All you need to know about the Dirac equation
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A very brief introduction is given to all that is needed to appreciate the formal structure of the Dirac equation and why -without destroying this structure -it cannot be reduced to a Paul-Schrödinger type equation.

Introduction

Since about 30 years I run around in Europe and in the USA and tell everybody in the field that if relativistic effects are important for a certain physical phenomenon, one has to use the Dirac equation rather than the Pauli-Schrödinger equation. Nearly as long as this I am confronted with the canonical question, but how big are the relativistic effects? Usually whenever this question was posed in the past it was accompanied by a pitiful smile which clearly was intended to indicate that I obviously was addressing something completely irrelevant. The perhaps less sarcastic reply consisted frequently in a friendly statement that I should not worry since all that is needed is to throw in some spin-orbit interaction. My standard reply, namely the counterquestion of why should I neglect completely Einstein and his special theory of relativity, usually was brushed aside with the comment that we are in solid state physics and not astrophysics. This kind of attitude was (is) perhaps best expressed by Richard Feynman in his Six Not-So-Easy Pieces [START_REF] Feynman | Six-Not-So-Easy Pieces[END_REF], quoted below:

Newton's Second Law, which we have expressed by the equation

F = d(mv)/dt ,
was stated with the tacit assumption that m is a constant, but we now know that this is not true, and that the mass of a body increases with velocity. In Einstein's corrected formula m has the value

m = m 0 p 1 -v 2 /c 2 ,
where the "rest mass" m 0 represents the mass of a body that is not moving and c is the speed of light, which is about 3.10 5 km.sec -1 or about 186 000 mi.sec -1 .

For those who want to learn just enough about it so they can solve problems, that is all there is to the theory of relativity -it just changes Newton's laws by introducing a correction factor to the mass. From the formula itself it is easy to see that this mass increase is very small in ordinary circumstances. . . .

Fortunately for me it turned out that solid state physics nowadays is ruled by nanoscience. And we all know that without relativity there would not be magnetic anisotropies, there would be no perpendicular magnetism. Without relativistic effects the development in information technology would have been minute. Without relativistic effects none of the beautiful GMR devices we have in nearly all daily life devices would make sense. It seems that lately there are only a few colleagues left that intentionally ignore relativistic effects because of not being familiar with a proper treatment of such effects.

In this contribution a very short summary of "relativity essentials" will be given. In particular it will be pointed out why a so-called "four-component" theory cannot be reduced to a "two-component" scheme without destroying the inherent algebraic structure that follows from the general postulates of quantum mechanics and Einstein's (special) theory of relativity. The arguments given are based on two completely different stand-points of view, namely (a) application of group theory and (b) making use of the condition of relativistic covariance. The basics of these arguments are not new, however, I hope it perhaps helps to repeat them yet another time.

Minkowski-space

Suppose the set of space-time vectors is given by

M = {x μ } , (1) 
x μ ≡ (x 0 , x 1 , x 2 , x 3 ) = (x 0 , x k ) = (ct, r) , (2) 
μ = 0, 1, 2, 3 , k = 1, 2, 3 ,
where x 0 = ct is the time component and r = (x 1 , x 2 , x 3 ) the space component of an arbitrary space-time vector x μ . For any arbitrary pair of elements x, y ∈ M the scalar product in M is defined as follows

(x, y) ≡ 3 X μ=0 x μ y μ = x 0 y 0 - 3 X k=1 x k y k , (3) 
and in particular therefore the norm as

k x k = (x, x) = x 0 x 0 -(r, r) . (4) 
The metric in M is said to be pseudo-euclidean, since the metric tensor g μν is of the following form

g μν = ⎛ ⎜ ⎜ ⎝ 1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1 ⎞ ⎟ ⎟ ⎠ = µ 1 0 0 -1 3 ¶ = g μν . ( 5 
)
The set M is sometimes also called Minkowski space.

In M a vector a is called contravariant (usually denoted by e.g. a μ ) if it "transforms like a space-time vector" x μ and covariant (usually denoted by, e.g., a μ ) if it transforms like ∂/∂x μ . The transformation of a contravariant vector by means of the metric tensor g μν yields a covariant vector:

a μ = 3 X v=0 g μν a ν ≡ g μν a ν , (6) 
while by the opposite procedure a contravariant vector is obtained:

a μ = 3 X v=0 g μν a ν ≡ g μν a ν . (7) 
It should be noted that in either case a 0 = a 0 . The implicit summation over repeated indices as indicated in the last two equations is usually called the Einstein sum convention. The product of the metric tensor with itself

3 X ρ=0 g μρ g ρν ≡ g μρ g ρν = δ μ ν , δ μ ν = ½ 1 , ν = μ 0 , ν 6 = μ , (8) 
is a unit matrix. A vector a μ is called a space-like vector if its norm a μ a μ < 0 and oppositely a time-like vector if the norm is positive. Defined in M the gradient can be written as a covariant vector ∂ μ ,

∂ μ ≡ ∂ ∂x μ = ( ∂ ∂x 0 , ∂ ∂x 1 , ∂ ∂x 2 , ∂ ∂x 3 ) = ( ∂ ∂ct , ∇) , (9) 
or, as a contravariant vector ∂ μ ,

∂ μ = ( ∂ ∂ct , -∇) , (10) 
whereby

∂ μ ∂ μ ≡ ¤ = 1 c 2 ∂ 2 ∂t 2 -∇ • ∇ = 1 c 2 ∂ 2 ∂t 2 -∆ (11) 
usually is called the D'Alembert operator.

If A = A(r, t) denotes the vector potential and φ =φ(r, t) the scalar potential then the electromagnetic field can be written as the following contravariant vector A μ ,

A μ = (φ, A) , (12) 
such that the electric and magnetic field, E and H, respectively, are given by

E = (E x , E y , E z ) = -∇φ - ∂A ∂x 0 , (13) 
H = (H x , H y , H z ) = rotA . (14) 
The so-called electro-magnetic field tensor F μν , formally written as

F μν = ∂A ν ∂x μ - ∂A μ ∂x ν , (15) 
is an antisymmetric tensor in M , whose elements are given by the components of E and H,

F μν = ⎛ ⎜ ⎜ ⎝ 0 E x E y E z -E x 0 -H z H y -E y H z 0 -H x -E z -H y H x 0 ⎞ ⎟ ⎟ ⎠ . ( 16 
)
The gradient and the electromagnetic field vectors finally can be combined to yield the following four component vector D μ

D μ = δ μ + ieA μ = ( ∂ ∂x 0 + ieφ, -∇ + ieA) . ( 17 
)
3 Poincaré and Lorentz transformations Poincaré transformations are inhomogeneous (linear transformations that preserve the quadratic form x μ x μ ), i.e., the norm in M . Such a transformation is defined by

(x μ ) 0 = Ω μ v x υ + a μ , (18) 
where (x μ ) 0 is the transformed vector, Ω μ v a space-time point operation Ω, which keeps the origin invariant, and a μ a translation. If (Ω | a) denotes the operator that maps x μ on (x μ ) 0 ,

(Ω | a)x μ = Ω μ v x υ + a μ = (x μ ) 0 , (19) 
then the matrix Ω μ v is the representation of the corresponding space-time point operation, whereby matrices like Ω μυ and Ω μν can be obtained by using the metric tensor g μν as follows From the condition that the norm has to be left invariant and that the transformations are real, the properties of the matrices Ω ν μ can be deduced, namely

Ω μν = g ρ ν Ω μ ρ .
Ω * μυ = Ω μυ , (20) 
Ω μυ Ω μλ = Ω νμ Ω λμ = δ λ ν , (21) 
det | Ω μ v | = ±1 . ( 22 
)
The set of operators (Ω/a) forms a group, the so-called Poincaré group,

P = {(Ω | a) | (Ω | a)(Ω 0 | a 0 ) = (ΩΩ 0 | Ωa 0 + a)} , (23) 
in which the identity element ( | 0) has the following representation for the pure space-time point operation

D( ) = µ 1 0 0 1 3 ¶ . ( 24 
)
Similarly, the pure time-inversion operator (T | 0) and pure space inversion operator (J | 0) are defined by the representations of their corresponding space-time point operations

D(T ) = µ -1 0 0 1 3 ¶ , D(J) = µ 1 0 0 -1 3 ¶ . ( 25 
)
The set of operator (Ω | a) for which Ω 00 > 0, i.e., which preserve the direction of time, forms a subgroup P ⊂ P of index two:

P = {(Ω | a) | Ω 00 ≥ 0} , (26) 
since the complement (P -P ) is defined by

(P -P ) = { (Ω | a) | (Ω | a) = (Ω | a)(T | 0)} . (27) 
P is called orthochronous Poincaré group, which in turn has a subgroup of index two, namely the so-called proper orthochronous Poincaré group, P + , which is the set of time conserving transformations for which det | Ω μ v | = 1:

P + = {(Ω | a) | Ω 00 ≥ 0, det | Ω μ v | = 1} . ( 28 
)
In terms of left cosets, the Poincaré group P ⊃ P ⊃ P + can therefore be written as

P = {P , (T | 0)P } , (29) 
P = {P + , (J | 0)P + } . (30) 
These three Poincaré groups contain as corresponding subgroups all those operations for which the translational part is zero, i.e., a = 0:

L = {(Ω | a)} = {L, (T | 0)L} , (31) 
L = {L + , (J | 0)L + } . (32) 
L is called Lorentz group, L orthochronous Lorentz group and L + proper orthochronous Lorentz group.

The subset of operators of the Poincaré group that corresponds to pure space translations only also forms a subgroup, the so-called Euclidean group:

P ⊃ E = {(Ω | a) | ∀a 0 = 0} . ( 33 
)
The corresponding subgroup of the Lorentz group is the familiar Rotation-Inversion group in R 3 . It should be appreciated that the above very brief characterization in terms of the left coset representatives (T | 0) and (J | 0) most likely is the most compact way of viewing the general structure of these groups. Specific aspects of group theory, namely in particular representation theory, will also be used in the following sections in order to pin-point the relation between Paul spin matrices and Dirac matrices. For historical reasons it has to be mentioned that of course Dirac in his 1928 paper [START_REF] Dirac | [END_REF] carefully "checked" the Lorentz invariance of his newly found equation in an extensive separate section. 

H = eφ + p (p -eA) 2 + m 2 , ( 34 
)
where φ is the scalar potential, A the vector potential and p the momentum. Assuming now in accordance with the postulates of quantum mechanics that the probability density ρ = ψ * ψ is positive definite then it follows immediately that the corresponding Hamilton operator, Ĥ has to be Hermitian, since:

Z ∂ρ ∂t |{z} linear d 3 x = - i ~Z ³ ψ * Ĥ ψ -( Ĥ ψ) * ψ ´d3 x = 0 . ( 35 
)
For the sake of simplicity in the following discussion only the Hamilton function in the absence of a field shall be considered:

H = p p 2 + m 2 . ( 36 
)
Since the lhs of ( 35) is linear in ∂/∂t ≡ ∂/∂x 0 , see in particular Eq. ( 9), this implies that also Ĥ on the rhs of (35) has to be linear with respect to ∂/∂x k , k = 1, 3, i.e., with respect to components of the momentum operator p. This condition is usually called the condition of relativistic covariance.

If one replaces according to the correspondence principle E → i∂/∂t and p → -i∇, i.e.,

Ĥ ψ = i∂ ∂t |{z} linear ψ = ³ p p2 + m 2 | {z } has to b e linear ψ , (37) 
one immediately can see that the condition of linearity cannot be fulfilled in a straightforward manner, since the square root is not a linear operator. As is perhaps less known the Dirac problem [START_REF] Dirac | [END_REF][START_REF] Dirac | The Principles of Quantum Mechanics[END_REF], but also the problem of Pauli's spin theory [START_REF] Pauli | Die allgemeinen Prinzipien der Wellenmechanik[END_REF], can be viewed in terms of a special polynomial algebra [START_REF] Raghavaryulua | [END_REF].

Polynomial algebras

Let P 2 (x) be a second order polynomial of the following form

P 2 (x) = a 21 X i6 =j x i x j + a 22 X j x 2 j , i,j = 1, 2, . . . , m , (38) 
where the a ij are elements of a symmetric matrix. Consider further that the linear form

L(x) = m X j=1 α j x j (39) 
satisfies the condition

P 2 (x) + L 2 (x) = 0 , (40) 
then the set of coefficients {α j } has to satisfy the following properties [START_REF] Raghavaryulua | [END_REF]:

i = j : [α i , α j ] + = -2a 22 I , (41) 
i 6 = j : [α i , α j ] + = -a 21 I , (42) 
where I denotes the identity element in {α j } and [, ] + anticommutators. The set of coefficients {α j } is called an associative algebra. Two special cases carry famous names, namely 

a 21 = a 22 = 0 → [α i , α j ] + = 0 , (43) 
a 21 = 0 , a 22 = -1 → [α i , α j ] + = 2δ ij , (44) 
the so-called Clifford algebra. Comparing now Eq. (37) with Eq. ( 36) one can see that exactly the case of the Clifford algebra is needed in tackling the problem of the linearization of the square root:

v u u t ( m X j=1 p 2 j ) | {z } P2(p) = m X j=1 α j p j | {z } L(p) . ( 45 
)
In the following first the case for m = 2 and 3 (Pauli spin theory) is discussed by considering the smallest groups with Clifford algebraic structure and only then in a similar way the Dirac problem (m = 4) is addressed. For m = 2 the smallest set of elements α i that shows group closure [START_REF] Jansen | Theory of Finite Groups[END_REF][START_REF] Altmann | Induced Representations in Crystals and Molecules[END_REF][START_REF] Altmann | Rotation, Quaternions and Double Groups[END_REF] is given by

G (m=2) P = {±I, ±α 1 , ±α 2 , ±α 1 α 2 } . ( 46 
)
This group is of order 8 and has 5 classes (C i ), as easily can be found out by using Eq. ( 44)

Table 1: class structure of G (m=2) P C 1 : {I} C 2 : {-I} C 3 : {±α 1 } C 4 : {±α 2 } C 5 : {±α 1 α 2 }
There are therefore 5 irreducible representations (Γ

(m=2) i , i = 1, 5) of dimensions n i such that 5 X i=1 n 2 i = 8 . (47) 
This implies that 4 irreducible representations (Γ

, i = 1, . . . , 4) have to be one-dimensional and one twodimensional. Since one-dimensional representations are commutative, i.e., do not satisfy the conditions of a Clifford algebra, only the two-dimensional representation (Γ

(m=2) 5
) is of help. The matrices for this irreducible representation are listed below:

Γ (m=2) 5 (±I) = ± µ 1 0 0 1 ¶ , Γ (m=2) 5 
(±α

1 ) = ± µ 0 1 1 0 ¶ , Γ (m=2) 5 (±α 2 ) = ± µ 0 -i i 0 ¶ , Γ (m=2) 5 
(±α

1 α 2 ) = ± µ i 0 0 -i ¶ . ( 48 
)
Using this set of matrices it is easy to show that it indeed forms a representation of G (m=2) P

and that these matrices are Clifford algebraic. For the case of m = 2 the problem of the linearization of the square root is therefore solved: For m = 3 the smallest set of elements σ i forming a group is given by

q p2 1 + p2 2 µ 1 0 0 1 ¶ = p1 µ 0 1 1 0 ¶ + p2 µ 0 -i i 0 ¶ . (49) 
G (m=3) P = {±I, ±α 1 , ±α 2 , ±α 3 , ±α 1 α 2 , ±α 1 α 3 , ±α 2 α 3 , ±α 1 α 2 α 3 } . ( 50 
)
The order of this group is 16. It has 10 classes,

Table 2: class structure of G (m=3) P C 1 : {I} C 6 : {±α 1 α 2 } C 2 : {-I} C 7 : {±α 1 α 3 } C 3 : {±α 1 } C 8 : {±α 2 α 3 } C 4 : {±α 2 } C 9 : {α 1 α 2 α 3 } C 5 : {±α 3 } C 10 : {-α 1 α 2 α 3 }
and therefore 10 irreducible representations, 

10 X i=1 n 2 i = 16 , (51) 
(α 1 ) = Γ (m=2) 5

(α 1 ) , Γ (m=3) 9 
(α 2 ) = Γ (m=2) 5 (α 2 ) , (52) 
provided that the corresponding matrix for α 3 is defined by

Γ (m=3) 9 (α 3 ) = -iΓ (m=3) 9 
(α 1 )Γ

(m=3) 9 (α 2 ) . (53) 
The second two-dimensional irreducible representation (Γ (m=3) 10

) is by the way the complex conjugate representation of Γ (m=3) 9

. It is rather easy to proof that these two irreducible representations are indeed non equivalent. For the m = 3 case the problem of the linearization of the square root reduces therefore to the following matrix equation:

q p2 1 + p2 2 + p2 3 Γ (m=3) 9 (I) = p1 Γ (m=3) 9 (α 1 ) + p2 Γ (m=3) 9 (α 2 ) + p3 Γ (m=3) 9 (α 3 ) . (54) 
The matrices 

Γ (m=3) 9 (α 1 ) ≡ σ 1 = µ 0 1 1 0 ¶ , Γ (m=3) 9 (α 2 ) ≡ σ 2 = µ 0 -i i 0 ¶ , Γ (m=3) 9 (α 3 ) ≡ σ 3 = µ 1 0 0 -1 ¶ , ( 55 

The Dirac group

For m = 4 the following subset of the Clifford algebra forms the smallest group

G (m=4) D = {±I, ±α i (i ≤ 4), ±α i α j (i < j), ±α i α j α k (i < j < k) , ±α 1 α 2 α 3 α 4 ≡ ±α 5 } , (56) 
where "traditionally" the elements α i are usually denoted in the literature also by γ μ . 

(m=4) D C 1 : {I} C 2 : {-I} C 3-6 : {±α i | i ≤ 4} C 7-12 : {±α i α j | i < j ≤ 4} C 13-16 : {±α i α j α k | i < j < k ≤ 4} C 17 : {±α 1 α 2 α 3 α 4 }
and therefore 17 irreducible representations.

As easily can be checked in analogy to Eq. ( 47) 16 of these irreducible representations (Γ (m=4) i

, i = 1, . . . , 16) are one-dimensional and one is four-dimensional (Γ (m=4) 17

). Again only the matrices of the four-dimensional irreducible representation satisfy the conditions of the Clifford algebra.

The following matrices

Γ (m=4) 17 (α i ) ≡ α i ≡ γ i = µ 0 σ i σ i 0 ¶ , i = 1, 2, 3 , (57) 
Γ (m=4) 17 (α 4 ) ≡ β ≡ γ 4 = µ I 2 0 0 -I 2 ¶ , ( 58 
)
where the σ i are the Pauli spin matrices and I 2 is a two-dimensional unit matrix, are then irreducible representatives of the elements α i ∈ G . This implies that in a coset decomposition of

G (m=4) D in terms of G (m=2) P , G (m=4) D = {IG (m=2) P , α 3 G (m=2) P , α 4 G (m=2) P , α 3 α 4 G (m=2) P } , (60) 
left and right cosets are identical,

α 3 G (m=2) P = {±α 3 , ±α 3 α 1 , ±α 3 α 2 , ±α 3 α 1 α 2 } = = {±α 3 , ±α 1 α 3 , ±α 2 α 3 , ±α 1 α 2 α 3 } = G (m=2) P α 3 , (61) 
and that

G (m=2) P consists of complete classes of G (m=4) D
, see Table 3, denoted for a moment as

C i (G (m=4) D
),

G (m=2) P = {C 1 (G (m=4) D ), C 2 (G (m=4) D ) , C 3 (G (m=4) D ), C 4 (G (m=4) D ), C 5 (G (m=4) D )} . ( 62 
)
It should be noted that G , respectively, which, however, is reducible. Such representations are called subduced representations. Reducing these two representations (for example by means of the orthogonality relation for characters), one finds the following decompositions into irreducible representations:

(m=3) P is not a normal subgroup in G (m=4) D , since C 17 (G (m=4) D ) = C 9 (G (m=3) D ) ∪ C 10 (G (m=3) D ) . (63 
Γ (m=4) 17 (G (m=2) P ) = 2Γ (m=2) 5 (G (m=2) P ) , (64) 
and

Γ (m=4) 17 (G (m=3) P ) = Γ (m=3) 9 (G (m=3) P ) + Γ (m=3) 10 (G (m=3) P ) = Γ (m=3) 9 (G (m=3) P ) + ³ Γ (m=3) 9 (G (m=3) P ) ´ * . ( 65 
)
Since the irreducible representation

Γ (m=4) 17 of G (m=4) D
always subduces only the group of the Pauli spin matrices (and their complex conjugates), there is no way to linearize properly the square root p p 2 + m 2 for a four-component momentum in terms of 2×2 matrices only! In other words: there is no other "truly" relativistic description but the one using the Dirac matrices:.

I 4 ⎛ ⎜ ⎝p 2 1 + p2 2 + p2 3 | {z } p2 + p2 4 |{z} m 2 ⎞ ⎟ ⎠ 1/2 = α 1 p1 + α 2 p2 + α 3 p3 + β p4 (66) 
Eq. ( 66) is nothing but a consequence of the condition of relativistic covariance! It is interesting to note that oppositely by inducing representations of G 

Fundamental theorem of Dirac matrices

One can summarize the properties of these three groups very compactly in the below short table: The so-called fundamental theorem of Dirac matrices, namely that a necessary and sufficient condition for a set of 4 matrices γ 0 i to be Dirac matrices, i.e., to be irreducible and Clifford algebraic, is that they have to be obtained via a similarity transformation W from the matrices in (57,58):

γ 0 i = W -1 γ i W , i = 1, 4 , (67) 
is in the context of the Dirac group nothing but Schur's lemma for irreducible representations. Of course Dirac in his famous paper [START_REF] Dirac | [END_REF] did not use group theory, nor did he realize that his matrices were Clifford algebraic. He found "his" matrices by trial and error, knowing very well, however, that if quantum mechanics and Einstein's special theory of relativity were to be compatible at all then only on the condition that the postulates of quantum mechanics had to be fulfilled rigorously.

In an appendix of his first paper he introduced also the so-called elimination method in order to arrive at expressions that at his time were very much en vogue, namely the Darwin term, the mass-velocity term and the spin-orbit term, the last of which causing so much confusion in the following decades. For matters of completeness his derivation of these terms is reformulated in the following section [START_REF] Rosicky | [END_REF].

The Pauli-Schrödinger equation

Considering for matters of simplicity a Dirac-type Hamiltonian for a non-magnetic system, in atomic units (~= m = 1),

H = cα • p + (β -I 4 ) c 2 + V I 4 , ( 68 
)
where c is the speed of light. In making use of the bi-spinor property of the wavefunction 3 ,

|ψi = µ |φi |χi ¶ , the corresponding eigenvalue equation, H |ψi = |ψi , (69) 
can be split into two equations, namely

cσ • p |χi -V |φi = |φi , ( 70 
) cσ • p |φi + ¡ V -2c 2 ¢ |χi = |χi .
Clearly, the spinor |χi can now be expressed in terms of |φi:

|χi = (1/2c) B -1 σ • p |φi , (71) 
B = 1 + ¡ 1/2c 2 ¢ ( -V ) , (72) 
leading thus to only one equation for |φi:

D |φi = ε |φi , (73) 
D = (1/2) σ • pB -1 σ • p + V . (74) 
6.1 The central field formulation

For a central field, V (r) = V (|r|), the operator D in Eq. ( 74) has the same constants of motion [START_REF] Rose | Relativistic Electron Theory[END_REF][START_REF] Bjorken | Relativistic Quantum Mechanics[END_REF][START_REF] Landau | Lehrbuch der Theoretischen Physik, Band IV, Relativistische Quantentheorie[END_REF] as the corresponding Dirac Hamiltonian, namely the angular momentum operators J 2 , J z , and 4. It should be noted that although all three terms on the right-hand side of Eq. ( 76) have a prefactor 1/4c 2 , i.e., are of relativistic origin, the only one, however, which explicitly depends on a (relativistic) quantum number, namely κ, is spin-orbit coupling.

K = β (1 + σ • L):
5. It should be noted in particular that dV /dr, has the unpleasant property of being singular for r → 0.

7 Comparison to the "radial Dirac equation"

Clearly in the case of a central field also Eq. ( 69) can be separated using polar coordinates, i.e., using the constants of motion J 2 , J z , and

K = β (1 + σ • L), h r | ψ κμ i = µ g κ (r) h r | κμi if κ (r) h r | -κμi ¶ , ( 77 
)
g κ (r) = P κ (r) r , f κ (r) = Q κ (r) cr , (78) 
where the radial amplitudes P κ (r) and Q κ (r) are solution of the following differential equation (in atomic Rydberg units)

dQ κ (r) dr = κ Q κ (r) r -( -V (r))P κ (r) , (79) 
dP κ (r) dr = -κ P κ (r) r + ( -V (r) c 2 + 1)Q κ (r) , (80) 
This radial differential equation has now to be compared to the one corresponding to the Pauli-Schrödinger equation (B

(r) = 1, ∀r) •µ - d 2 dr 2 + ( + 1) r 2 ¶ + V (r) -¸Rκ (r) = 1 4c 2 d(V (r)) dr κ r R κ (r) + 1 4c 2 • ( -V (r)) µ - d 2 dr 2 + ( + 1) r 2 ¶¸R κ (r) + 1 4c 2 • d(V (r)) dr d dr ¸Rκ (r) . (81) 
As easily can be seen, Eq. ( 81) is a second order differential equation, while Eqs. ( 79) -(80) form a system of coupled first order differential equations.

Remembering now that the key requirement for a proper inclusion of relativity into quantum mechanics is the condition of relativistic covariance, see in particular Eqs. ( 9) - [START_REF] Jansen | Theory of Finite Groups[END_REF], namely the condition of linearity for a relativistic Hamiltonian, see Eq. (37), when using the correspondence principle (one of the postulates of quantum mechanics), then one has to arrive immediately at the conclusion that the Pauli-Schrödinger equation does not meet this requirement. This equation only partially satisfies the postulates of (relativistic) quantum mechanics! It has, however, the big advantage that one immediately can prove that in the nonrelativistic limit (c → ∞) the Schrödinger equation is recovered, a fact which is less easy to be seen inspecting the Dirac equation.

It is utterly important not to confuse the "large component" g κ (r) in Eq. (77) or for that matter h r | φ Q i in Eq. (75) with a corresponding solution of the Schrödinger equation: only in the limit of c → ∞ such a relationship can be established. We all know that nowadays nearly all calculations in solid state physics are performed using Density Functional Theory (DFT), in particular local DFT. For a magnetic system the Kohn-Sham-Dirac Hamiltonian is given by

H(r) = cα • p + (β -I 4 ) c 2 + V ef f (r)I 4 + βΣ z B ef f z (r) , (82) 
where V ef f (r) is the effective potential, B ef f z (r) the effective exchange field and

Σ z = µ σ z 0 0 σ z ¶ . ( 83 
)
Because LDFT provides B ef f z (r) only with respect to a fictitious z-axis, in order to evaluate anisotropy energies for example, it is necessary to "rotate" H

S(R)H(R -1 r)S -1 (R) = H 0 (r) , (84) 
where S(R) is a 4 × 4 matrix transforming the Dirac matrices α i , β, and Σ i . Since β is a real matrix, it can be shown [START_REF] Jansen | Theory of Finite Groups[END_REF] that S(R) is of block-diagonal form,

S(R) = µ U (R) 0 0 det[±]U (R) ¶ , (85) 
where U (R) is a (unimodular) 2 × 2 matrix and det[±] = det[D (3) (R)] is the determinant of D (3) (R), the latter one being the representation of R in R 3 . Clearly enough by such a transformation not only βΣ z B ef f z (r) is transformed but also cα • p.

On the other hand considering a two-component formulation

H(r) = -∇ 2 I 2 + Ξ + V ef f (r)I 2 + σ z B ef f z (r) , (86) 
where for matters of simplicity Ξ contains all relativistic correction terms, one easily can see that of course ∇ 2 is unaffected by any rotation in spin space. This implies that by using a Kohn-Sham-Dirac operator the kinetic energy part is properly transformed (a special case of Lorentz group invariance), while in a two-component formulation it is not. Of course the Pauli-Schrödinger and the Dirac Hamiltonian do have different spectra.

Summary

The formal deficiencies of the Pauli-Schrödinger equation discussed above were in the past always my main arguments for insisting to use directly the Dirac equation and not some alternative two-component descriptions.

Clearly enough many more things can be said about the Dirac equation, see for example Refs. [START_REF] Messiah | Quantum Mechanics[END_REF][START_REF] Landau | Lehrbuch der Theoretischen Physik, Band IV, Relativistische Quantentheorie[END_REF]. Nowadays -as it seems -things have changed for very practical reasons as it is much easier to use the Dirac equation in actual calculations then fiddling around with the spin-orbit term in the Pauli-Schrödinger equation. The theoretical description of anisotropic magnetic properties of magnetic nanostructures, even of domain walls would not have been possible without this numerical advantage! To my great satisfaction the use of the time-dependent Dirac equation in the presence of an external electromagnetic field and of the concept of the so-called polarization operator led very recently [14] to a quantum mechanically correct identification of spin currents, spin-transfer, and spin-Hall effects, which in turn hopefully will lead to a completely new stage in spintronics! I very much would like to acknowledge the influence of my former teachers Per-Olov Löwdin (Uppsala, together with Harold MacIntosh), Simon Altmann (Oxford) and Walter Kohn (S. Barbara). While Per-Olov raised my interest in "formal structures", it was Simon, who completely indoctrinated me with group theory as a formal tool to view "structures". And Walter tought me to keep the right distance to my own research. 

  For a single particle of charge e and mass m the relativistic Hamilton function is given by 1 , c = 1,
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 2 The Pauli groups 4.2.1 The Pauli group for m = 2
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 2 The Pauli group for m = 3

of which 8

 8 (Γ (m=3) i , i = 1, 8) are one-dimensional and two (Γ (m=3) i , i = 9, 10) are two-dimensional. Again only the two-dimensional irreducible representations are Clifford algebraic.For α 1 and α 2 one can use the same matrix representatives as in the m = 2 case, Γ

1 , σ 2 and σ 3 .

 13 ) are nothing but the famous Pauli spin matrices, usually -as indicated in the last equation -denoted simply by σ For m = 2, 3 the corresponding groups, G Pauli groups (as indicated by the index P ).

.

  These particular representatives, usually as indicated above simply by α i and β, are the famous Dirac matrices, G (m=4) D is called the Dirac group.

4. 4

 4 Relations between the Dirac group & the Pauli groups 4.4.1 The subgroup structure The Dirac group G (m=4) D contains the Pauli groups as subgroups,

  here) one indeed obtains a 4 dimensional irreducible representation, namely Γ (m=4) 17

.

  

3 because of the block-diagonal form of the Dirac matrix β 10 PageJ 2

 102 |φi = j(j + 1) |φi , J 2 |χi = j(j + 1) |χi , J z |φi = μ |φi , J z |χi = μ |χi , (1 + σ • L) |φi = κ |φi , (1 + σ • L) |χi = -κ |χi ,

Table 3 :

 3 class structure of G

	The order of this group

Table 4 :

 4 summary of group properties for m ≤ 4

	m Group-	# of	# of one-	# of two-	# of four-
		order	classes dim. irreps dim. irreps dim. irreps
		2 m+1 m 2 + 1	2 m		
	2	8	5	4	1	0
	3	1 6	1 0	8	2	0
	4	32	17	16	0	1
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for a discussion of classical relativistic dynamics see e.g. the book by Messiah[START_REF] Messiah | Quantum Mechanics[END_REF].

this is exactly the algebra of creation and annihilation operators for fermions.

, ... ,

Their simultaneous eigenfunctions are the so-called spin spherical harmonics [START_REF] Rose | Relativistic Electron Theory[END_REF],

where the Y m (r) are (complex) spherical harmonics, Φ(± 1 2 ) the so-called spin eigenfunctions [START_REF] Pauli | Die allgemeinen Prinzipien der Wellenmechanik[END_REF] and the c( 1 2 ; μs, s) the famous Clebsch-Gordan coefficients [START_REF] Messiah | Quantum Mechanics[END_REF], which in turn are related to the Wigner 3j-coefficients [START_REF] Messiah | Quantum Mechanics[END_REF]. It is important to note that | , μsi Φ(s) is a tensorial product of functions belonging to different spaces.

Because of the constants of motion J 2 , J z , and 73) is separable with respect to the radial and angular variables, i.e., an eigenfunction of D belonging to a particular eigenspace of these constants of motions is then of the form

where the radial amplitudes R κ (r) are solutions of the following differential equation

Equation ( 76) shows a remarkably "physical structure" , namely 1. For c = ∞ (non-relativistic limit) this equation is reduced to the well-known radial Schrödinger equation.

2.

By approximating the elimination operator B in Eq. (72) by unity (B = 1) the so-called (radial) Pauli-Schrödinger equation is obtained. The terms on the right-hand side of Eq. ( 76) are then in turn the spin-orbit coupling, the mass velocity term, and the Darwin shift.

3. For B 6 = 1 relativistic corrections in order higher than c -4 , enter, e.g., via the normalization of the wavefunction.