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Size-Effects at a Crack-Tip Interacting with a Number of Voids

VIGGO TVERGAARD  AND  CHRISTIAN F. NIORDSON

Department of Mechanical Engineering, Solid Mechanics
Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

ABSTRACT – A strain gradient plasticity theory is used to analyze the growth of discretely represented voids 
in front of a blunting crack-tip, in order to study the influence of size-effects on two competing mechanisms 
of crack growth. For a very small void volume fraction the crack-tip tends to interact with one void at a time, 
while larger void volume fractions lead to simultaneous interaction of multiple voids on the plane ahead of the 
crack-tip. The present computations are stopped before coalescence of the nearest void with the crack-tip. 
Analyses are carried out for different values of the characteristic material length relative to the initial void 
radius. For a case showing the multiple void mechanism it is found that the effect of the material length can 
change the behaviour towards the void by void mechanism. A material model with three characteristic length 
scales is compared with a one length scale model and the differences are discussed. 

Keywords: Plasticity; finite strains; ductile fracture; crack growth; voids.

1. Introduction

The mechanism of crack growth in a ductile material is usually void growth to coalescence ahead of the 
crack-tip. The initiation of this process has been studied by analyses of the interaction between a blunting 
crack-tip and a neighbouring void by Rice and Johnson [1], McMeeking [2], Aravas and McMeeking [3] and 
Hom and McMeeking [4]. Using constitutive models for a porous ductile material, such as that of Gurson [5], 
is an alternative approach for studying the effect of voids near a crack-tip as analyzed by Needleman and 
Tvergaard, [6],  Rousselier, [7], Brocks et al. [8], Gao et al. [9],  Tvergaard and Needleman, [10].

Tvergaard and Hutchinson [11] have considered a multiple void version of the earlier plane strain 
studies to analyze ductile crack growth by discrete representation of up to six voids ahead of the tip. When 
there is only a single void ahead of the crack-tip, the focus is on the growth of this void in the large strain field 
that sweeps over the material ahead of the blunting crack-tip, and finally on the coalescence of the void with 
the crack front. However, the analysis with six voids ahead of the tip illustrated a competition between two 
mechanisms of ductile crack growth. For sufficiently low void volume fractions the blunting crack-tip first 
interacts with the nearest void until they have coalesced, then with the next void, etc., which defines the void 
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by void mechanism. The second mechanism involves the simultaneous interaction of multiple voids on the 
plane ahead of the crack-tip, both during initiation and during the subsequent crack growth. This multiple void 
mechanism was found to be active for somewhat larger void volume fractions. Recently, these mechanisms 
have been further studied (Tvergaard [12]) by considering a larger number of discretely represented voids and 
by using remeshing to follow the ligament necking process in more detail. Discretely represented cylindrical 
voids ahead of the crack-tip have also been considered by Petti and Dodds [13] with focus on the effect of the 
voids and the crack growth mechanism on cleavage fracture, using the Weibull stress model to quantify the 
effect of stress concentrations in the void growth region on the probability of cleavage fracture.

In the present paper the effect of strain gradient plasticity is incorporated in analyses of several 
discretely represented voids interacting with a blunting crack-tip. Studies of the growth of very small voids 
have shown that the rate of growth is much reduced when the void radius is smaller than the characteristic 
material length incorporated in the nonlocal plasticity theory (Fleck and Hutchinson [14], Huang et al. [15], 
Niordson and Tvergaard [16, 17]). Here, the analyses consider the possibility that the competition between the 
void by void mechanism of crack growth and the multiple void mechanism of crack growth is affected by the 
size effects, since the growth of individual voids is affected. In addition to the material lengths incorporated in 
the nonlocal material model the problem to be analyzed here also includes several other length scales, i.e. the 
initial spacing of the discretely represented voids, the initial radius of these voids, and the initial crack-tip 
radius, and the results involve the interaction of all these characteristic lengths.

2. Problem Formulation

A finite strain generalization [18] for the strain gradient plasticity theory by Fleck and Hutchinson [14] is used 
to model the material numerically using an updated Lagrangian formulation, with a Cartesian frame as 
reference.

The theory incorporates gradient hardening through invariants of the gradient of the plastic strain rate  

,
P

ijk jik ij kρ ρ ε= = &  . The basic idea in the theory is that plastic work is expended through a gradient enhanced 

measure of effective plastic strain, PE ,  defined incrementally through
2 2 2 2 2

1 1 2 2 3 3

8
4

3
P PE l I l I l Iε= + + +& & (1)

Here,  
2 2

3
P P P

ij ijε ε ε=& & & is the conventional measure of effective plastic strain,  1 2,I I   and  3I  are the three non-

zero invariants of homogeneous degree two of  ijkρ . For dimensional consistency three length parameters 

1 2,l l   and  3l  are introduced. Decomposing the plastic strain rate, P P
ij ijmε ε=& & , into its direction, ijm , and its 

magnitude Pε& , yields the following alternative form of Eq. (1)

2 2 2

, , ,
P P P P P P P

ij i j i iE A B Cε ε ε ε ε ε= + + +& & & & & & & (2)

where the tensors ijA , iB  and C  depend on the plastic strain rate direction, ijm , and its spatial gradient , ,ij km . 

Detailed expressions for these tensors can be found in [14].

The theory is based on the second order plastic work per unit volume given by the expression
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2P Ph E E  
& (3)

Hence, plastic work is expended through both plastic deformation as measured by Pε&  as well as the gradient 
of the plastic strain rate ,

P
ijk ij kρ ε= &  through the invariants in Eq. (1).

For a body of volume V  with the surface S , the weak form of the equilibrium equations for the strain 
gradient plasticity theory is given by the principle of virtual work in the current configuration

( )( )( ) ( ), = 
e

P P P
ij ij i i i iV S

Q dV T u t dSσ δε σ δε τ δε δ δε− − + +∫ ∫& & & && (4)

Here, ijσ  is the Cauchy stress tensor work conjugate to the total strain rate ( ), ,

1

2ij i j j iu uε = +& & & , where iu&  is the 

displacement rate, Q  is a generalized effective stress, ( )
3

2 ij ije S Sσ =  is von Mises effective stress, and

3
kk

ij ij ijS
σσ δ= −  is the stress deviator, with ijδ denoting Kronecker’s delta. The surface integral contains 

traction contributions from the conventional surface traction iT  work conjugate to the displacement rate iu& and 

a higher order traction, t , work conjugate to the effective plastic strain rate, Pε& .

The plastic strain increment is defined according to the usual relation for 2J  flow theory

( )

3

2
ijP P P

ij ij

e

S
mε ε ε

σ
= =& & & (5)

so that ijm is chosen as the direction of the stress deviator.

Introducing Kirchhoff stress measures the principle of virtual work can be expressed in the reference 
configuration in an updated Lagrangian framework by

( ) ( ), 0 0(2 ) ( ) = P P P
iij ij ij ik kj kj ki i i ieV S

e e q dV T u t dSςς δε σ ε δε δ σ δε ρ δε δ δε
∇ ∨ − − + − + + 

 ∫ ∫ & && & & & & && & & & &  (6)

where  
ijς
∇

  is the Jaumann rate of the Kirchhoff stress,  q&   is the rate of the Kirchhoff variant of the effective 

stress, which is work conjugate to  , andP
iε ρ

∨

 is the convected derivative of the higher order Kirchhoff 

stress. The displacement gradient is denoted  ,ij i je u=& &  . The Kirchhoff stress is related to the Cauchy stress by  

,ij ijJς σ=  the higher order Kirchhoff stress is related to the true higher order stress by  ,i iJρ τ=  and 

q JQ= , where J is the determinant of the metric tensor. The effective stress enters the principle of virtual 

work in the updated configuration through  ( ) ( )ee Jςσ σ=  .
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In the right-hand side of Eq. (6)  0iT&   and  0t&   are nominal traction rates conjugate to  iu   and  Pε , 

respectively. In addition to conventional boundary conditions, conditions on the higher order traction rate  0t&

or the effective plastic strain rate  Pε&  are needed. For the present problem  0 0t =&   is imposed for all higher 

order boundary conditions, on internal boundaries as well as external boundaries. At the free surfaces this 
models free passage of dislocations through the boundary. The use of the natural boundary condition  ( 0 0t =& )  

at internal boundaries implies no constraint on plastic flow, which suggest that dislocations are free to pass 
through the current elastic-plastic boundary. The physical interpretation of higher order boundary conditions 
is presently the focus of much research. For further discussions on higher order boundary conditions see 
[14,20,21,22].

The constitutive equations for the various Kirchhoff stress measures are

( )P
ij ijkl kl kl ij ik kj ik jkR mς ε ε ς ω σ σ ω
∇

= − = − −& & & & & (7)

,

1

2
P P P

i iq h B Cε ε ε = + + 
 
& & && (8)

,

1

2
P P

i ij j i i ik kh A B eρ ε ε ρ ρ
∨  = + = − 

 
& & & & (9)

where  ph h E =     is the hardening modulus, which is evaluated at pE , rather than at pε  (as it would in 

conventional 2J  flow theory), ijω&   is the antisymmetric part of  ije&   and

1
( )

1 2 1 2ijkl ik jl il jk ij kl

E v
R

v v
δ δ δ δ δ δ = + + + − 

(10)

is the elastic stiffness tensor.  Here,  E is Young’s modulus and v  is Poisson’s ratio.

The general theory proposed by Fleck and Hutchinson [14], employs the three constitutive length parameters 

1 2,l l   and  3l  to scale the influence of the three invariants of homogeneous degree two of the gradient of the 

plastic strain rate ,
P

ijk ij kρ ε= & , of which 1l  can be identified as dominating gradients of stretch, while 2l  and 3l

dominate when rotation gradients appear. A simplified model, which does not distinguish gradients of stretch 
and rotation can be encompassed within the general framework of the present model by introducing a new 
definition of the gradient enhanced measure of effective plastic strain according to the incremental relation

2 2 2
, ,

P P P P
i iE lε ε ε∗= +& & & & (11)

Here, *l  is a new length parameter. In this particular case the tensors in the constitutive relations for the 

generalized effective stress and the higher order have the simple expressions 2
*ij ijA l δ= , 0iB =  and 0C = . The 

theory embodied by this definition of the gradient enhanced measure of effective plastic strain is closely 
related to the original gradient model by Aifantis [19]. For further details on the strain gradient theory and the 
finite strain generalization see [14,18].

As in Tvergaard and Hutchinson [11] and Tvergaard [12] the plane strain analyses are carried out for 
pure mode I loading under conditions of small scale yielding. Thus, on the outer edge of the region analyzed 
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numerically displacement increments are prescribed according to the elastic singular  IK   field. A Cartesian  
ix   coordinate system is centered at the initial crack-tip, with the  1x  axis in the crack plane, in the direction 

of crack growth, and due to symmetry only the region for  2 0x >   is analyzed numerically. The initial 
geometry of the crack-tip region (see Fig. 1) is specified by the radius  0r   of the crack-tip, the radius  0R   of 

the cylindrical voids, and the spacing  0X   between the centres of the voids and between the crack-tip and the 

first void. The initial void volume fraction  0f   is defined as that in a strip of material of width  0X  , which 

gives  2
0 0 0( / )f R Xπ=  . The present analyses are carried out with four discrete cylindrical voids represented 

ahead of the crack-tip.
The numerical solutions are obtained using a two-field finite element method similar to that used by de 

Borst and Mühlhaus [23]. In the present implementation following Niordson and Tvergaard [24]
isoparametric eight-noded elements are used for the displacement fields as well as for the plastic strain field. 
The same elements have been used by Komaragiri et al. [25] in a study of crack-tip behaviour with strain 
gradient plasticity. An element with only four-noded elements for the plastic strain field, as suggested by 
Mikkelsen [26], has been tried for a couple of the cases analyzed, but was not found advantageous, since very 
small increments were needed.

When  IK   is the current value of the stress singularity, giving the current displacements specified as 

boundary conditions at the outer edge, the value of the  J  integral is
2

21
IJ K

E

ν−
= (12)

In the results presented here the current value of the load is specified in terms of the dimensionless parameter  

0/ YJ Xσ , where  Yσ   is the initial yield stress.

Along the crack plane symmetry boundary conditions are specified, while on the crack surface and on 
the void surfaces the values of the nominal tractions in the right-hand side of (5) are taken to be zero.

Strain hardening is modelled according to the following expression for the hardening modulus
1

1 1P

T

h E
E E

−
 

  = −  
 

(13)

where the tangent modulus is given by
1

0

1
nP

T

E E
E

n ε

−
 

= + 
 

(14)

Here,  n  is the hardening exponent, and  0 /Y Eε σ=   is the yield strain in uniaxial tension.

3. Results

In the analyzes to be presented here the basic elastic-plastic material parameters are taken to have the values  
/ 0.003Y Eσ =   ,  0.3ν = and  0.1N =  .   Two different values of the ratio  0 0/R X  of the initial void radius 

to void spacing are considered, to study both the void by void mechanism of crack growth and the multiple 
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void mechanism. In all cases the value of the initial crack-tip radius is taken to be specified by  

0 0/ 0.0667r X =  , while the effect of different values of the characteristic material length scale is studied. The 

computations are stopped well before the crack would actually grow by coalescence of the first void with the 
blunting crack-tip, since a realistic description of such failure would require remeshing, as applied in [12].
      In the first case analyzed the initial void size is specified by 0 0/ 0.02R X =    so that the initial void volume 

fraction in the strip of material of width  0X  ahead of the crack-tip is 0 0.00126f = .  The material model 

using a single material length parameter is applied, with the characteristic length parameter in (2) specified by  

* 0/ 1.0l R = .  It is chosen to stop the computation at  0/ 1.10YJ Xσ =  in order to avoid too much mesh 

distortion around the growing voids. Fig. 2 shows the initial mesh and the subsequent deformed mesh at  

0/ 1.10YJ Xσ = , together with the contours of the plastic strain  Pε   at the latter stage.  Fig. 3 shows the 

evolution of the four void volumes normalized by the initial void volumes  0V  ,  as functions of 0/ YJ Xσ  .  It 

is seen both in Figs. 2b and 2c and in in Fig. 3 that the void closest to the blunting crack-tip has grown a lot, 
while the other three voids have hardly grown at all. It is clear that this case is dominated by the void by void 
mechanism. 
      In Fig. 2c the curves for  0.001Pε =  indicate the edges of the plastic zone, which has the usual shape for a 
plane strain mode 1 crack when seen on a larger scale. The much larger strain values shown in Fig. 2c are 
features associated with the blunting crack-tip and the void growing near the tip. It should be noted that with 
the special two-field finite elements applied here it was found necessary to use a rather fine mesh in the region 
near the voids, finer than meshes used in the previous studies for standard plasticity theory. Analyses were 
carried out with different mesh refinement, and good convergence was found for larger values of  * 0/l R ,  but 

the fine mesh was needed for the value  * 0/ 1.0l R =  considered in Figs. 2 and 3. The situation is worse for 

smaller  * 0/l R  and therefore no results are shown here for  * 0/ 0l R = ,  but comparison with results for 

standard local plasticity will be mentioned.
      Fig. 4 shows curves like those in Fig. 3 for a case where the characteristic material length is larger  

* 0/ 2.0l R =  ,  but where all other material parameters are identical to those considered in the first case 

analyzed. As is seen by comparison of the two figures, the larger value of  * 0/l R  has the expected effect that 

much less void growth has occurred at the same value of  0/ YJ Xσ  .   Fig. 5 gives a comparison of five 

different analyzes, for five different values of  * 0/l R  .   The numbers  1  to  4  on the horizontal axis indicate 

void No. 1 to 4, the points of the curves above each number indicate the normalized value of the void volume 
at  0/ 1.10YJ Xσ =  and the four points for each computation are connected by straight lines. In Fig. 5 only 

void No. 1 has had any significant void growth, so that here the void by void crack growth mechanism is 
dominant in all cases. However, for the largest value of   * 0/l R  very little void growth is seen at all in the 

range considered.
      To consider the case  * 0/ 0l R =  a computation with the mesh in Fig. 2a has been carried out for standard 

local  2J  flow theory. This computation broke down numerically before reaching the stage  0/ 1.10YJ Xσ = ,  

due to mesh distortion at void No. 1. However, at  0/ 1.0YJ Xσ =  the value of  1 0/V V  had reached  27.4 ,  

about twice the value found in Fig. 3, while the other three voids had grown very little. Assuming that the 

value of  1 0/V V  in Fig. 5 would be about two times that for  * 0/ 1.0l R =  this agrees with the trend found by 

comparing the results for the values  2.0 ,  1.5  and  1.0  of  * 0/l R ,  where the numerical predictions were 
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found to converge. But the value for  * 0/ 0.5l R =  appears to be too small, as expected due to the very slow 

convergence for the smaller values of  * 0/l R  .

      Fig. 6 illustrates an analysis for a larger initial void size specified by 0 0/ 0.0667R X =  ,  corresponding to 

the initial void volume fraction  0 0.0140f =  in the strip of material of width  0X  ahead of the crack-tip.  The 

value of the characteristic length parameter in (2) is here taken to be larger relative to the void spacing  0X ,  

so that again  * 0/ 1.0l R = .  In this case it is chosen to stop the computation at  0/ 0.75YJ Xσ =  to avoid mesh 

distortion around the growing voids. Fig. 6 shows the initial mesh and the subsequent deformed mesh at  

0/ 0.75YJ Xσ = , together with the contours of the plastic strain  Pε .  In Fig. 7 shows the corresponding 

evolution of the four normalized void volumes is illustrated.  It is seen both in Figs. 6 and 7  that here all the 
voids grow large, so that here the multiple void mechanism of crack growth is getting activated. 

Curves like those in Fig. 7 are presented in Fig.8 for  * 0/ 1.5l R = , with all other material parameters 

identical to those considered in Fig. 7. Also here comparison of the two figures shows that the larger value of  

* 0/l R  results in much less void growth at the same value of  0/ YJ Xσ  .   Fig. 9 gives a comparison of four 

different analyzes, for different values of  * 0/l R  .   As in Fig. 5 voids No. 1 to 4 are indicated on the 

horizontal axis and the points of the curves above each number indicate the normalized value of the void 
volume at  0/ 0.75YJ Xσ = . Two of the curves correspond to the end points in Figs. 7 and 8. It is seen that 

there is more void growth for  * 0/ 0.5l R =  than for  * 0/ 1.0l R =  ,  but otherwise these two curves are nearly 

parallel, indicating that the multiple void mechanism is active. For  * 0/ 1.5l R =  (as in Fig. 8) the shape of the 

curve has changed to something more like the curves in Fig. 5, so in this case the effect of the characteristic 
material length is to move the behaviour towards the void by void mechanism of crack growth. This is even 
more so for  * 0/ 2.0l R =  ,  but at the same time the rate of growth of all the voids is rather strongly suppressed 

at the stage shown. 

A computation for the same mesh using standard  2J  flow theory gave  1 0
/ 20.3V V =   at  0/ 0.75YJ Xσ =  ,  

again about two times the value found for  * 0/ 1.0l R =  in Fig. 9. Also here the value of  1 0/V V   found for  

* 0/ 0.5l R =  is well below the value found by interpolation between  * 0/ 1.0l R =  and  * 0/ 0.0l R =  .

     A few computations have also been made using the nonlocal model with three material length parameters, 
according to (1). Fig. 10  gives curves like those in Fig. 5, indicating the normalized values of the void 
volumes at  0/ 1.10YJ Xσ = .  The curve based on the single parameter theory for  * 0/ 2.0l R =  is repeated 

from Fig. 5. As is expected based on previous results for void growth [14,16], predictions obtained by using  

1 0/ 1.0l R =  are rather close to those obtained for the double value of  *l  ,  such that there is slightly less 

constraint on void growth for   1 0/ 1.0l R =  .   In the previous void growth studies the influence of  2l  and  3l

was found negligible, but this is not true in the present study where shear deformations in the crack-tip region 
play a significant role. Thus, the curve for  2 0 3 0/ / 1.0l R l R= =  shows noticeably less void growth than that 

for  2 3 0.0l l= =  .

  .  Fig. 11 gives curves like those in Fig. 9, indicating the normalized values of the void volumes at  

0/ 0.75YJ Xσ = .  As in Fig. 10 a curve based on the single parameter theory, for  * 0/ 1.0l R = ,  is compared to 

curves for half the value of  1 0/l R ,   and again these curves are rather close to each other. As in Fig. 10 the 
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influence of  2l  and  3l  is not found negligible, as the curve for  2 3 0.0l l= =  shows noticeably more void 

growth than that for  2 0 3 0/ / 0.5l R l R= =  .

      Results analogous to those in Fig. 6 are illustrated in Fig. 12 with the only difference that here the material 
length is much larger compared to the initial void radii and the initial crack-tip radius, * 0/ 10.0l R = .  As in 

Fig. 6 the computation has been stopped at  0/ 0.75YJ Xσ = , and the deformed mesh in Fig. 12b as well as the 

corresponding plastic strain contours in Fig. 12c show that the voids have hardly grown at all at this stage. But 
here the value of  * 0/l r  is large enough so that the rate of increase of the blunting radius is noticeably reduced 

by the strain gradient dependence of the constitutive model, as seen by comparing Figs. 12b and 6b.  Also, the 
highest plastic strain contour at the crack-tip shown in Fig. 12c is  0.2Pε = ,  while the highest value in Fig. 6c 
is  1.4Pε =  .  This gives only an indication of the effect of gradient plasticity on an initially sharp crack-tip, as 
studied by Komaragiri et al. [25].

4. Discussion

The present analyses of void growth in the vicinity of a blunting crack-tip have shown the expected effect of 
strain gradient dependent plasticity that voids grow more slowly when the characteristic material length is 
comparable to or larger than the void radius. Thus, for values of  * 0/l R   or  0/il R  well above unity the voids 

hardly grow at all in the ranges considered here. Since experiments have shown that the characteristic material 
length is of the order of 0.5 mµ  to  5 mµ  [27], it is quite realistic that the void radius could be smaller than the 
material length. On the other hand, when there is void growth the ratio of the material length and the current 
void radius is gradually reduced so that after some growth the gradient terms give only little constraint on the 
void growth rate.
     When the voids ahead of the blunting crack-tip are sufficiently small so that standard plasticity theory 

would predict interaction only with the nearest void, this result is also found in the analyses where effects of 
plastic strain gradients are incorporated (Fig. 5). For increasing values of  * 0/l R  the rate of growth of the 

nearest void is reduced, but the general picture remains the same, such that the early part of the growth pattern 
analyzed here indicates that crack growth will occur by the void by void mechanism. However, when the 
voids ahead of the crack-tip are initially larger the growth pattern is more affected by the strain gradient 
plasticity. Here, when the value of  * 0/l R  increases from  1.0  to  1.5 ,  the growth rates of the four voids 

considered change to a pattern more like that found for the initially smaller voids (Fig. 9). An important 
mechanism here would be that the nearest void, forced to open by the near vicinity to the crack-tip, will
gradually outgrow the strain gradient constraint on the growth rate as the current radius increases above the 
value of  *l  ,  whereas the following voids still have the full constraint.

       The effect of strain gradients also reduces the rate of growth of the crack-tip radius during blunting. For 
the initial geometries considered here this requires much larger values of  * 0/l R ,  as seen in Fig. 12. For an 

initially sharp crack-tip Komaragiri et al. [25] have illustrated this dependence by showing how a normalized 
crack opening displacement at a distance  0.01 pR  behind the tip increases for increasing value of  */pR l  ,  

where  pR  denotes the plastic zone size.
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When comparing the single parameter nonlocal model with the three parameter model (Figs. 10 and 11) 
a significant difference from previous void growth studies is observed. In cell model studies for a single void 
it has been found that non-zero values of  2l  and  3l  have practically no effect, since there are no or nearly no 

shear strains. However, for voids growing in crack-tip fields shear strains play an important role, so that not 
only  1l  ,  but also  2l  and  3l   give a noticeable reduction in the rate of void growth.

         A complete study of the interaction of several characteristic lengths involved in the present problem 
would require many more computations where also the initial crack-tip radius and the void spacings were 
varied independently, while the other characteristic lengths were kept constant. Here the focus has been on 
variations of the material lengths in the nonlocal plasticity theory and the initial void radii, while the last two 
characteristic lengths of the problem have been kept constant.

5. Conclusion

The result that voids grow more slowly when the characteristic material length is comparable to or larger than 
the void radius is also found in the strongly nonuniform strain field at the tip of a crack.
         For the strain gradient plasticity model with three lengths it is found that not only  1l  ,  but also  2l  and  

3l   reduce the rate of void growth, due to the importance of shear in the crack-tip fields.

         The competition between the void by void mechanism of crack growth and the multiple void mechanism 
is affected by the nonlocal plasticity model in the case of relatively large voids xompared to the void spacing
ahead of the crack-tip, where the latter mechanism is active in the absence of strain gradient effects. Here, it 
has been found that an increasing value of  * 0/l R  can change the behaviour towards the void by void 

mechanism.
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Figure captions:

Fig. 1. Geometry of the near-tip region in the plane strain small scale yielding model. 

Fig. 2. Mesh in the void region for  0 0/ 0.0667r X =  and  0 0/ 0.02R X = , i.e.  0 0.00126f = . The material length scale is 

specified by  * 0/ 1.0l R = .  (a) Initial mesh. (b) Deformed mesh at 0/ 1.10YJ Xσ = . (c)  Plastic strain contours at 

0/ 1.10YJ Xσ = .  

Fig. 3. Evolution of the four void volumes normalized by the initial void volume  0V  ,  as functions of 0/ YJ Xσ  ,  for  

0 0/ 0.0667r X =  and  0 0/ 0.02R X = . The material length scale is specified by  * 0/ 1.0l R = .  

Fig. 4. Evolution of the four void volumes normalized by the initial void volume  0V  ,  as functions of 0/ YJ Xσ  ,  for  

0 0/ 0.0667r X =  and  0 0/ 0.02R X = . The material length scale is specified by  * 0/ 2.0l R = .

Fig. 5. Normalized values of the void volumes at  0/ 1.10YJ Xσ = , with the four points connected by straight lines, for  

0 0/ 0.0667r X =  and  0 0/ 0.02R X = . 

Fig. 6. Mesh in the void region for 0 0/ 0.0667r X =  and 0 0/ 0.0667R X = , i.e. 0 0.0140f = .  The material length scale is 

specified by  * 0/ 1.0l R = .  (a) Initial mesh. (b) Deformed mesh at 0/ 0.75YJ Xσ = . (c)  Plastic strain contours at 

0/ 0.75YJ Xσ = .  

Fig. 7. Evolution of the four void volumes normalized by the initial void volume  0V  ,  as functions of 0/ YJ Xσ  ,  for  

0 0/ 0.0667r X =  and  0 0/ 0.0667R X = . The material length scale is specified by  * 0/ 1.0l R = .  

Fig. 8. Evolution of the four void volumes normalized by the initial void volume  0V  ,  as functions of 0/ YJ Xσ  ,  for  

0 0/ 0.0667r X =  and  0 0/ 0.0667R X = . The material length scale is specified by  * 0/ 1.5l R = .  

Fig. 9. Normalized values of the void volumes at  0/ 0.75YJ Xσ = , with the four points connected by straight lines, for  

0 0/ 0.0667r X =  and  0 0/ 0.0667R X = . 

Fig. 10. Normalized values of the void volumes at  0/ 1.10YJ Xσ = , with the four points connected by straight lines, for  

0 0/ 0.0667r X =  and  0 0/ 0.02R X = .  The general model (1) with three different length parameters is compared with that for 

one parameter.

Fig. 11. Normalized values of the void volumes at  0/ 0.75YJ Xσ = , with the four points connected by straight lines, for  

0 0/ 0.0667r X =  and  0 0/ 0.0667R X = .  The general model (1) with three different length parameters is compared with that 

for one parameter.
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Fig. 12. Mesh in the void region for 0 0/ 0.0667r X =  and 0 0/ 0.0667R X = , i.e. 0 0.0140f = .  The material length scale is 

specified by  * 0/ 10.0l R = .  (a) Initial mesh. (b) Deformed mesh at 0/ 0.75YJ Xσ = . (c)  Plastic strain contours at 

0/ 0.75YJ Xσ = .  
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Fig. 1. Geometry of the near-tip region in the plane strain small scale yielding model.

Fig. 2. Mesh in the void region for  0 0/ 0.0667r X =  and  0 0/ 0.02R X = , i.e.  0 0.00126f = . The material length scale is 

specified by  * 0/ 1.0l R = .  (a) Initial mesh. (b) Deformed mesh at 0/ 1.10YJ Xσ = . (c)  Plastic strain contours at 

0/ 1.10YJ Xσ = .  
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Fig. 3. Evolution of the four void volumes normalized by the initial void volume 0V  ,  as functions of 0/ YJ Xσ  ,  for  

0 0/ 0.0667r X =  and  0 0/ 0.02R X = . The material length scale is specified by  * 0/ 1.0l R = .  

Fig. 4. Evolution of the four void volumes normalized by the initial void volume  0V  ,  as functions of 0/ YJ Xσ  ,  for  

0 0/ 0.0667r X =  and  0 0/ 0.02R X = . The material length scale is specified by  * 0/ 2.0l R = .
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Fig. 5. Normalized values of the void volumes at  0/ 1.10YJ Xσ = , with the four points connected by straight lines, for  

0 0/ 0.0667r X =  and  0 0/ 0.02R X = . 
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Fig. 6. Mesh in the void region for 0 0/ 0.0667r X =  and 0 0/ 0.0667R X = , i.e. 0 0.0140f = .  The material length scale is 

specified by  * 0/ 1.0l R = .  (a) Initial mesh. (b) Deformed mesh at 0/ 0.75YJ Xσ = . (c)  Plastic strain contours at 

0/ 0.75YJ Xσ = .  
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Fig. 7. Evolution of the four void volumes normalized by the initial void volume  0V  ,  as functions of 0/ YJ Xσ  ,  for  

0 0/ 0.0667r X =  and  0 0/ 0.0667R X = . The material length scale is specified by  * 0/ 1.0l R = .  

Fig. 8. Evolution of the four void volumes normalized by the initial void volume  0V  ,  as functions of 0/ YJ Xσ  ,  for  

0 0/ 0.0667r X =  and  0 0/ 0.0667R X = . The material length scale is specified by  * 0/ 1.5l R = .
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Fig. 9. Normalized values of the void volumes at  0/ 0.75YJ Xσ = , with the four points connected by straight lines, for  

0 0/ 0.0667r X =  and  0 0/ 0.0667R X = .

Fig. 10. Normalized values of the void volumes at  0/ 1.10YJ Xσ = , with the four points connected by straight lines, for  

0 0/ 0.0667r X =  and  0 0/ 0.02R X = .  The general model (1) with three different length parameters is compared with that for 

one parameter.
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Fig. 11. Normalized values of the void volumes at  0/ 0.75YJ Xσ = , with the four points connected by straight lines, for  

0 0/ 0.0667r X =  and  0 0/ 0.0667R X = .  The general model (1) with three different length parameters is compared with that 

for one parameter.
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Fig. 12. Mesh in the void region for 0 0/ 0.0667r X =  and 0 0/ 0.0667R X = , i.e. 0 0.0140f = .  The material length scale is 

specified by  * 0/ 10.0l R = .  (a) Initial mesh. (b) Deformed mesh at 0/ 0.75YJ Xσ = . (c)  Plastic strain contours at 

0/ 0.75YJ Xσ = .  
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