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Elastic stress field beneath an arbitrary axisymmetric punch

J. Woirgard, V. Audurier, C. Tromas

Laboratoire de Métallurgie Physique, Université de Poitiers SP2MI,

UMR CNRS 6630, 86962 Futuroscope-Chasseneuil, France

Abstract.

The nanoindentation test is commonly used for the local determination of
mechanical properties (hardness, Elastic modulus, ...) and also to study the
initial stages of plasticity (dislocation nucleation, dislocation interaction
mechanisms) at nanometer scale. In that case, the determination of the elastic
stress field beneath the indenter is of primary interest. The purpose of this
paper is to give an analytical expression for the elastic stress and strain fields
beneath an axisymetric punch. Most solutions, in the literature, are given for

simple indenter shapes, such as flat, conical or spherical indenters. Complete
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solution for arbitrary indenter profile described by a power law, with exponent
integer or not, is proposed here. The stress is given as the real part of complex

analytical expressions.

1. Introduction

Over the last two decades, the nanoindentation test has become a common
technique for the determination of local mechanical properties such as hardness
and elastic modulus [1-4]. The principle consists in applying a low load with an
indenter on the surface while the progressive penetration depth is monitored.
The main experimental parameter for hardness and elastic modulus
determination is the contact area between the indenter and the surface under
load. Several models have been proposed to determine this crucial parameter
through the analysis of the unloading curve shape. One of the first attempts has
been given by Doerner and Nix [6] who considered that the contact area was
not modified during an elastic unloading, as for a flat punch. In a more realistic
approach, , Oliver and Pharr [2] proposed to determine the initial value of the
contact area by taking into account its variation during elastic unloading. For
this purpose, the principle of the equivalent indenter, assumed to be parabolic
was used. This principle, initially introduced by Solomon [7], suggests that the
elastic unloading of an indenter on a plastically deformed surface is equivalent
to that of a “modified” indenter giving the same displacement when pressed
against a plane. However, the shape of the equivalent indenter which depends

on the plastic behaviour of the material, is more complex than a paraboloid and
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should be determined for each unloading. One method consists in describing
the equivalent indenter shape by a polynomial [4,8-9] in cylindrical coordinates
(p.2):

z(p)=).C,p" (1)

In this case, for a rigid indenter the load P and the displacement h are functions

of the contact radius a [10-11] :

- F(ziJ C.ar @)
" F(fzj
P(a)=2E,Vn Y —— F@Hj C,a" (3)

o E (4)

with E and v the Young's modulus and the Poisson’s ratio of the sample
respectively. It has been shown elsewhere [4], that with the stiffness:

dP
S=% (5)

the penetration-stiffness relation can be fitted by a polynomial:

winfile

allowing the determination of the C, coefficients and the n exponents.
Unloading curves can often be fitted by simple power law

P(h)=afh—h,)" (7)
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where hg is the residual penetration depth. In this case, the shape function of
the equivalent indenter reduces to a single term with a non integer exponent n
z(r)=Cr" (8)

The corresponding load-displacement relationship being:

P(h)- 9)

The relation between the unloading curve exponent m and the indenter shape

exponent n is thus given by:

no L (10)

This method is commonly used to estimate the true penetration depth and thus
the contact area under load A.. The hardness H and the reduced elastic

modulus E; are then easily determined through the equations

n=t (11)

S=2Er\/A—° (12)

Beside the determination of elasto-plastic characteristics of materials,
nanoindentation is also of fundamental interest for studying elementary
deformation mechanisms and incipient plasticity, involving small material
volumes and few dislocations[12-21]. The precise knowledge of the stress field
generated in the material is required to understand the individual behaviour of

these defects [20]. The surface stress has been previously calculated in the
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case of an elastic contact between a flat surface and an axisymetric indenter
[22-23], or a more complex indenter described by a power function with a non
integer exponent n [4,5,24]. This latter case is of great interest since it can be
applied to any unloading curve, even for plastically deformed material, through
the concept of the equivalent indenter [7].

In the following, analytical solutions will be proposed for the calculation of the

complete stress field in the case of arbitrary shaped axysimetric indenters.

2. Theoretical results

Close form expressions of the stress field, either on the surface or in the
volume, beneath simple indenters, including flat punches, cones or spheres
have been previously published [25-30], but very few results are available for
more complex profiles, except a recent work of Schwarzer [31-32] proposing a
partial solution in the case of axisymetric punches described by polynomials.
However this theory, named the “extended Hertzian theory”, is limited to even
power of r which cannot be applied to real equivalent indenters with non integer
exponent. For more complex shapes, the only results, to our best knowledge,

have been obtained by finite element methods (FEM) [33-34].

In this work, Sneddon’s [22,35] results, will be used to determine the complete
stress fields in the quite general case of power laws with exponents integer or

not.
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Sneddon [36] showed that the normal stress and displacements can be derived

from the f(t) function, solution of the dual integral equation:

u,(r)= —Mrf(tﬂo(rt)dt =f(r)=h—ca"r" for r<i1 (13)
}’L 0
cz(r)=2(x+u)j:tf(t)Jo(rt)dt=o for r>1 (14)
With
r=P (15)
a

And A and p the Lame’s coefficient. To find a f(t) function satisfying the

preceding equations, Sneddon proposed to introduce the function g(u) obeying:
f0= ; g(u)cos(u t) du (16)
With this form of function g(u) we find that:

J-:tf(t)JO(rt)dt :J-:Jo(r t)dtJ-(:tg(u) cos(ut) du (17)
and integrating by parts:

J:tf(t)]o(rt)dt = g(l)j:JO(rt) sin(t) dt—j:JO(rt) dtj‘g%sin (ut)du r>)  (18)
Interchanging the order of integration in the double integral and knowing that:
J;]O(r t)sin(ut)dt =0 (19)

we see that equation (14) is satisfied and we must have g(1)=0 since:
c,=0 forr=1
Equation (13) can be written:

C(A+2wa

. J? Jo(rt)dtf; g(u)cos(ut)ydu=h—-ca"r" (20)

http://mc.manuscriptcentral.com/pm-pml

Page 6 of 22



Page 7 of 22

Philosophical Magazine & Philosophical Magazine Letters

If we interchange the order of integration and make use of:

1

J: J,(rt)cos(ut)dt = (r>u)

r’—u
J-:Jo(rt)cos(ut)dt:O (0O<r<u)

we see that g(u) is a solution of the integral equation:

_(X+2p)aJ-r g(u)du

n ]rz _u2

We can try for g(u):

=h-Ca"r"

g(u)=A+Bu"

and equation (20) may be written :

Jarh
B r"

J-Or g(u)du NN

vri-u? 2 2r(g+1)

We finally get:

_2
T (A+2n)a

n
2T (—+1
" (2 )

C(A+2p)a ﬁr(nTH)

n

Ca

Since g(1)=0 we have:

r 41
h:\/z n+l Ca’
ER
and:
r 41
P p— 2 Ca"(l-u")

(A+2wa \/EF(HTH)
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" F(%H) ]
f(t):—(Mzu)a ﬁr(L”)ca j0(1—u )cos(tu) du (30)
2
Letk be :
n
o TGED @31)
(A+2wa \/;F(HTH)
We see that f(t) is the real part of the complex quantity:
f*(t):kI;(l—u“)e’i”‘du (32)

To compute the stress field we have to evaluate the following complex integrals:

I =I:e‘z‘tf*(t)J0(rt)dt (33)

K’ = j 0°° e tE" ()], (rt)dt (34)

and the components of the stresses are the real parts of the complex stresses:

. ar o'

=2k(A+p)(——+
o, =2kt 2 ) (35)
KO o’K”
T =2k (36)
. o 2u. . p+r K’

=2kA—+—k(K +
o 0z r ( 0 “ 0z ) (37)

* 21*
2tp ol Ol

Gjm’;:—zk(xw)(Mu P azz) (38)

These components of the stress are easily derived from the I"and K’ integrals

and their derivatives relative to z:

—(z+iu)t

I =j01(1—u")dujo°°e T, (rt)dt (39)

—(z+iu)t

K* =j01(1—u")duj:e T, (rt)dt (40)
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If we note :
—(z+iu)t 1

pi="e 7, (0dt = —
v (1)

—(z+iu)t

1 .
T ()t =1 - u+z

Ioryr’ +(iu+z)> (42)

we can write:

'=1,-1, (43)
K" =K;-K, (44)
with:

I, =J,pod (45)
K = ,piau (46)
I = jolp;;u"du (47)
K, = [, piu"du (48)

Finally the integrals and their derivatives take the form:

z+r +2°
i+z+417 +(i+2)° (49)

I, =iln

i

0z \r? 47 \/r2+(i+z)2 (50)
'y, iz-1 iz

02 ; : (51)

2 +G(+2)>]2 (2 +2%)

Kzzl—i«/r +27 +iqr’ +(+2) (52)

r
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*

oK, iz—1 iz
- N 3
r[r’ +(i+2)°]> r(@*+2z)2
°K,  ir(i+2) irz
2 3 3
0z 2

Let us note, with F4(a,b,c,d,z4,z2) the Appell hypergeometric function:

F

F

n+2,—

3
F ,=F(0+n,—,—,2+n,
“+1»E 2 2

F
n+

F

F
n+2

F
n+3

The real part of the F4 function can be easily calculated with mathematical

2 +(+2)°]? (2 +2%)

11
, =F(+n,—,—,2+n
22

3

3 =F](2+n,3,3,3+n
2,5 22

55
=F(0+n,—,—,2+n
s =Fi( 27

55
=F2+n,—,=,3+n,
s =h( 272

55
=F(3+n,—,—,4+n
s =h( 272

11
, =F2+n,—,—3+n
2°2

1 1

> P .
r+1z —-r+1z

1 1

P .
r+1z —-r+1z

>

1 1
r+iz —r+iz

1 1

s . .
r+1z —-r+1z

1 1

> P .
r+1z —-r+1z

1 1
r+iz —r+iz

1 1

s . .
r+1z —-r+1z

packages. Then, we can write:

5

I

F

1
n+l,—

_ 2
’ (I+n)vr* +z*

1

2 5

(m+1) (2 +2%)?
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(56)
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(61)

(62)

(63)
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- 1 1 z 1
K, = - F ,+——F
L Py il ne2 n+z,;) (65)
K, T
- e (66)
n+) (" +2z7)2
0’K, 3r z i
L= ( F + F )
aZZ (rz +ZZ)§ n+1 n+l,§ n+2 n+2,§ (67)

The formulae are undetermined when n is an integer, but in that case we can

use a recurrence relationship:

. Jri+(i+2)° - .  2n-1. .,
I =- 1(1 ) +nn1(r2+22)1n_2+ IL izl (68)
L= (n+l)r[1+iw,r2 +(i+2)? -ni(t* +2z°)I,_ +nzl] (69)
with:
_ z+r? +27
[, =1ln

i+z+417 +(i+2)° (70)

z+Nr’ +2°
i+z+r’ +(i+2)’ (71)

I, =\/r2 +27° —\/r2 +(i+2)* —zln

o 1=ivr? 422 +iy1? +(i+2)°

0 (72)

r

Again, following equations (35-38), the stress components can be derived from
the real parts and their first and second derivatives relative to z of the
expressions (43) and (44).

When the exponent n is an integer, the | and K integrals, real parts of the |I” and

K" complex ones, can be calculated knowing that:

Jri+(@+z)’ =a+ib (73)
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Log[i+z 4+’ +(i+2)*]=Iny(z+a)> +(1+b)? +iArcCos( zra )
VJz+a)’ +(1+b)’

with:

\/N/rz +z2° -1 +4z° + (17 +27 -1)
a=

NG

b \/\/r2 +z2° =) +4z° —(r* +27 -1)

V2
For n=0 (flat punch) equations (68) and (69) fail but we have [22]:

f(t) _ Slilt

and the | and K integrals are the imaginary parts of:

1

Jri+(+2)°
s T i Jri+(i+2)? —(i+2)
K :j e (rt)dt =
0 r

* « (—z+i)t _
I _fo e (rt)dt =

For example, the normal stress is the imaginary part of:

1 N z(i+2) )

Jri+(+z)° [r2+(i+z)2]5

o, =2k (A +p)

When n is different from zero we can use the (68) to (69) equations.

For example, for n=1 (cone):

O SRR e (e

+1n

x/r2+z2 x/r2+(i+z)2 z+r’ +z°

For n=2 (paraboloid) :

- 2z
o, =—kA+p)[2iyr’* +(i+2)* ————]
Jrl+(i+2)°

For n=3:
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. 3 3@ 3 3(r2+22%), itz+qri+(i+2)°
o' kOt EEr 422 —20FD o i - L L R i+,
2 2 Vit +(i+2)° 2 z+Vr’ +z

Values of the | and K integrals, for n=1 to 5, and listed in appendix.

Using equations (61) to (64), the normal stresses on the surface (z=0) and
below the surface (z=a/2), are plotted in Figures 1 and 2 for non integer values

of n: 1.5, 2.5 and 3.5.

3. Conclusion

In this paper, analytical expressions have been proposed for the determination
of the complete stress field generated by an arbitrary axisymetric indenter
described by an exponent n, integer or not. This calculus is not restricted to
elastic indentation, but can also be applied through the concept of the
equivalent indenter to elasto-plastic contact. The elastic stress field can thus be
readily obtained once the exponent m of the elastic unloading curve has been
determined. One of the main interests of this study is to give the ability to
determine the forces acting on individual dislocations involved in the imprint
formation. As an example, this result can be applied in discrete dislocation
dynamic (DDD) study of the indentation test. This result, combined with recent
insights in the description of the complete microstructure generated during a
nanoindentation test, represent a significant step towards the comprehension of

the early plastic deformation mechanisms in materials.
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Appendix

n=0:

i+z+417 +(i+2)°
z+r’ +2°

*

I, =-iln

n=1:

i+z+417 +(i+2)°
IT:x/r2+zz —\/r2+(i+z)2 +zIn (i+2)
z+r? +22

. 1 i - 1 i+z+4r2+(1+2)?
K, :—+i\/r2 +z° +1+—Zwlr2 +(i+2)?’ ——n (i+2)
2r 2r 2r 2r z+v/r2+zz

n=2:

. 3. 1 1+z+,/r2+(i+z)2
I, =Elz\/r2+z2 —(—+—)11r +(i+2)? (——1 —
Z+Nr° +2z

i +Z+Ar7+(+
_(_ﬂ —)\/r +z -i—(—+£—i —)wlr +(+2)’ —1rzln1 AR b 2N
2+’ +7°
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n=3:

s

I, =

212 1122 1 2% 11 5i i+z+417 +(i+2)°
L P e —Z N (i)’ +( i S
3 6 3 3 2+ +2°

13rz i 3ir z 13rz iz* Z°
K; = )t +zt + —+—————— + )t +(i+2)?
} ) ( 8 4r 8 4r 4r) (i+2)

(3r3 3rzz)l i+z+41> +(i+2)’
- - n
8 2 z+Ar? + 277

n=4:

*

I, =

551 25i 3 7iz 55ir® 13z 25izZ°
(II'Z 1z)m(+r 1Z+ 1r_z_1z)m

24 12r 24 12 12

(?air4 s a itz H(i+2)’
8

n=5;

s

+ .3 1 4
T i e

=3ir“z " +iz")In

z+rt +22

+2irz’)In

3irz . 4 itz+art+(i+2)’
2

z+Ar? +2°

I =(8r4 _6o7r2 72 +137z4)m_(1+4r2 +£_4722 +137z4 _607r222 +9iz 16lir’z

4
15 120 60 5 15 15 60 60 120 20 120
i+z+4r2 +(i+2)°

z+r? +27°

z
-51’°2 +z°)In
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. 1131 I
K = r'z 97rz —)r+z

48

1 Sir Sir3 z 17rz 113’z iz* 4lirz> 2 97rZ° 1z
t(—p— == = - - _ +—4 ) Jri+(i+z
(61‘ 24 16 61 24 48 61 24 61 24 ) G )

515 15122 Srzt | i+z+4rt +(i+2)’
- + )In
16 4 2 Z+ ,r2+z2

=(
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Figures captions

Figure1:

Normal stress on the surface, z=0, for indenters described by power

laws with exponents n: 1.5, 2.5 and 3.5

Figure2:

Normal stress in volume, z=a/2, forn: 1.5, 2.5, and 3.5.

http://mc.manuscriptcentral.com/pm-pml



Pagéﬁﬁo@h%l Magazine & Philosophical Magazine Letters
o

3,0 4

z=0

0,0 http://mc. manuscriptcentral.com/pm-pml rla

0,0 0,2 0,4 0,6 0,8 1,0



Philo/iophical Magazine & Philosophical MagRage 226£22
()
18 1,5

z/a=0,5

1,6
1,4-
1,2-
1,0-

0,8 1

0,6 1




