ratio between the shell and the core radii, R is the core radius, )(RV C  is the core volume and )(RN  is the 

size distribution of the cores. After derivation similar to the homogeneous spheres, we obtain

mmsjsmjmsismimcmsjsmjmsiscicccsjscjcsiscicij SxxxxSxxxxSxxxxS ˆ))((ˆ))((ˆ))(( ηηηηηηηηηηηη −−+−−+−−= (68)

where 
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 . (69)

2.8 General presentation of the scattered intensity 

A general expression for the small angle scattering intensity is obtained by combining (8) and (49) or 

(50)
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jjii fqSfqI
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* )()(ˆ)(),(
α β

βαβα εξξεε rr
.  (70)

According to the definition of the αβŜ  functions as Fourier transforms (40) of the convolutions (41) of 

the functions describing the phase geometry, the ααŜ  represent the scattering of the phase α  only, as if it was 

the only phase in the sample and had unit electron density difference with its ambiance. This equation reduces 

the scattering of multiphase system to a sum of scattering of two phase systems and interphase interference 

scattering terms. The SAXS correlation function is inverse Fourier transform of the scattered intensity. Thus 

corresponding to (70) and due to linearity of the Fourier transform, one can write 

∑∑∑∑
= =
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=

−

=

∆∆=
n

i

n

j

p p

jjii frfr
1 1

1

1

1

1

* )()(ˆ)(),(
α β

βαβα εξγξεεγ rr
 (71)

where ),( εγ q
r

 is the global correlation function and αβγ̂  are the already mentioned phase and cross-phase 

correlation functions. The value of the first derivative of αβγ̂ at the origin will give the specific area of the 

surface of the corresponding phase when βα = ,  or the interface area between the phases α  and β  when 

βα ≠ . 

The meaning of the phase scattering functions can be clarified by the example of the core-shell particle 

in Section 2.7.2. The phase scattering functions and correlation functions are shown in Figure 1. The first 

integral of (69), ccŜ , describes the scattering of a two phase system of spheres (the cores only) in a matrix. 

The third integral, mmŜ , also describes a scattering of a two phase system of spheres, but with γ  times larger 

radius than ccŜ , i.e. the matrix with the shells (including cores) as holes in it. Thus equation (70) describes 
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also the possibility to extract two-phase scattering patterns from the scattering of a multiphase system, which 

is the aim of the contrast variation studies.  

Guinier and Porod approximations can apply to the αβŜ  functions, and give unique topological 

parameters (energy and composition independent) in the case βα = . Functions with βα ≠  describe 

interference between the phases, so they would not in general obey the Guinier approximation with the 

Guinier radius treated as a characteristic of size. In the case of βα =  the Porod constant is proportional to the 

specific surface area of the phase α .  To find the specific surface area between different phases, the first 

derivative at 0→r
r

 of the inverse Fourier transform of αβŜ  (i.e. of the first derivative of the corresponding 

cross-phase correlation function) must be calculated despite that αβŜ  may apparently follow the Porod law. 

The case of the core shell particle presented in Figure 1 is a good example. Though cmŜ  obeys the Porod law, 

Figure 1b, with a Porod constant comparable to ccŜ  the first derivative of the inverse Fourier transform of cmŜ

at 0→r
r

 is zero, Figure 1d, which corresponds to the fact that the core and the matrix have no common 

surface. The actually measured Guinier radius and Porod slope follow from the linear combination (70). They 

obviously depend on the X-ray energy and their interpretation is not straightforward. An exception is the 

system of two homogeneous phases, since all partial scattering factors are proportional to 11Ŝ . 

Equation (70) suggests also a simplified data fitting procedure when αβŜ   are known, or assumed by a 

model, and the phase compositions are sought. Several scattering curves obtained by ASAXS measurement at 

x-ray energies near one or more absorption edges or by other type of contrast variation technique can be fitted 

simultaneously by (70). The number of fit variables is then equal to the number of αξi∆ (or αζ i∆ ), namely 

n(p-1), plus the number of possible parameters determining  the αβŜ  functions. To find the compositions of 

the phases, one has to solve a linear system of equations. In case of no stoichimetric relations are involved, the 

system is  BAX =  where 

ααα ηii xX =  no summation over α , p≤≤α1

αα ξiiB ∆=  , 11 −≤≤ pα ;  ∑
−

=

∆−=
1

1

p

iiip xB
α

α
α ξϕη  (72)

and the compositions are found from

∑ =
i

iX αα η ; ααα η/ii Xx =  (73)

For the BT formalism, we have correspondingly
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ααα ηii xX ∆=  no summation over α , 11 −≤≤ ni ,  αα η=nX

αα ζ iiB ∆= ,  11 −≤≤ pα , ∑
−

=

∆−=
1

1

p

iipB
α

αα ζϕη (74)

and

∑ =
i

iX αα η ; ααα η/iii Xxx += (75)

For both cases, the matrix A is 

pp

ppE
A

×

−×−








−
−

=
10

1)1()1(  , where ijppE δ=−×− )1()1(  ,  (76)

the solution complies the relation 1=∑
i

ix α , and the atom number conservation law is fulfilled. 

The quantities of the average composition, ix  and atomic density η , involved in (72), (74) and (75), can 

be measured. However, the p-1 phase volume fractions also appear as unknown variables in these equations. 

As far as the model is determined the volumes αV  in (38) are known and therefore the volume fractions can 

be calculated from (56). In most cases the structure model will depend on some parameter set, 

)( 1 kPPPP K= , ),(ˆˆ PqSS αβαβ =  therefore the volume fractions will also depend on these parameters, 

)(Pαα ϕϕ = .  Unfortunately, if the αβŜ  are parameterized in such a way that the volume fractions of the

phases (except phase p) are determined with accuracy of a multiplier the variables αξi∆ (or αζ i∆ ) can also be 

determined only with an accuracy of a multiplier. Then at least one composition or density value should be 

known in advance. This is general behaviour following from (70), but not a drawback of the proposed analysis 

scheme.  

As an alternative one may use the partial structure invariants ijQ  (59) to introduce other )1( −pn

equations without involving new unknown variables. This will determine the volume fractions, so the 

dependence )(Pαα ϕϕ =  will decrease the number of parameters by one. Anyway, care should be taken 

during the invariants calculation since it requires extrapolations of the scattering curves to 0=q  and ∞=q .  

Another option could be to use the sample x-ray transmission. 

3. Discussion 

Before discussing the main result of this paper, namely equation (70), we should mention some 

considerations concerning the partial structure factors. Despite the partial structure factors formalism being 
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the same in WAXS and SAXS, there are two major differences that follow from the fact that WAXS aims 

single phase materials while SAXS is applied mainly to materials containing at least two phases. Thus, the 

density difference between the phases is not accounted for in the WAXS PSF equations. For example, the 

equation used by Simon and Lyon is obtained by setting 0)( =∆ r
rη  in (27) and replacing ∑

−

=

∆−=∆
1

1

n

i
in xx in 

(15). Therefore ijij SS ′=  for 1,1 −≤≤ nji  and 0=′ijS  for either ni =  or nj = . Only in this case (8) reduces 

to

( )( ) )()()(),(
,

*
00 qSffffqI ij

ji
ji∑ −−= εεε  (77)

where 0f  is the atomic form factor of the majority (or matrix) element. The application of this expression is, 

however, limited to systems containing phases with different compositions, but same density, like the phase 

separation on an undistorted lattice studied by the mentioned authors. 

The second difference is seen already from equation (49) and (50). The number of the independent αβŜ

functions is 2/)1( −pp .  Therefore, ijS  will not be linearly independent when 1−> pn . The maximum 

number of the independent ijS  is the smaller of 2/)1( +nn  and 2/)1( −pp . Since the condition 1−≥ pn  is 

satisfied in most cases, 2/)1( −pp  will determine the number of independent partial structure factors. This 

number in small-angle scattering is determined by the number of phases, but not by the number of atom types 

of the sample, as in the wide angle scattering [24]. Variations of the electron density at space length of the 

order of the interatomic distances are responsible for the wide angle scattering. In the case of SAXS, the 

atoms are “invisible”, and the electron density behaves as a continuum. Only the difference of the electron 

density between the (homogeneous) phases causes the scattering, and therefore the number of these phases 

should determine the number of the independent structure factors. 

Since the SAXS formalism for two phase systems is well developed and understood the reduction (70) 

of the scattering of multiphase systems to a sum of scattering from two-phase systems and additional terms is 

essential. As shown by the examples that will follow, this was the aim of many contrast variation studies. In 

fact, equation like (71) for three phase system was derived by Peterlin [38], and was used by most authors that 

addressed systems with more than two phases. Anyway, the phase correlation functions were not decoupled 

from the atomic number densities, equation (70) was not derived and the possible opportunities for 

interpretation of the contrast variation experiments were not elucidated.   

Performing the summations over i and j in (70) one obtains
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is the simple relation iiRi SI = . Under 

certain conditions, it allows to extract two 
phase scattering curves from ASAXS 
data of multiphase system. Also at least 

in principle, it allows to determine iiS
by Stuhrmann’s method and after that to 
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∑∑
−

=

−

=

∆∆=
1

1

1

1

* )(ˆ)(
p p

qSqI
α β

αββα ρρ
rr

.  (78)

where αρ∆  represent the (complex) scattering contrast of phase α  against phase p. The last equation has 

exactly the mathematical form of equation (8) but phase scattering functions take the place of the partial 

structure factors, and the scattering contrast replace the atomic scattering factors. The validity of (78) for any 

kind of contrast variation is not its only advantage to (8). The PSFs usually contain information for all phases 

in the sample (eq. (49) and (50)) which renders their interpretation as difficult as the original scattering 

curves, while the αβŜ  functions have clear physical meaning and for βα =  one could unleash the entire SAS 

formalism developed for two phase systems. It is to be noted that in all derivations no any assumption about 

phase p was made, so p could be any phase, not necessarily the phase with highest volume fraction (matrix or 

solvent). Obviously, varying the x-ray energy, the composition, x, and/or density, d, of one of the phases 

(excluding p in this form of equation (74)) an equation of the form (considering only real atomic scattering 

factors and αβŜ  functions)

)()(),()(),(),,( 2 qIqIdxqIdxdxqI scsc +∆+∆= ρρ (79)

is obtained for 3≥p . Such an equation is widely used in the study of macromolecules. The large molecules 

are considered as a phase, and ),( dxρ∆  is the average scattering contrast of the molecule with respect to the 

solvent. The contrast variation is achieved by varying the composition and/or density of the solvent, assuming 

the molecules are impenetrable for the solvent. The ratio D2O/H2O is used in case of neutron scattering. The 

functions scsciqIi ,,)( =  are called basic functions [45]. Actually, for p=3, 1ρρ ∆=∆ , 11ŜIc = , 

122
ˆ2 SIcs ρ∆=  and 12

2
2

ˆ)( SIs ρ∆= .  The use of equation (79) with the average molecule scattering contrast 

against the solvent defines also the contrast 2ρ∆  as the contrast of the “internal” part of the molecule against 

the average molecule contrast. According to our derivation 11ŜIc =  is the scattering function of the solvent. 

Keeping in mind that the molecules are treated as particles with same shape, the later statement matches 

exactly the meaning of cI  as “shape scattering function”.  The basic function sI  is treated as the scattering 

function of the internal part of the molecule. Actually, to be really internal part the first derivative of the 

inverse Fourier transform of 12Ŝ  (i.e. of csI ) at 0→r  must be zero, which will mean that the solute and the 

molecule internal part have no common surface. Equation (79) is a three phase approximation of a 

macromolecule solution in this case. 
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Equation (79) holds for any number of phases, as far as only the contrast of one phase varies and the 

scattering function of this phase is always cIS =11
ˆ . The same relations apply also for ASAXS, so that we can 

draw the conclusion that ASAXS is most fruitful if the resonant element, at whose absorption edge the 

measurement is performed, is contained in only one phase. Then, using (49) and (51), one obtains that the 

corresponding partial structure factor is proportional to the scattering function of the phase containing the 

resonant atoms  

kkkikii SxS ˆη= (80)

where i denotes the resonant element and k - the only phase that contains it. iiS  can be found by the 

Stuhrman’s method since, as already shown, iiS  equals the resonant curve RI . Therefore the Stuhrman’s 

method could be quite useful for systems like supported metallic catalysts or colloids containing metallic ions. 

We should also note that the application of (79) requires the compositions of the phases to be known in order 

to form a system of equations. ASAXS is a favourable exception, in this case since the atomic scattering 

factors have to be known, but not necessarily the phase compositions. 

The majority of the studies of systems with three or more phases try to use models of the phase 

structure, so that either the scattering curves are directly fitted or the correlation function is parameterized by 

certain small number of parameters and the scattering curves are fitted again. In the later case [38,41,50], the 

most frequently used model involves exponential correlation function , but Gaussian and other functions were 

also used. The studies went in this direction, since it is not possible to determine by SAXS the phase surface 

areas in system with more than two phases without assuming a structure model. However, this is possible 

according to equation (70) or (78), provided suitable contrast variation technique is available.  In practice, the 

success of this procedure will depend also on the magnitude of the contrasts in (78), and the limits of the 

possibility of their variation.     

We should also note that the definition of phase is given here by (38) and does not necessarily connect 

to thermodynamic phases. One example is the already discussed scattering from solutions of macromolecules 

where the macromolecules are considered actually to be presented by two phases. Another good example is 

the ASAXS study of the primary crystallization of Ni(P) particles in an amorphous NiP alloy [5]. A 

composition size dependence was found for these particles, which means that the αξi∆  variables depend on 

the particle size. The particles of different size and composition are treated as different phase, and due to the 

low volume fraction the interparticle interference can be neglected, which eliminates also the cross-phase 

scattering functions. The total scattered intensity can be presented as   
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[ ]∑
=

∆=
m

SRqI
1

2 ˆ),()(
α

αααα ερ (81)

where m equals the number of points (bins) in the particle size distribution, and αR  is the radius of the 

particles of the phase α . ααŜ  has the form of (66), but the integration is done in a short interval around αR .

The multiphase approximation (38) obviously concerns systems with phases separated by sharp 

surfaces. Interesting is also the case of slowly varying scattering density without well formed phase 

boundaries. The conditions for best two-phase approximation of such system were studied by Ciccariello [51] 

and it was proven that the position of the surface dividing the two phases depends on the actual scattering 

density profile. Thus, if contrast variation is applied then the scattering density profile will change and 

therefore the dividing surface between the two phases will also change resulting in variable size of the 

features of the sample structure. If the multiphase approximation is applied, then the number of “phases” used 

to approximate the variable scattering density can be increased until the scattering data can be fit with phases 

with constant phase boundaries. The resulting scattering density profile can be regarded as several steps 

approximation of the variable scattering density. An analogy with the black and white images (two phase 

approximation) and greyscale images (multiphase approximation) can be proposed.

The possibility to find the scattering function of a single phase trough (78) and (79) was discussed until 

now. Another task of the ASAXS experiment is to find the phase compositions. Such a procedure is outlined 

in section 2.8. It requires the phase scattering functions to be known. The usual approach is to introduce a 

kind of idealized model like homogeneous spheres or spherical core-shell structure. The key point for 

determining the number of composition and density values from ASAXS experiment remains the solution of 

the system of equations formed by (70). The solution of similar systems of bilinear equations is done by least 

squares method (i.e. curve fitting), but it seems that there is still no systematic study of the conditions for 

existing and uniqueness of the solution [52]. The introduction of the structure model parameters, P, can also 

lead to dependences that will decrease the number of atomic number differences and correspondingly the 

number of compositions and densities that can be determined, in the worst case with k. Therefore, multiple 

solutions could still be possible. They will define the composition and density ranges of the phases in the 

sample. Some of the values of the composition or density variables are often known. This would allow the 

determination of the unknown compositions even with reduced number of αξi∆ (or αζ i∆ ) variables 

determined by ASAXS. It is also tempting to try using numerical Fourier transform [53] to calculate αβŜ  from 
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binary maps obtained from electron microscopy or 3D atom probe. Such an approach would eliminate the 

need to stick to regular particle shapes.

4. Conclusions

In a very general terms, the small angle scattering curve of a system of n types of atoms (components) 

and p homogeneous phases can be presented as a linear combination of phase scattering functions, 

)()(ˆ βααβ =qS
r

, representing the scattering of each phase as if it scattered alone in a two phase system, and 

cross-phase scattering functions, )()(ˆ βααβ ≠qS
r

, that represent the interference scattering between each pair 

of phases – equation (70). The coefficients of this linear combination consist of the partial atomic density 

differences, αξi∆ , that depend only on the phase compositions and densities, and the atomic scattering factors, 

if , that depend on the X-ray energy only. The functions )(ˆ qS
r

αβ , do not depend on either the X-ray energy or 

the phase compositions or densities, but only on the spatial distribution of the phases in the sample.  

This representation of the scattering of the multiphase system combined with contrast variation 

techniques allows extraction of structural information about one or two phases, which are of interest in a 

multiphase sample. The contrast variation techniques, including ASAXS, are most useful if the scattering 

density of only one phase can be varied independently from the scattering densities of the other phases. Thus, 

if the resonant element is present in only one phase the Stuhrmann’s resonant curve is proportional to the 

corresponding phase scattering function and can be treated as if it scattered in a two phase system. If suitable 

contrast variation is possible, the area of the surfaces of all phases and the interfaces between the phases can 

be found without introducing any model for the structure of the phases. 

For a system of n types of atoms and p homogeneous phases the number of independent partial structure 

functions is 2/)1( −pp  and is determined by the number of phases, rather then by the number of the atom 

types in the sample. Anyway, )1( −pn  partial structure factors could be sufficient to determine the atom 

number density differences between the phases, provided the phase scattering functions are known. The phase 

compositions and densities of homogeneous phases can be found by solving simple pp×  system of linear 

equations that incorporates also the atom number conservation law.  
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Figure 1. Monodisperse system of core-shell particles with core radius 4 nm and shell radius 6 nm: phase scattering functions, core-
core -

ccŜ , matrix-matrix -
mmŜ  and cross-phase scattering function core-matrix 
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