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The gauge theory of dislocations: conservation and balance laws

In the Lagrangian field theory of elasticity the existence of inhomogeneities in an elastic medium is expressed through the explicit dependence of the Lagrangian on the position. Due to different positions taking up from the inhomogeneity in the material a change in the potential and kinetic energy will take place. This shows up as a configurational force acting on the inhomogeneity being an elastic singularity. Understanding elasticity as a classical field theory, Eshelby [START_REF] Eshelby | The force on an elastic singularity[END_REF][START_REF] Eshelby | The elastic energy-momentum tensor[END_REF] and Morse and Feshbach [START_REF] Morse | Methods of Theoretical Physics[END_REF] derived the elastic energy-momentum tensor, called also Eshelby stress tensor. Supplementary, Eshelby [START_REF] Eshelby | The force on an elastic singularity[END_REF] and Morse and Feshbach [START_REF] Morse | Methods of Theoretical Physics[END_REF] introduced independently the field intensity vector and the field momentum vector of elasticity.

Later Günther [START_REF] Günther | Über einige Randintegrale der Elastostatik Abh[END_REF] used the Noether theorem to find all the continuous transformation groups leaving the potential energy density of linear elastostatics invariant. With the known Lie-point symmetries he constructed conserved currents and path-independent integrals and related them to torsion and bending problems of rods, plates and shells. Knowles and Sternberg [START_REF] Knowles | On a class of conservation laws in linearized and finite elastostatics[END_REF] extended these results for the case of finite elasticity. Fletcher [START_REF] Fletcher | Conservation laws in linear elastodynamics[END_REF] continued further and calculated the variational symmetries and conserved integrals in linear elastodynamics. Moreover, Olver [START_REF] Olver | Conservation laws in elasticity. II. Linear homogeneous elastostatics[END_REF] investigated the Lie-point and Lie-Bäcklund symmetries of elastostatics and derived the corresponding conservation laws. An overview of conservation and balance laws of elasticity can be found in the books of Maugin [START_REF] Maugin | Material Inhomogeneities in Elasticity[END_REF] and Kienzler and Herrmann [START_REF] Kienzler | Mechanics in Material Space[END_REF].

In the gauge theory of classical electrodynamics the inhomogeneous Maxwell equations can be obtained from a Lagrangian density after varying the scalar and vector gauge potentials. The Lagrangian density consists of two parts [START_REF] Landau | The classical theory of fields[END_REF][START_REF] Schröder | Spezielle Relativitätstheorie[END_REF], describing the electromagnetic field and another one being responsible for the interaction between the electromagnetic field and the charge and current density. Kadić and Edelen [START_REF] Kadić | A Yang-Mills type minimal coupling theory for materials with dislocations and disclinations[END_REF] proposed a theory of dislocations in a continuum with gauge invariant equations of motion. The formal structure of these equations is analoque to the inhomogeneous Maxwell-equations. Kadić and Edelen [START_REF] Kadić | A Gauge Theory of Dislocations and Disclinations[END_REF] and Edelen and Lagoudas [START_REF] Edelen | Gauge theory and defects in solids[END_REF] presented a mathematical gauge theory of Yang-Mills type for elasticity including dislocations. They derived equations of motions and suggested some improvement since the given constitutive laws were inadequately chosen. In general the formal structure of the theory was correct, since canonical energy-momentum tensors and configurational forces such as the Peach-Koehler force [START_REF] Peach | Forces extended on dislocations and the stress fields produced by them[END_REF] has been successfully calculated.

In this paper we give a complete system of equations of motion for the translational gauge theory of dislocations. We calculate the Lie-point symmetries of this system and also the variational and divergence symmetries of the Lagrangian, following the standard technique of Lie-group analysis given in the book of Olver [START_REF] Olver | Applications of Lie groups to differential equations[END_REF]. The canonical energymomentum and angular-momentum tensors, as well as the dilatation current vector are determined. The generalization of the conserved integrals from the linear theory of elastodynamics to a translational gauge theory of dislocations is given. Symmetry-breaking follows by taking into account only the elastic or dislocation part of the system. In this case we calculate the configurational force, moment and power acting on dislocations. According to the field theory of elasticity, the equations of motion for a compatible continuum can be derived from a variational principle with the Lagrangian of linear elasticity

L e = T e -W e = 1 2 p i ui - 1 2 σ ij u i,j . (2.1) 
The canonical conjugate quantities to the kinematical velocity ui and displacement gradient u i,j are thereby defined as follows

p i := ∂L e ∂ ui , σ ij := - ∂L e ∂u i,j . (2.2) 
These are the momentum vector p i and the force stress tensor σ ij . Since the works of Kadić and Edelen [START_REF] Kadić | A Yang-Mills type minimal coupling theory for materials with dislocations and disclinations[END_REF][START_REF] Kadić | A Gauge Theory of Dislocations and Disclinations[END_REF] and Edelen and Lagoudas [START_REF] Edelen | Gauge theory and defects in solids[END_REF] it is known that symmetry breaking of the homogeneity of the action of the three-dimensional translational group T (3) in elasticity leads to a gauge theory of dislocations. In terms of symmetry, we require from the Lagrangian density (2.1) to stay invariant under the internal transformation of the displacement field

u ′ i = u i -f i (2.3)
given with an arbitrary vector-function f i (t, x). The transformation (2.3) represents the generalization of a rigid body translation with f i = const. This requirement can only be fulfilled by introducing the gauge potentials ϕ and φ. They restore the invariance of (2.1) through the following two steps. First of all, a minimal replacement

β ij := ∇ j u i = u i,j + φ ij , v i := ∇ t u i = ui + ϕ i , (2.4) 
of the displacement gradient u i,j and Newtonian kinematic velocity ui by the translational gauge-covariant derivatives ∇ j u i and ∇ t u i is used. These represent the elastic distortion tensor β ij and elastic velocity vector v i , respectively. Both quantities are now incompatible. The gauge potentials may be identified with the plastic velocity and plastic distortion:

ϕ i = -v P i and φ ij = -β P ij .
On the other hand, for compensating the time ḟi and space f i,j derivatives in the Lagrangian (2.1) caused by (2.3) the gauge fields have to transform as follows

ϕ ′ i = ϕ i + ḟi , φ ′ ij = φ ij + f i,j . (2.5) 
The transformations (2.5) and (2.3) are making up the local gauge transformations leaving the Lagrangian density

L e = 1 2 p i v i - 1 2 σ ij β ij , (2.6) 
form-invariant called gauge-invariant. The elastic Lagrangian density (2.6) describes an incompatible elastic material. By construction a local gauge symmetry is valid Dislocations being now present contribute also by themselves to the total energy of the system. With the gauge fields ϕ and φ we can introduce the two translational field strengths

v ′ i = v i , β ′ ij = β ij . ( 2 
T ijk = φ ik,j -φ ij,k , I ij = -ϕ i,j + φij (2.8)
or in terms of β ij and v i

T ijk = β ik,j -β ij,k , I ij = -v i,j + βij (2.9)
called the dislocation tensor (torsion tensor) and the dislocation current tensor, respectively. These are the kinematical quantities of dislocations. They are related to each other through the Bianchi identities

ǫ jkl T ijk,l = 0, Ṫijk + 2 I i[j,k] = 0. (2.10)
The transformation of the fields (u i , ϕ i , φ ij ) according to the local gauge transformations (2.5) and (2.3) leaves the quantities

T ′ ijk = T ijk , I ′ ij = I ij , (2.11) 
gauge-invariant. The torsion tensor T ijk was introduced by Élie Cartan [START_REF] Cartan | On manifolds with an Affine Connection and the Theory of General Relativity[END_REF] as a generalization from Riemannian to non-Riemannian geometry. Kondo [START_REF] Kondo | On the geometrical and physical foundations of the theory of yielding[END_REF][START_REF] Kondo | Memoirs of the unifying study of the basic problems in engineering sciences by means of geometry[END_REF], Bilby et al. [START_REF] Bilby | Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry[END_REF][START_REF] Bilby | Continuous distributions of dislocations. III[END_REF] and Kröner [START_REF] Kröner | Kontinuumstheorie der Versetzungen und Eigenspannungen[END_REF] understood the meaning of the three-dimensional torsion tensor as the dislocation density tensor. The Lagrangian of the dislocation field can be written in the following form

L di = T di -W di = 1 2 D ij I ij - 1 4 H ijk T ijk , (2.12) 
where T di and W di describe the kinetic and potential energy density of dislocations. The total Lagrangian density describing the whole system (in linear approximation) is given as the sum of (2.6) and (2.12)

L = T -W = L e + L di = 1 2 p i v i - 1 2 σ ij β ij + 1 2 D ij I ij - 1 4 H ijk T ijk . (2.13) 
The canonical conjugate quantities can be obtained from L as

p i := ∂L ∂v i , σ ij := - ∂L ∂β ij , D ij := ∂L ∂I ij , H ijk := -2 ∂L ∂T ijk , (2.14) 
p i , σ ij , I ij , and H ijk are the momentum vector, the force stress tensor, the dislocation momentum flux tensor, and the pseudomoment stress tensor, respectively.

The Euler-Lagrange equations derived from the total Lagrangian L = L(v i , β ij , I ij , T ijk ) are given by 

E u i (L) = D t ∂L ∂ ui + D j ∂L ∂u i,j = 0, (2.15) 
E ϕ i (L) = D t ∂L ∂ φi + D j ∂L ∂ϕ i,j - ∂L ∂ϕ i = 0, (2.16) E φ ij (L) = D t ∂L ∂ φij + D k ∂L ∂φ ij,k - ∂L ∂φ ij = 0, ( 2 
D i = ∂ ∂x i + u α,i ∂ ∂u α + u α,ij ∂ ∂u α,j + ϕ α,ij ∂ ∂ϕ α,j + φ α,ij ∂ ∂φ α,j + . . . . (2.19)
Written in terms of the canonical conjugate quantities (2.14), Eqs. (2.15)-(2.17) take the form the dislocation field will be influenced by the momentum and stresses (p, σ). The force stress σ and linear momentum p works like sources driving dislocations. The elastic medium plays also the role of transmitting the interaction like an elastic aether. The conservation of linear momentum appears as an integrability condition for the balance of dislocation equations. This can be seen by applying D t on (2.21) and D j on (2.22) and subtracting the last from the first one. It plays the same role like the conservation for the charge in the electromagnetic field theory. The most general linear constitutive equations for the momentum, the asymmetric force stress, the dislocation momentum flux tensor and the pseudomoment stress of an isotropic and centrosymmetric medium are

D t p i -D j σ ij = 0, (2.20) D j D ij + p i = 0, (2.21) D t D ij + D k H ijk + σ ij = 0. ( 2 
p i = ρv i , (2.23) 
σ ij = λδ ij β kk + µ(β ij + β ji ) + γ(β ij -β ji ), (2.24) 
D ij = d 1 δ ij I kk + d 2 (I ij + I ji ) + d 3 (I ij -I ji ), (2.25) 
H ijk = c 1 T ijk + c 2 (T jki + T kij ) + c 3 (δ ij T llk + δ ik T ljl ), (2.26) 
where ρ is the mass density and with 9 material constants µ, ν, γ, c 1 , . . . , c 3 and d 1 , . . . , d 3 .

Here we have used a constitutive relation for the dislocation momentum flux tensor

D ij = L ijkl I kl with L ijkl = L klij .
A similar constitutive law was used for material with microstructure by Maugin [START_REF] Maugin | On the structure of the theory of polar elasticity[END_REF]. Maugin [START_REF] Maugin | On the structure of the theory of polar elasticity[END_REF] also noted that for the isotropic microinertia is often assumed a too simple form which is not imposed by the formulation of the theory. In Eq. (2.25) we have assumed the most general one for an isotropic theory. On the other hand, Kadić and Edelen [START_REF] Kadić | A Gauge Theory of Dislocations and Disclinations[END_REF] and Edelen and Lagoudas [START_REF] Edelen | Gauge theory and defects in solids[END_REF] used the constitutive relation

D ij = s 2 I ij which is to simple.
The requirement of non-negativity of the energy (material stability) E = T + W ≥ 0 leads to the conditions of positive semidefiniteness of the material constants. Since v i β ij , I ij and T ijk are uncoupled from each other, the conditions can be studied separately: T e ≥ 0, T di ≥ 0, W e ≥ 0 and W di ≥ 0. Thus, the characteristic constants of the material 

ρ ≥ 0, d 2 ≥ 0, d 3 ≥ 0, 3d 1 + 2d 2 ≥ 0, µ ≥ 0, γ ≥ 0, 3λ + 2µ ≥ 0, c 1 -c 2 ≥ 0, c 1 + 2c 2 ≥ 0, c 1 -c 2 + 2c 3 ≥ 0. (2.27)
Substituting the constitutive equations in the above system (2.20)-(2.22), we get for the field variables u i , φ ij , ϕ i a system of 15 coupled linear partial differential equations ∆ ≡ (∆ 1 , . . . , ∆ 15 ) = 0:

ρ( üi + φi ) -λ(u j,ji + φ jj,i ) -(µ + γ)(u i,jj + φ ij,j ) -(µ -γ)(u j,ij + φ ji,j ) = 0,
(2.28)

d 1 (ϕ j,ji -φjj,i ) + (d 2 + d 3 )(ϕ i,jj -φij,j ) + (d 2 -d 3 )(ϕ j,ij -φji,j ) -ρ( ui + ϕ i ) = 0, (2.29 
)

d 1 δ ij ( φk,k -φkk ) + (d 2 + d 3 )( φi,j -φij ) + (d 2 -d 3 )( φj,i -φji ) (2.30) -c 1 (φ ik,jk -φ ij,kk ) -c 2 (φ ji,kk -φ jk,ik + φ kj,ik -φ ki,jk ) -c 3 δ ij (φ lk,lk -φ ll,kk ) + (φ kk,ji -φ kj,ki ) -λδ ij (u k,k + φ kk ) -(µ + γ)(u i,j + φ ij ) -(µ -γ)(u j,i + φ ji ) = 0.
Eq. (2.28) is a generalized inhomogeneous Navier equation for u. Eq. (2.29) has the form of a generalized inhomogeneous Helmholtz equation for ϕ and Eq. (2.30) is a kind of generalization of an inhomogeneous Klein-Gordon equation for φ. Due to the inhomogeneous parts they are coupled.

Lie symmetries

The infinitesimal continuous transformation acting on the independent (t, x) and dependent (u, ϕ, φ) variables build a Lie group G. If G is the Lie group of invariance of the system (2.20)-(2.22), then it is also a symmetry group. The infinitesimal group action for the independent and dependent variables has the form where the infinitesimal generators are defined by

x ′ i = x i + ε X i (x, t, u, ϕ, φ) + • • • (3.1) t ′ = t + ε τ (x, t, u, ϕ, φ) + • • • (3.2) u ′ α = u α + ε U α (x, t, u, ϕ, φ) + • • • (3.3) ϕ ′ α = ϕ α + ε Ψ α (x, t, u, ϕ, φ) + • • • (3.4) φ ′ αβ = φ αβ + ε Φ αβ (x, t, u, ϕ, φ) + • • • , (3.5) 
X i (x, t, u, ϕ, φ) := ∂x ′ i ∂ε ε=0 , (3.6) τ (x, t, u, ϕ, φ) := ∂t ′ ∂ε ε=0 , (3.7) 
U α (x, t, u, ϕ, φ) := ∂u ′ α ∂ε ε=0 , (3.8) 
Ψ α (x, t, u, ϕ, φ) = ∂ϕ ′ α ∂ε ε=0 , (3.9) 
Φ αβ (x, t, u, ϕ, φ) = ∂φ ′ αβ ∂ε ε=0 . (3.10) 
These infinitesimal generators build the following vector field:

ν = τ ∂ ∂t + X i ∂ ∂x i + U α ∂ ∂u α + Ψ α ∂ ∂ϕ α + Φ αβ ∂ ∂φ αβ . (3.11)
Since the system (2.28)-(2.30) is of second order, we need the prolonged vector field of second order pr (2) 

ν = ν + a + b + c, (3.12) 
where the vector fields a, b, c read

a = Ūαi ∂ ∂u α,i + Ūαt ∂ ∂ uα + Ūαij ∂ ∂u α,ij + Ūαit ∂ ∂ uα,i + Ūαtt ∂ ∂ üα , (3.13) b = Ψαi ∂ ∂ϕ α,i + Ψαt ∂ ∂ φα + Ψαij ∂ ∂ϕ α,ij + Ψαit ∂ ∂ φα,i + Ψαtt ∂ ∂ φα , (3.14) 
c = Φαβi ∂ ∂φ αβ,i + Φαβt ∂ ∂ φαβ + Φαβij ∂ ∂φ αβ,ij + Φαβit ∂ ∂ φαβ,i + Φαβtt ∂ ∂ φαβ , (3.15) 
with

Ūαi = D i (U α -X k u α,k -τ uα ) + X k u α,ki + τ uα,i , (3.16) Ūαt = D t (U α -X k u α,k -τ uα ) + X k uα,k + τ üα , (3.17) Ūαij = D i D j (U α -X k u α,k -τ uα ) + X k u α,kij + τ uα,ij , (3.18) Ūαit = D i D t (U α -X k u α,k -τ uα ) + X k uα,ki + τ üα,i , (3.19) Ūαtt = D t D t (U α -X k u α,k -τ uα ) + X k üα,k + τ ... u α . (3.20)
Similar expressions are given for the coefficients of the vectors b and c if in the above formulas the variables U α and u α are substituted by Ψ α , ϕ α and Φ αβ , φ αβ , respectively. The Lie-group G is a group of invariance of the system ∆ if and only if [START_REF] Olver | Applications of Lie groups to differential equations[END_REF] pr (2) 

ρ( Ūitt + Ψit ) -λ( Ūjji + Φjji ) -(µ + γ)( Ūijj + Φijj ) -(µ -γ)( Ūjji + Φjji ) ∆=0 = 0, (3.22 
)

d 1 ( Ψjji -Φjjit ) + (d 2 + d 3 )( Ψijj -Φijjt ) + (d 2 -d 3 )( Ψjji -Φjijt ) -ρ( Ūit + Ψi ) ∆=0 = 0, (3.23 
)

d 1 δ ij ( Ψkkt -Φkktt ) + (d 2 + d 3 )( Ψijt -Φijtt ) + (d 2 -d 3 )( Ψjit -Φjitt ) -c 1 ( Φikjk -Φijkk ) -c 2 ( Φjikk -Φjkik + Φkjik -Φkijk ) -c 3 δ ij ( Φlklk -Φllkk ) + ( Φllji -Φljli ) -λδ ij ( Ūll + Φll ) -(µ + γ)( Ūij + Φij ) -(µ -γ)( Ūji + Φji ) ∆=0 = 0. (3.24)
From the condition above the form of the infinitesimal generator ν is found

τ = d 4 , (3.25) X i = d i + ǫ ijk a j x k , (3.26) 
U α = cu α + ǫ αjk a j u k -f α + ūα , (3.27) 
Ψ α = cϕ α + ǫ αjk a j ϕ k + ḟα + φα , (3.28) 
Φ αβ = cφ αβ + ǫ αjk a j φ kβ + ǫ βjk a j φ αk + f α,β + φαβ , (3.29) 
where a j , d i and c are arbitrary parameters. Moreover, f α is a gauge function and ūα , φα , φαβ are solutions of the Euler-Lagrange equations (2.20)- (2.22). The symmetry algebra is generated by the following vector fields:

v 1 = ∂ ∂t (translation in time) (3.30) v 2 i = ∂ ∂x i (translations in space) (3.31) v 3 i = ǫ ijk x j ∂ ∂x k + u j ∂ ∂u k + ϕ j ∂ ∂ϕ k + φ lj ∂ ∂φ lk + φ jl ∂ ∂φ kl (rotations) (3.32) v 4 = u i ∂ ∂u i + ϕ i ∂ ∂ϕ i + φ ij ∂ ∂φ ij (scaling) (3.33) v 5 = -f i ∂ ∂u i + ḟi ∂ ∂ϕ i + f i,j ∂ ∂φ ij (gauge) (3.34) v 6 = ūi ∂ ∂u i + φi ∂ ∂ϕ i + φij ∂ ∂φ ij
(addition of solutions). Since the famous theorem of Noether [START_REF] Noether | Invariante Variationspropleme[END_REF], it is well-know that to each of the continuous symmetries of the Lagrangian a conservation law for the physical system corresponds. The Lagrangian L depends on the first derivatives of the dependent field variables. In that case the infinitesimal criterion of invariance [START_REF] Olver | Applications of Lie groups to differential equations[END_REF] says that a Lie group G is a variational or divergence symmetry of L if and only if pr (1) 

ν(L) + L (D i X i + D t τ ) = D i B i + D t B 4 , (4.1) 
where B i and B 4 are opportune analytic functions. If B i = 0 and B 4 = 0, then ν is the generator of a divergence symmetry of the Lagrangian L. If B 4 = 0 and B i = 0, ν generates a variational symmetry of L. Every variational or divergence symmetry of the Lagrangian L is also a symmetry of the associated Euler-Lagrange equations. The inverse statement is not true. After some standard calculations (see, e.g., Lazar [START_REF] Lazar | On conservation and balance laws in micromorphic elastodynamics[END_REF]) we find the conservation law in characteristic form

D i A i + D t A 4 + Q u α E u α (L) + Q ϕ α E ϕ α (L) + Q φ αβ E φ αβ (L) = 0, (4.2) 
where the characteristics are defined by

Q u α = U α -X j u α,j -τ uα , (4.3) 
Q ϕ α = Ψ α -X j ϕ α,j -τ φα , (4.4) 
Q φ αβ = Φ αβ -X j φ αβ,j -τ φαβ . (4.5) 
Therefore, if the Euler-Lagrange equations (2.15)-(2.17) are fulfilled, we speak of a conservation law

D t A 4 + D i A i = 0, (4.6) 
where A i is the associated flux and A 4 is the conserved density. By the divergence theorem one finds the conservation law in integral form

V D t A 4 dV + S A i n i dS = 0. (4.7)
In case where the equality (4.6) is not fulfilled we speak of a balance law

D t A 4 + D i A i = 0. (4.8)

Canonical currents

If a variational or divergence symmetry is given, then the corresponding components A 4 and A i of the conservation law (4.6) are given by The translation acts only on the independent variables. The Lie-point group transformation of the translation in space and time is given by the formulas

A 4 = Lτ + Q u α ∂L ∂ uα + Q ϕ α ∂L ∂ φα + Q φ αβ ∂L ∂ φαβ -B 4 , (4.9) 
A i = LX i + Q u α ∂L ∂u α,i + Q ϕ α ∂L ∂ϕ α,i + Q φ αβ ∂L ∂φ αβ,i -B i . ( 4 
x ′ i = x i + ε k δ ki , t ′ = t + ε 4 δ 44 , (4.11) 
leaving the field variables unchanged

u ′ α = u α , ϕ ′ α = ϕ α , φ ′ αβ = φ αβ . (4.
12)

The components of the generator (3.11) corresponding to the infinitesimal transformations (4.11) and (4.12) take the form

X ki = δ ki , τ = δ 44 , U α = 0, Ψ α = 0, Φ αβ = 0. (4.13)
Using Eqs. (4.9), (4.10) and (4.13), we obtain for the translational density and flux quantities

A ki = L δ ki -u α,k ∂L ∂u α,i -ϕ α,k ∂L ∂ϕ α,i -φ αβ,k ∂L ∂φ αβ,i , (4.14) 
A k4 = -u α,k ∂L ∂ uα -ϕ α,k ∂L ∂ φα -φ αβ,k ∂L ∂ φαβ , (4.15) 
A 4i = -uα ∂L ∂u α,i -φα ∂L ∂ϕ α,i -φαβ ∂L ∂φ αβ,i , (4.16 
)

A 44 = L -uα ∂L ∂ uα -φα ∂L ∂ φα -φαβ ∂L ∂ φαβ . (4.17)
In terms of the momentum p i , the dislocation momentum flux D ij , the force stress σ ij and pseudomoment stress H ijk they read as

P ki := -A ki = -L δ ki -σ αi u α,k -D αi ϕ α,k + H αβi φ αβ,k , (4.18) 
P k := A k4 = -p α u α,k -D αβ φ αβ,k , (4.19) 
S i := A 4i = σ αi uα + D αi φα -H αβi φαβ , (4.20) 
H := -A 44 = -L + p α uα + D αβ φαβ . (4.21)
The tensor P ki is the canonical Eshelby stress tensor of dislocation gauge theory. The vector P k is the canonical pseudomomentum or field momentum density and the vector S i is called the canonical field intensity or Poynting vector. The scalar H is the canonical energy density. They are related to each other by the following local conservation laws

D t P k -D i P ki = 0, (4.22) D t H -D i S i = 0. (4.23)
The first equation represents the canonical conservation law of pseudomomentum, while the second one constitutes the canonical conservation law of energy for the dislocation gauge theory. By the help of the Gauss theorem, these conservation laws appear in integral form

J k := S P ki n i dS - V D t P k dV = 0, (4.24) 
I := S S i n i dS - V D t H dV = 0. (4.25)

Rotational invariance

The three-dimensional rotations act on both, the independent and dependent variables.

The infinitesimal transformations of the Lie group action are given by

x ′ i = x i + ǫ ijk ε j x k , (4.26) t ′ = t, (4.27) u ′ α = u α + ǫ αjk ε j u k , (4.28) 
ϕ ′ α = ϕ α + ǫ αjk ε j ϕ k , (4.29) φ ′ αβ = φ αβ + (ǫ αjk φ kβ + ǫ βjk φ αk )ε j , (4.30) 
from which the corresponding components of the generator (3.11) are calculated

X ij = ǫ ijk x k , U αj = ǫ αjk u k , Ψ αj = ǫ αjk ϕ k , Φ αβj = ǫ αjk φ kβ + ǫ βjk φ αk . (4.31) 
Substituting these components into the Eqs. (4.9) and (4.10), we obtain

A ki = ǫ kmj x m L δ ij -u α,j ∂L ∂u α,i -ϕ α,j ∂L ∂ϕ α,i -φ αβ,j ∂L ∂φ αβ,i + u m ∂L ∂u j,i + ϕ m ∂L ∂ϕ j,i + φ ml ∂L ∂φ ji,l + φ lm ∂L ∂φ li,j , (4.32) 
A k4 = ǫ kmj u m ∂L ∂ uj + ϕ m ∂L ∂ φj + φ ml ∂L ∂ φjl + φ lm ∂L ∂ φlj -x j u α,j ∂L ∂ uα + ϕ α,j ∂L ∂ φα + φ αβ,j ∂L ∂ φαβ . (4.33) 
We can introduce the total canonical angular-momentum tensor and the material inertia vector according

M ki : = -A ki = ǫ kmj (x m P ji + σ ji u m + D ji ϕ m -H jli φ ml -H lji φ lm ), (4.34) M k : = A k4 = ǫ kmj (x m P j + p j u m + D jl φ ml + D lj φ lm ). (4.35)
It is possible to decompose the total canonical angular-momentum tensor and the material inertia vector into two parts 

M ki = M (o) ki + M (i) ki , M k = M (o) k + M (i) k , (4.36) 
M (i) ki = ǫ kmj (σ ji u m + D ji ϕ m -H jli φ ml -H lji φ lm ), (4.38) 
M (o) k = ǫ kmj x m P j , (4.39) 
M (i) k = ǫ kmj (p j u m + D jl φ ml + D lj φ lm ), (4.40) 
are the orbital and intrinsic (or spin) angular-momentum tensors and material inertia vectors, respectively. For the balance of the material inertia vector we obtain

D t M k -D i M ki = D t M (o) k -D i M (o) ki + D t M (i) k -D i M (i) ki . (4.41)
Due to the conservation of the pseudomomentum (4.22), the orbital parts become

D t M (o) k -D i M (o) ki = ǫ kjm P jm . (4.42)
Because of the rotational invariance, by using the minimal replacement (2.4) and the Euler-Lagrange equations (2.20)-(2.22) the balance law of the intrinsic angular-momentum becomes

D t M (i) k -D i M (i) ki = ǫ kmj (v m p j -σ jl β ml + D jl I ml - 1 2 H jil T mil -H lij T lim (4.43) -σ lj φ lm + D lj φlm -H lij φ li,m ).
With Eqs. (4.18), (4.42) and (4.43) the rotational balance of the total angular momentum reads

D t M k -D i M ki = ǫ kmj (v m p j -β ml σ jl -β lm σ lj + I ml D jl + I lm D lj - 1 2 T mil H jil -T lim H lij ).
(4.44)

Using the relations for the dislocation density tensor T ikl = ǫ klj α ij and pseudomoment stress tensor

H ikl = ǫ klj H ij , we obtain D t M k -D i M ki = ǫ kmj (v m p j -β ml σ jl -β lm σ lj + I ml D jl + I lm D lj -α ml H jl -α lm H lj ). ( 4 

.45)

In the case when the material is isotropic, by using the constitutive Eqs. (2.23)-(2.26), it can be shown that (4.44) becomes a conservation law. Using the Gauss theorem, we introduce the dynamical L-integral of dislocation gauge theory: in the material introduce characteristic length scales. Still it is possible to calculate the broken scaling quantities. The scaling group acts in infinitesimal form on the independent and dependent variables in the following manner

L k := S M ki n i dS - V D t M k dV. ( 4 
x ′ i = (1 + ε) x i , (4.47) t ′ = (1 + ε) t, (4.48) u ′ α = (1 + ε d u ) u α , (4.49) ϕ ′ α = (1 + ε d ϕ ) ϕ α , (4.50) 
φ ′ αβ = (1 + ε d φ ) φ αβ . (4.51)
These transformation determines also the form for the components of the infinitesimal generator

X i = x i , τ = t, U α = d u u α , Ψ α = d ϕ ϕ α , Φ αβ = d φ φ αβ , (4.52) 
where d u , d ϕ , d φ denote the (canonical) dimensions of the displacement vector u and the gauge potentials ϕ, φ. If one substitutes the relation (4.52) into the Eqs. (4.9) and (4.10), one obtains for the scaling quantities

A i = x i L + (d u u α -x k u α,k -t uα ) ∂L ∂u α,i + (d ϕ ϕ α -x k ϕ α,k -t φα ) ∂L ∂ϕ α,i + (d φ φ αβ -x k φ αβ,k -t φαβ ) ∂L ∂φ αβ,i , (4.53) 
A 4 = tL + (d u u α -x k u α,k -t uα ) ∂L ∂ uα + (d ϕ ϕ α -x k ϕ α,k -t φα ) ∂L ∂ φα + (d φ φ αβ -x k φ αβ,k -t φαβ ) ∂L ∂ φαβ . ( 4 

.54)

In terms of force stress, pseudomoment stress and also with the canonical pseudo-momentum vector, the Poynting vector, the Eshelby stress tensor and the energy density the scaling flux densities become

Y i := -A i = x j P ji -t S i + d u σ ji u j + d ϕ D ji ϕ j -d φ H jli φ jl , (4.55) 
Y := A 4 = x j P j -t H + d u p j u j + d φ D jl φ jl .
(4.56)

Eq. (4.55) is the dilatational vector flux and (4.56) is some kind of generalized action. The balance law of scaling symmetry reads [START_REF] Lubarda | On conservation integrals in micropolar elasticity[END_REF], Lazar [START_REF] Lazar | On conservation and balance laws in micromorphic elastodynamics[END_REF]). Then, the scaling dimensions of the field variables are determined according

D t Y -D i Y i = d u + d -2 2 p i ui -u i,j σ ij + d ϕ + d 2 p i ϕ i -d φ + d 2 σ ij φ ij + d φ + d -2 2 D ij φij - 1 2 H ijk T ijk -d ϕ + d -2 2 D ij ϕ i,
d u = - d -2 2 , d ϕ = - d 2 , d φ = - d 2 , (4.58) 
where d = n+1 is the space-time dimension. In the present dynamic case for d = 4 = 3+1, we obtain d u = -1, d ϕ = -2 and d φ = -2. With this choice (4.58), all the fields β ij , u i,j , φ ij , v i , ui and ϕ i have the same scaling dimension: -d 2 . Thus, the minimal replacement (2.4) is scale invariant in the present case. Using (4.58), the balance law (4.57) reads

D t Y -D i Y i = -2 L di .
(4.59) Thus, like in micromorphic elasticity the higher order terms break the scaling symmetry.

In the present case D ij and H ijk break the scaling symmetry. The corresponding Mintegral is given by

M (1) := S Y i n i dS - V D t Y dV = 2 V L di dV. (4.60)
The other choice for the scaling dimensions is

d u = - d -2 2 , d ϕ = - d -2 2 , d φ = - d -2 2 . (4.61) 
It is obvious that this choice is like in Maxwell's field theory of electromagnetic fields, where scalar and vector fields have the same dimensions, namelyd-2 2 (see, e.g., Felsager [START_REF] Felsager | Geometry, Particles, and Fields[END_REF]). It can be seen that now the minimal replacement (2.4) is not scaling invariant because u i,j has the dimension - 

D t Y -D i Y i = p i ϕ i -σ ij φ ij . (4.62)
It is obvious that the source terms of the Euler-Lagrange equations (2.16) and (2.17) break the scaling symmetry. The corresponding M-integral is now given by

M (2) := S Y i n i dS - V D t Y dV = - V (p i ϕ i -σ ij φ ij ) dV. (4.63)

Gauge symmetry

The gauge symmetry acts in the following way

x ′ i = x i , t ′ = t, u ′ α = u α -ε f α , ϕ ′ α = ϕ α + ε ḟα , φ ′ αβ = φ αβ + ε f α,β . (4.64)
Then the components of the generator (3.11) take the form The density and flux current which can be derived from the infinite dimensional group generator (3.34) by using the formulas (4.9) and (4.10) have the following form

X ki = 0, τ = 0, U α = -f α , Ψ α = ḟα , Φ αβ = f α,β . ( 4 
G i := -A i = -σ ji f j + D ji ḟj -H jki f j,k , (4.66) G := A 4 = -p j f j + D ji f j,i .
(4.67)

The corresponding conservation law reads

D t G -D i G i = f j,ki H j[ki] = 0. (4.68)
The global conservation law is

S G i n i dS - V D t G dV = 0. (4.69)

Addition of solutions

The vector field v 6 is a generator of a divergence symmetry. The addition of solutions is given by

x ′ i = x i , t ′ = t, u ′ α = u α + ε ū′ α , ϕ ′ α = ϕ α + ε φα , φ ′ αβ = φ αβ + ε φαβ . (4.70)
Then the components of the generator (3.11) take the form The notation σαi , Dαi and Hαβi means that u, ϕ and φ are replaced by ū, φ and φ, respectively. Finally, the conserved fluxes are of the form

X ki = 0, τ = 0, U α = ūα , Ψ α = φα , Φ αβ = φαβ . ( 4 
A i = -ū α σ αi -φα D αi + φαβ H αβi + u α σαi + ϕ α Dαi -φ αβ Hαβi , (4.74) A 4 = ūα p α + φαβ D αβ -u α pα -φ αβ Dαβ . (4.75)
The corresponding conservation law is a manifestation of Betti's reciprocal theorem for the gauge theory of dislocations and is a consequence of the linearity of ∆ = 0 [START_REF] Sokolnikoff | Mathematical Theory of Elasticity[END_REF][START_REF] Willis | Dislocations and inclusions[END_REF].

In integral form the dynamical Betti reciprocal theorem is given by 

S u α σαi + ϕ α Dαi -φ αβ Hαβi n i dS - V D t u α pα + φ αβ Dαβ dV = S ūα σ αi + φα D αi -φαβ H αβi n i dS - V D t ūα p α + φαβ D αβ dV. ( 4 
P k = P (g) k -D β (D αβ φ αk ), (4.78) 
S i = S (g) i + D t (D αi ϕ α ) -D β (H αβi ϕ α ), (4.79) H = H (g) + D β (D αβ ϕ α ), (4.80)
where the gauge-invariant currents are defined by In this section we decompose the total Lagrangian into its elastic and dislocation parts. Both parts are coupled by the Euler-Lagrange equations. These coupling terms will appear as additional configurational forces, vector and scalar momenta. Consequently, the total system is conserved but they are not conserved separately. There is an exchange between the elastic and dislocation subsystems.

P (g) ki := -L δ ki -σ αi β αk + D αi I αk -H αβi T αβk , (4.81) 
P (g) k := -p α β αk + D αβ T αβk , (4.82) 
S (g) i := σ αi v α -H αβi I αβ , ( 4 
D i D β (H αβi φ αk ) = 0, D i D β (H αβi ϕ α ) = 0, ( 4 

Translations in space and time

In the last section the conservation laws for the canonical pseudomomentum, material inertia vector and energy density have been calculated. These conservation laws exist only if the total Lagrangian L composed of the kinetic and potential energies of the elastic and the dislocation field part is taken into account. If we consider only one part of the field, the canonical quantities are not any more conserved and as a consequence configurational forces, moments and power appear. We give the currents for both parts of the total system, the elastic part L e and the dislocation part L di of the total Lagrangian density.

Elastic part

For the elastic part L e we obtain from (4.9)-(4.10) for the Eqs. where the configurational force and power densities read A similar expression like (5.7) was earlier given by Kadić and Edelen [START_REF] Kadić | A Yang-Mills type minimal coupling theory for materials with dislocations and disclinations[END_REF]. They called this force the 'elastic excess' force.

F k = p α ϕ α,k -σ αβ φ αβ,k , (5.7 
For the elastic part L e of the total Lagrangian L the gauge invariant currents (4.81)-(4.84) are

P (e-g) ki := -L e δ ki -σ αi β αk , (5.11) 
P (e-g) k := -p α β αk , (5.12) 
S (e-g) i

:= σ αi v α , (5.13) 
H (e-g) := -L e + p α v α .

(

From Eqs. (5.11)-(5.14), the balance laws can be written in the following form

D t P (e-g) k -D i P (e-g) ki = F (g) k , (5.15) 
D t H (e-g) -D i S (e-g) i = W (g) , (5.16) 
where

F (g) k = -p i I ik + σ ij T ijk , (5.17) 
W (g) = σ ij I ij , (5.18) 
are the gauge invariant configurational force and power densities. In Eq. ( 5.17) we have two contributions to the configurational force density. The first term is the force density caused by a dislocation current density I ik in presence of a momentum field p i (see also [START_REF] Kluge | Über den Zusammenhang der allgemeinen Versetzungstheorie mit dem Cosserat-Kontinuum[END_REF][START_REF] Kluge | Zur Dynamik der allgemeinen Versetzungstheorie bei Berücksichtigung von Momentenspannungen[END_REF][START_REF] Schaefer | Energiesatz und Lagrange-Dichte in der Kontinuumstheorie der Versetzungen[END_REF]). The second term is the Peach-Koehler force density [START_REF] Peach | Forces extended on dislocations and the stress fields produced by them[END_REF] recovered in the gauge theory of dislocations. It gives the force density caused by a dislocation density T ijk in presence of a stress field σ ij . Here we call (5.17) the dynamical Peach-Koehler force density. Eq. (5.18) is the power density lost from a moving dislocation to the medium [START_REF] Holländer | The geometric equation of dislocation dynamics[END_REF][START_REF] Kluge | Über den Zusammenhang der allgemeinen Versetzungstheorie mit dem Cosserat-Kontinuum[END_REF][START_REF] Schaefer | Energiesatz und Lagrange-Dichte in der Kontinuumstheorie der Versetzungen[END_REF]. If we multiply (2.20) by v i and the second equation of (2.9) by σ ij and add each other, we get

v i ṗi + σ ij βij -D j (v i σ ij ) = σ ij I ij . (5.19) 
Therefore, (5.18) is the rating density of the elastic material. The corresponding J and I-integrals read

J (e-g) k := S P (e-g) ki n i dS - V D t P (e-g) k dV = - V F (g) k dV, (5.20) 
I (e-g) := S S (e-g) i n i dS - V D t H (e-g) dV = - V W (g) dV.
(5.21)

Static case

For a static theory the Eshelby stress tensors of the elastic subsystem have the following form 

P (e) ki = W e δ ki -σ αi u α,k , (5.22) 
P (e-g) ki = W e δ ki -σ αi β αk , (5.23) 
ki n i dS = V F (Sta) dV = V σ ij φ ij,k dV, (5.24) 
J (e-g) k

= S P (e-g) ki n i dS = V F (PK) dV = - V σ ij T ijk dV = V ǫ kjl σ ij α il dV, (5.25) 
where T ijk = ǫ ljk α il with the usual dislocation density tensor α il . The gauge invariant Eshelby stress tensor (5.23) is in agreement with the Eshelby stress tensor in incompatible elasticity derived by Kirchner [START_REF] Kirchner | The force on an elastic singularity in a nonhomogenous medium[END_REF], Lazar and Kirchner [START_REF] Lazar | The Eshelby stress tensor, angular momentum tensor and dilatation flux in gradient elasticity[END_REF]. It can be seen that the configurational force density in (5.24) is just given in terms of the force stress tensor and the gradient of the plastic distortion. But this is not the correct Peach-Koehler force. On the other hand, the gauge invariant expression (5.25) gives the correct gauge-invariant Peach-Koehler force.

Dislocation part

In the same manner we obtain for the canonical currents of the dislocation part

P (d) ki := -L di δ ki -D αi ϕ α,k + H αβi φ αβ,k , (5.26) P (d) 
k := -D αβ φ αβ,k , (5.27) S (d) i : 
= D αi φα -H αβi φαβ , (5.28) 
H (d) := -L di + D αβ φαβ (5.29) 
with the J and I-integrals of the dislocation subsystem

J (d) k := S P (d) ki n i dS - V D t P (d) k dV = V F k dV, (5.30) 
I (d) := S S (d) i n i dS - V D t H (d) dV = V W dV. ( 5.31) 
The gauge invariant currents of the dislocation part L di of the total Lagrangian L read

P (d-g) ki := -L di δ ki + D αi I αk -H αβi T αβk , (5.32) 
P (d-g) k := D αβ T αβk , (5.33) 
S (d-g) i := -H αβi I αβ , (5.34) 
H (d-g) := -L di + D αβ I αβ . (5.35) 
From them the configurational force and power can be calculated in the same way, as we did for the elastic part. If we use the Eqs. (5.26)-(5.29) and (5.32)-(5.35) for the calculation of the canonical and gauge invariant force and power, the same results as in the Eqs. (5.15), (5.16) and (5.17), (5.18) appear, but with opposite signs. The result is 

J (d-g) k := S P (d-g) ki n i dS - V D t P (d-g) k dV = V F (g) k dV, (5.36) 
I (d-g) := S S (d-g) i n i dS - V D t H (d-g) dV = V W (g) dV. ( 5 
I ij Ḋij + H ijk Ṫijk + D k (I ij H ijk ) = -σ ij I ij . (5.38) 
This is the power density lost by moving dislocations. Finally, the J and the I integrals of the total system may be decomposed into its elastic and dislocation parts according to

J k = J (e) k + J (d) k = 0,
(5.39)

I = I (e) + I (d) = 0.
(5.40)

The configurational force and power densities appearing in the elastic and dislocation subsystems are the result of the interaction of both subsystems. Without interaction between the elastic and dislocation parts no configurational force and power densities would appear and J (e) = 0, I (e) = 0 J (d) = 0, I (d) = 0. Of course the same is true for the gauge invariance parts.

Static case

The static Eshelby stress tensors of the dislocation subsystem are

P (d) ki = W di δ ki + H αβi φ αβ,k = W di δ ki -ǫ iβl H αl φ αβ,k , (5.41) 
P (d-g) ki = W di δ ki -H αβi T αβk = W di δ ki + ǫ iβl H αl T αβk , (5.42) 
with the J integrals For a dislocation theory without force stresses, σ ij = 0, the Eshelby stress tensors (5.41) and (5.42) are divergenceless and the J integrals (5.43) and (5.44) are zero. This is the case for a (force) stress-free configuration with pseudo-moment stresses only. Then the Euler-Lagrange equation (2.22) takes the form D i H αβi = 0.

J (d) k = S P (d) ki n i dS = - V F (Sta) dV = - V σ ij φ ij,k dV, ( 5 
(5.45)

If we use the so-called Einstein choice c 2 = -c 1 and c 3 = -2c 1 [START_REF] Lazar | An elastoplastic theory of dislocations as a physical field theory with torsion[END_REF][START_REF] Lazar | Screw dislocations in the field theory of elastoplasticity[END_REF], Eq. (5.45) (or Eq. (2.30)) reduces to the incompatibility condition for the elastic strain [START_REF] Kröner | Kontinuumstheorie der Versetzungen und Eigenspannungen[END_REF]: inc ǫ = 0, where ǫ = 1 2 (β+β T ). Anyway, the Eshelby stress tensors (5.41) and (5.42) are the Eshelby stress tensors of the dislocation part. Recently, Li et al. [START_REF] Li | On configurational compatibility and multiscale energy momentum tensors[END_REF] and Li [START_REF] Li | On variational symmetry of defect potentials and multiscale configurational force[END_REF] have used such an Eshelby stress tensor of dislocations without interaction with a force stress tensor. They called it compatibility momentum tensor. Furthermore, they have found conservation laws associated with compatibility conditions of continua. But, in fact, they investigated the static dislocation part without force stresses and they found (5.45) as compatibility condition and the J (d) , L (d) and M (d) integrals of the dislocation subsystem. It is obvious that such conservation laws are not a "new" class of conservation laws. If the Peach-Koehler force is zero, they are conservation laws. Thus, it is misleading to call (5.41) a compatibility momentum tensor. are given by (5.1) and (5.2), respectively. The rotational balance law of the elastic part is calculated

D t M (e) k -D i M (e) ki = ǫ kmj x m F j + (v m p j -β ml σ jl -β lm σ lj ) -ϕ m p j + φ ml σ jl + φ lm σ lj , (5.48) 
where so-called configurational vector moments appear as source terms. In Eq. ( 5.48) the first part is a moment produced by the configurational force F j , the next three parts are the isotropy condition which vanishes if the constitutive relation between σ and β is isotropic. The other source terms are caused by the gauge potential which are the plastic fields. The L integral reads now as

L (e) k := S M (e) 
ki n i dS -

V D t M (e) k dV = V ǫ kjm (x m F j + (v m p j -β ml σ jl -β lm σ lj )
ϕ m p j + φ ml σ jl + φ lm σ lj dV.

(5.49)

Static case

In the static case, the angular momentum tensor (5.46) is given in terms of the static Eshelby stress tensor (5.22). Eventually, the static L-integral of the elastic subsystem reads

L (e) k = S M (e) ki n i dS = V ǫ kjm (x m F (Sta) j
-(β ml σ jl + β lm σ lj ) + φ ml σ jl + φ lm σ lj dV.

(5.50)

Dislocation part

For the dislocation part of the system with the Lagrangian L di and P + D jl φ ml + D lj φ lm ).

(5.52)

Now the rotational balance law of the dislocation subsystem is given by The corresponding L integral reads

D t M (d) k -D i M (d) ki = -ǫ kmj x m F j -(v m p j -β ml σ jl -β lm σ lj ) + um p j + u m,l σ jl + u l,m σ lj -I ml D jl -I lm D lj + 1 2 T mil H jil + T lim H lij ). ( 5 
L (d) k = S M (d) ki n i dS - V D t M (d) k dV = - V ǫ kjm x m F j -(v m p j -β ml σ jl -β lm σ lj ) + um p j + u m,l σ jl + u l,m σ lj -I ml D jl -I lm D lj + 1 2 T mil H jil + T lim H lij dV. (5.54)
Finally, we get the decomposition of the L integral into the elastic and dislocation parts according

L k = L (e) k + L (d)
k .

(5.55)

Static case

For the static case, the angular momentum tensor of the dislocation part is

M (d) ki = ǫ kmj (x m P (d) ji -H jli φ ml -H lji φ lm ), = ǫ kmj (x m P (d) ji -ǫ lin H jn φ ml ) -δ ki H ln φ ln + H lk φ li (5.56)
with the static L integrals as follows

L (d) k = S M (d) ki n i dS = V ǫ kjm x m F (Sta) j -(β ml σ jl + β lm σ lj ) + u m,l σ jl + u l,m σ lj + 1 2 T mil H jil + T lim H lij dV. (5.57) 
Of course, for an isotropic material in a force stress-free state Eq. (5.57) is a conservation law. and H (e) are given by (5.1)-(5.4). The corresponding balance law reads

Scaling in space

D t Y (e) -D i Y (e) i = -t W + x k F k + d 2 p α φ α - d 2 σ αβ φ αβ .
(5.60)

For the path-independent M k integral we obtain ji + d u σ ji u j .

M (e) := S Y (e) i n i dS - V D t Y (e) dV = V t W -x k F k - d 2 p α φ α + d 2 σ αβ φ αβ dV. ( 5 
(5.62)

The static M integral of the elastic subsystem reads

M (e) = S Y (e) i n i dS = - V x k F k - d 2 σ αβ φ αβ dV.
(5.63)

Dislocation part

For the canonical currents of the dislocation part from Eqs. (5.26)-(5.29) we get

Y (d) i := x j P (d) ji -t S (d) i + d ϕ D ji ϕ j -d φ H jli φ jl , (5.64) 
Y (d) := x j P (d) j -t H (d) + d φ D jl φ jl .
(5.65)

In general, the balance law derived from the dislocation part is given by

D t Y (d) -D i Y (d) i = t W -x k F k + d ϕ p α ϕ α -d φ σ αβ φ αβ -d ϕ + d -2 2 D αβ ϕ α,β + d φ + d -2 2 D αβ φαβ - 1 2 d φ + d -2 2 H αβk T αβk . (5.66) 
Using (4.58), the balance law (5.66) gets the form

D t Y (d) -D i Y (d) i = t W -x k F k - d 2 p α ϕ α + d 2 σ αβ φ αβ -2L di .
(5.67)

In integral form it reads

M (1-d) := S Y (d) i n i dS - V D t Y (d) dV = - V t W -x k F k - d 2 p α φ α + d 2 σ αβ φ αβ -2L di dV.
(5.68)

If we use (4.61), we obtain from (5.66) the following balance law

D t Y (d) -D i Y (d) i = t W -x k F k - d -2 2 p α ϕ α + d -2 2 σ αβ φ αβ .
(5.69)

For vanishing source terms of the Euler-Lagrange equations (2.21) and(2.22), the balance law (5.69) reduces to a conservation law. In integral form we have

M (2-d) := S Y (d) i n i dS - V D t Y (d) dV = - V t W -x k F k - d -2 2 p α φ α + d -2 2 σ αβ φ αβ dV.
(5.70)

Finally, the decomposition of the M integral into the elastic and dislocation parts read

M (1) = M (e) + M (1-d) , (5.71) 
M (2) = M (e) + M (2-d) .

( 

Y (d) i = x j P (d) ji + d φ H jli φ jl = x j P (d) ji -d φ ǫ ilm H jm φ jl .
(5.73)

The static M integrals of the dislocation subsystem with the choices (4.61) and (4.61) are given by = σ ji f j,i .

M (1-d) = S Y (d) i n i dS = V x k F (Sta) k - n 2 σ αβ φ αβ + 2W di dV, (5.74) M (2-d) = S Y (d) i n i dS = V x k F (Sta) k - n - 
(5.84)

For σ ji = 0 (stress-free state), the balance law (5.84) becomes a conservation law. This is the case for a pure dislocation theory without force stresses. If f j,i = constant, we recover the symmetry of constant pre-distortion used by Li et al. [START_REF] Li | On configurational compatibility and multiscale energy momentum tensors[END_REF] and Li [START_REF] Li | On variational symmetry of defect potentials and multiscale configurational force[END_REF].

5.5 Addition of solutions We have presented the equations of motion for the translational gauge field theory of dislocations with asymmetric stresses. For this purpose we have chosen the most general linear isotropic constitutive equations. The Lie-point symmetries leaving these system of equations form-invariant have been discussed. According to the Noether theorem, from the variational and divergence symmetries for the total Lagrangian density the currents in canonical form and the local conservation laws for the translational and rotational invariance have been derived. The form of the local balance law for the broken scaling symmetry has been found. The gauge-invariant currents have also been obtained. Taking into account only the elastic or dislocation part of the total Lagrangian density we have shown how the local conservation laws for the continuous transformation of translation and rotation turned into balance laws giving rise to a configurational force and moment. In this manner we have found the dynamical Peach-Koehler force. In addition we have calculated the configurational power for both parts. Since no external forces and moments act on the whole system described by the total Lagrangian the energy, linear and angular momentum are conserved. We also derived the conservation and balance laws for the gauge symmetry and the addition of solutions. Using the divergence symmetry of addition of solutions, we were able to derive a reciprocity theorem for the gauge theory of dislocations. In addition, we have derived the conservation laws for (force) stress-free states of dislocations . If we identify φ ij = -β P ij with the plastic distortion, our results and the formal structure of currents keep valid in gradient plasticity. 

( 3

 3 

  ki = ǫ kmj x m P ji ,(4.37)

d 2 and φ ij has -d-2 2 .

 2 With d = 4, we obtain d u = -1, d ϕ = -1 and d φ = -1. Now the scaling balance law (4.57) reads

  .71) Using Betti's reciprocal theorem, the fields B i and B 4 are of the form B i = -u α σαiϕ α Dαi + φ αβ Hαβi , (4.72) B 4 = u α pα + φ αβ Dαβ . (4.73)

  .83) H (g) := -L + p α v α + D αβ I αβ . (4.84) From the canonical local conservation laws (4.18)-(4.21) we can obtain the gauge invariant conservation laws D t P (g) k -D i P (g) ki = 0, (4.85) D t H (g) -D i S terms cancel each other out and

5

  .87) because of the antisymmetry of H i[jk] in the last two indices. By the help of the Gauss theorem, we get the momentum and energy conservation laws for the gauge invariant quantities in integral formJ i n i dS -V D t H (g) dV = 0.(4.89) Configurational force, moment and power

H

  (4.18)-(4.21) the following canonical quantities of the elastic subsystem P (e) ki := -L e δ kiσ αi u α,k , (e) := -L e + p α uα . (5.4) The local conservation laws (4.22) and (4.23) become now balance laws. At the right hand sides appear source terms called canonical configurational force and power. From Eqs. (5.1)-(5.4) we get D t P

  ) W = -p α φα + σ αβ φαβ .(5.8)The corresponding balance laws in integral form are given byJ i n i dS -V D t H (e) dV = -

20

 20 

1

 1 Elastic partIn the same way as we did for the translations, we find for the canonical currents for the elastic part of the system described by L el M (e) ki : = ǫ kmj (x m P (e) ji + u m σ ji ),

  [START_REF] Lubarda | On conservation integrals in micropolar elasticity[END_REF]) and(5.27) we get for the canonical currentsM (d) ki : = ǫ kmj (x m P (d) ji + D ji ϕ m -H jli φ ml -H lji φ lm ),

2 2 σ

 2 αβ φ αβ dV.(5.75) If σ ij = 0 (stress-free state), then only (5.75) is a conservation law. -σ ji f j , (5.76)G (e) := -p j f j ,(5.77)we getD t G (e) -D i G(e)i = -p j ḟj + σ ji f j,i .(5.78)It is obvious that for f i = constant, Eq. (5.78) becomes a conservation law.For the static case, we obtainD i G (e) i = -σ ji f j,i .(5.79)5.4.2 Dislocation partFor the dislocation part, the flux quantities areG (d) i := D ji ḟj -H jki f j,k ,(5.80)G (d) := D ji f j,i ,(5.81)with the balance lawD t G (d) -D i G (d) i = p j ḟjσ ji f j,i .(5.82)If f i = constant, Eq. (5.82) becomes a conservation law.For the static case, we getG (d) i = -H jki f j,k = ǫ ikl H jl f j,k ,(5.83)

5. 5 . 1 i 5 =

 515 Elastic partFrom Eqs. (4.74) and (4.75) we obtain for the elastic subsystemA (e) i = -ū α σ αi + u α σαi ,(5.85)A (e) 4 = ūα p αu α pα .(5.86)They fulfill the corresponding balance lawD t A = p α uαpα uασ αi ūα,i + σαi u α,i(5.87)For the static case we have the balance lawD i A (e) i = -σ αi ūα,i + σαi u α,i .(5.88)5.5.2 Dislocation partFrom Eqs. (4.74) and (4.75) we obtain for the dislocation subsystemA (d) i = -φα D αi + φαβ H αβi + ϕ α Dαiφ αβ Hαβi ,(5.89)A (d) 4 = φαβ D αβφ αβ Dαβ .(5.90)These quantities lead to the following balance lawD t A (d) 4 + D i A (d) i = p α φαpα ϕ ασ αi φαi + σαi φ αi .(5.91)If the source terms are zero (p α = 0, pα = 0, σ αi = 0 and σαi = 0) the balance law (5.91) becomes a conservation law.In the static case we haveA (d) i = φαβ H αβiφ αβ Hαβi = ǫ iβk φ αβ Hαkφαβ H αk (-σ αi φαi + σαi φ αi .(5.93)If σ αi = 0 and σαi = 0 (stress-free state), the balance law (5.93) becomes a conservation law.

  Although all local conservation and balance laws for the total system can be brought in the gauge invariant form, this is not true for all the currents. Only the canonical currents (4.18)-(4.21) coming from the translational symmetry can be written in terms of gauge invariant quantities. For rewriting P ki , we use the Eq. (2.4) for the distortion, the dislocation current and torsion density tensor (2.8) and the Eq.(2.22). For P k we use also the same equations as for the canonical Eshelby-stress tensor, but instead of Eq. (2.22), Eq. (2.21) is now needed. For rewriting H, we use the Eq. (2.4) for the kinematical velocity, the dislocation current density (2.8) and also the Eq.(2.21). For S i we use the same equations as for the canonical energy density, but instead of (2.21), Eq. (2.22) is used. The result reads as ki -D t (D αi φ αk ) + D β (H αβi φ αk ),(4.77) 

	4.2 Gauge-invariant currents
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  If we multiply(2.22) by I ij and the second equation of (2.10) by H ijk and add each other, we obtain
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  Static caseIn the static case, the scaling vector (5.64) is given in terms of the static Eshelby stress tensor (5.41) as follows
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