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(revised)

Computational homogenization techniques are used to predict the mechanical behaviour of metal matrix composites made of Al203

particles in a Al-3% Mg matrix exhibiting dynamic strain ageing. A simple strain ageing continuum model is identified to describe the
Portevin–Le Chatelier effect observed in the bulk aluminium alloy. Periodic homogenization is shown to provide a correct description of
the mechanical behaviour of the composite concerning the presence of serrations on the macroscopic stress–strain curve and the prediction
of the critical strain. Finite Element simulations of random distributions of particles are also performed to confirm the prediction of
the overall behaviour. Local plastic strain rate localization phenomena around the particles are analyzed for the periodic and random
situations.

Keywords: Al-Mg metal–matrix composite, Finite Element, Portevin–Le Chatelier effect

1 Introduction

The Portevin–Le Chatelier (PLC) effect is often observed in Al-Mg alloys [1]. Microscopically, it results from
the dynamic interaction of mobile dislocations and solute atoms. Mobile dislocations move by successive
jerks between forest dislocations. Solute atoms then diffuse to and saturate dislocations while they are
temporarily arrested at these obstacles [2]. Referred to as dynamic strain ageing (DSA), this mechanism
can lead to negative strain rate sensitivity (SRS) in a range of applied strain rates ε̇ where dislocations
and solute atoms have comparable mobility [3]. If the applied strain rate falls into such an appropriate
range and if sufficient interaction between dislocations (via their long–range stress fields) occurs [4], plastic
flow becomes heterogeneous. Plastic strain and plastic strain rate are highly localized in narrow bands in
the deformed specimen. Such bands are either stationary or propagative in a continuous or discontinuous
manner. In the present work, these bands are called plastic strain rate bands. The observed PLC effect
depends on testing conditions [5, 6, 7, 8, 9]: applied strain rate [10, 11] and temperature range [12]. Mg
contents larger than 2–3% in Al-Mg alloys lead to a pronounced PLC effect according to [13]. Field
measurements techniques have clearly revealed the nature of such plastic strain rate bands. They range
from early video–camera recording [1] to thermography [14,15] and image correlation analyses [16,7].

The Al-Mg alloys are used in a large variety of industrial applications owing to their high mechanical
strength and low density. Their practical benefit is limited by PLC instabilities and strain heterogeneities.
The study of Estrin and Lebyodkin [17] and the experimental work of Dierke [18, 19] have shown the
influence of the addition of dispersed second phase Al2O3 particles to the parent Al-3% Mg alloy on the
unstable deformation and the critical conditions for the occurrence of PLC instabilities.

The present work is motivated by recent progress in the simulation of PLC effects in specimens and
components. It is possible to reproduce the types of PLC bands observed in experiments as well as their
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2 Taylor & Francis

dynamic behavior using finite element (FE) simulations. The basic assumption is the DSA mechanism
which is introduced in the model of Kubin–Estrin et al. in a phenomenological way [20]. Theoretical
predictions of instabilities for negative strain rate sensitivity are possible based on this class of models [21].
Zhang et al. [22] propose a 3–dimensional macroscopic constitutive model including the time dependence
of the solute concentration at temporarily arrested dislocations. Their FE simulations show the occurrence
of propagative zones of localized strain for an Al-Mg-Si alloy in flat and round specimens associated with
serrations on the macroscopic stress–strain curve during tensile tests at constant strain rate. Beaudoin
et al. [23] develop a polycrystalline plasticity constitutive model embedded in a FE framework. Their
simulations reproduce both the propagative and stochastic nature of PLC bands. The model of Schmauder
and Hähner [24] introduces an activation enthalpy for dislocation motion which is considered as an intrinsic
variable governing the extent to which dislocations are saturated by solute clouds. However this model and
the model of Zhang et al. provide similar results in the presented simulations. Graff et al. [25, 26] use the
macroscopic model of [22] to account for both dynamic and static strain ageing. Their FE analyses show
that complex strain localization phenomena take place at notches and crack tips in several strain ageing
materials. They suggest that these localization phenomena can play a significant role in early fracture
processes. The numerical analyses of integration time–step and mesh dependence performed in [27, 28]
show that finite element simulations of these unstable phenomena provide numerically reliable predictions
of critical strain, amplitude of serration and band orientation within the context of elastoviscoplasticity.

In the present work, the experimental results on Al-3% Mg alloys reinforced with Al2O3 dispersion par-
ticles obtained by [18] are simulated by FE computations using the model of Graff et al. [25,26] and based
on the theory of composites [29]. The question is raised whether conventional homogenization techniques
like periodic homogenization can be used in the presence of elastoviscoplastic instabilities of the PLC
type. Finite Element simulations of PLC effects have not been performed in the context of heterogeneous
materials yet, especially for composites. The objective of this work is to show numerical predictions of
the impact of the initiation and scattering of PLC bands at particles on the effective properties of the
composite. The results are compared to the experimental observations of [18,19].

The conventional macroscopic properties such as the critical strain for serrations and the types of serra-
tions observed on the stress–strain curve are analysed for various applied strain rates and volume fractions
of particles. The mesh size sensitivity and the influence of particles distribution, periodic vs. random, are
discussed. The predicted strain rate localization processes close to particles are analyzed.

Section 2 recalls the identification of the material parameters of the model in the case of the bulk parent
Al-3% Mg alloy, called AA5754, as performed in [18]. This model is then used in section 3 to predict the
behavior of the composite material based on periodic homogenization methods. The simulation results are
compared with the corresponding experimental tests. The discussion of section 4 addresses the sensitivity
to mesh size in the FE model and the influence of randomness of particle distribution on the behavior of
the composite.

2 Simulations for the parent Al-3% Mg alloy

2.1 Salient experimental features

The PLC effects are classified according to the type of serrations observed on the macroscopic stress–
strain curves, usually labeled types A, B and C [1]. For an Al-3% Mg alloy at room temperature, type
A, B and C bands are associated with applied strain rates ranging from ε̇ = 10−3s−1, ε̇ = 10−4s−1, to
ε̇ = 10−5s−1 respectively [30]. Type A appears as a continuous propagation of PLC bands which are usually
nucleated near one grip of the specimen. The bands propagate with nearly constant velocity and band
width to the other end of the specimen. Type B bands propagate discontinuously along the specimen. More
precisely, small strain bands nucleate in the nearest surroundings of the former band. Type C deformation
is characterized by spatially random bursts of bands without significant propagation accompanied by large
and high frequency load drops.

For an Al-3% Mg alloy, the dependence of the critical strain εc corresponding to the onset of serrations,
on the applied strain rate exhibits various types of behavior: (i) “normal” behaviour for which εc increases
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with ε̇, (ii) “inverse” behaviour for which εc decreases with ε̇ and (iii) “inverse then normal” [13].
Experiments were performed on flat specimens with a gauge part of 54 mm × 4 mm × 1.5 mm in size

prepared from polycrystalline cold–rolled sheets of Al-3% Mg alloy. The first material studied in this work
was the bulk parent Al-3% Mg alloy. All specimens were heat treated for recovery after rolling (5h at
673K) and quenched in water. The average grain size obtained after heat treatments is estimated at about
70 µm. The uniaxial tensile tests were performed at constant cross–head speed using a screw–driven tensile
machine Instron 1185 at room temperature. The range of strain rates applied was 1.1x10−5 to 6.3x10−3

s−1. Further details on material testing and characterization can be found in [18,19].
The tests have also been performed on metal matrix composites (abbreviated MMC) made of the matrix

aluminium alloy 5754 and Al203 particles (diameter 3 µm). The considered volume fractions of particles
are 2 and 5%.

2.2 Constitutive equations and identification of the strain ageing model

The macroscopic model presented in [22] is available to simulate instabilities in materials containing inter-
stitial or substitutional elements that can segregate to dislocations and alter their mobility. It incorporates
in a set of phenomenological constitutive equations several features of the intrinsic behavior of strain ageing
materials and can be used to simulate both the PLC effect and the Lüders behaviour as shown in [25,26].
The evolution equations mimic the mechanisms of repeated breakaway of mobile dislocations temporarily
arrested at forest obstacles and by solute atmospheres. The model is formulated here within the small
strain framework. It has been checked in [28] that the introduction of large strain effects, at least in the
strain range investigated in this work, does not affect the type and amplitude of serrations and localization
bands.

The total deformation is the sum of elastic and plastic strain tensors:

ε∼ = ε∼
e + ε∼

p, σ∼ = C∼∼
: ε∼

e (1)

The tensor C∼∼
is the fourth–rank tensor of elastic moduli and σ∼ is the stress tensor. The yield criterion is

defined by:

f(σ∼) = J2(σ∼)−R, J2(σ∼) =

√
3
2
s∼ : s∼ (2)

J2 is the second invariant of the stress tensor and s∼ is the deviatoric part of the stress. The plastic flow
rule is deduced from the normality law:

ε̇∼
p = ṗ

∂f

∂σ∼
=

3
2
ṗ

s∼
J2(σ∼)

, ṗ = ε̇0exp
(

< f(σ∼) >

K

)
(3)

ṗ is the cumulative plastic strain rate (in s−1). The brackets < f(σ∼) > mean the maximum of (f(σ∼), 0).
Material parameters ε̇0, K are introduced and depend on temperature. At each instant, the yield stress R
is given by

R = R0 + Q(1− exp(−bp)) + P1Cs, with Cs = Cm(1− exp(−P2p
αtna)) (4)

where R0 + Q(1 − exp(−bp)) is the isotropic strain hardening. The isotropic strain ageing term P1Cs

corresponds to the stress associated with DSA. It depends on the local plastic strain rate through the
time ta, called the ageing time. The variable Cs is an estimation of the over–concentration of solute
atoms segregating around the dislocation lines which are temporarily immobilized by extrinsic obstacles.
It takes the maximal value Cm corresponding to the saturated concentration around the dislocations. These
constitutive equations involve the material parameters R0, Q, b, P1, P2, α and n. In fact, only the product
P1Cm can be identified from the tensile curves, so that we take Cm = 1 by convention. An exponent n
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equal to 1/3 instead of the Cottrell–Bilby exponent 2/3 is adopted and attributed to “pipe diffusion” of
solute atoms along dislocation lines [31]. Along the macroscopic curve, the switch between low and high
Cs during the segregation process is achieved through the “relaxation–saturation” kinetics of Avrami for
ta according to McCormick [32]:

ṫa =
tw − ta

tw
, with tw =

ω

ṗ
(5)

where tw is the waiting time experienced by dislocations between successive strain bursts of amplitude ω
when the applied strain rate is ṗ. This simple approximation of the model in [4] is used here for easier
handling in the computer code. To reduce the number of material parameters, the parameter ω was treated
as a constant in this work. It is, in general, a function of cumulative plastic strain p.

The simplifications of the model therefore include:
(i) McCormick’s relation instead of Hähner’s waiting time distributions;
(ii) Elementary strain is assumed to be constant instead of the variation with a maximum [33] or linear
increase ( [34] for Cu-Mn, [12] for Al-Mg). The effect will be small and not relevant for qualitative results;
(iii) The model does not account for the inverse PLC effect, as it will be seen in the following.

The previous model was implemented in the FE program Z–set [35]. The differential equations are
integrated at each Gauss point of each element using a Runge–Kutta method of fourth order with auto-
matic time–stepping. The resolution method for global balance is based on an implicit Newton algorithm.
Quadratic elements with reduced integration are used in all the simulations of this work, except in section
4.2 where linear elements are used. Plane stress conditions are enforced in the 2D FE simulations. 2D
finite element simulations under plane stress conditions are known to favour strain localization phenomena
because the out of plane strain compatibility is not ensured: the first localization band may occur earlier
than in 3D and the stress drops may be more pronounced [36]. However, these differences generally are not
sufficient to invalidate the 2D prediction. The 2D simulations still provide a correct prediction of overall
curves and types of bands in the case of PLC effect as checked in [37].

This model has been shown in references [22, 25, 27] to be able to account for several macroscopic
features of PLC effects. However, precise identifications of material parameters with respect to tensile
curves at different strain rates remain seldom in the literature. Most simulations are based on closely
related values of parameters for which the instabilities are observed. In reference [18] such a precise
identification was undertaken to accurately reproduce the negative strain rate sensitivity domain for the
considered aluminium alloy at room temperature. The identification of the model must be done at two
levels: (i) volume elements, corresponding to assumed homogeneous deformation, can be considered for
fixing hardening parameters, viscosity parameters K, ε̇0, and also the S–shape of the stress/strain rate
curve, (ii) structural computations involving non–homogeneous deformation are necessary to determine
essentially the parameter ω strongly related to the plastic strain carried by the PLC bands. A systematic
procedure for the identification of the material parameters of the strain–ageing model is presented in [28].

For the purpose of identification, 2–dimensional FE analyses were carried out for straight specimens.
The mesh of the plate is shown in figure 1(a). Figure 1(a) also shows the boundary conditions for the
straight plate specimen geometry. The total length was equal to 12.5 mm and the width was 2.5 mm. The
vertical displacement at the bottom was fixed to zero. The vertical displacement at the top was prescribed
at a constant displacement rate. An initial defect was introduced in a single element into the specimen
(lower yield stress) in order to trigger the first plastic strain rate band. The position and the value of this
defect do not affect significantly the simulation results. The strain in the σ(ε) curves always means global
strain, i.e. strain is referred to the gauge length. In the simulations, we use the entire length of the plate
to compute the overall strain. The ratio of length/width in the simulations was 5 compared to 13.5 in the
experiment.

The identification of the material parameters describing the initiation and propagation of the plastic
strain rate bands was performed on uniaxial tensile tests at the strain rates mentioned above at room
temperature. The resulting material parameters are listed in table 1 for the parent Al-3% Mg alloy. The
initial condition for the ageing time ta required by the differential equation (5) was ta(0) = 0.
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2.3 Simulation results

The objective of this subsection is to show that the strain ageing model with the set of parameters of table
1 is able to reproduce the typical PLC curves and the various types of serrations depending on the applied
strain rate. Three constant strain rates are selected for the simulations of the uniaxial tensile tests using
straight specimens: 6.2 10−3s−1, 1.1 10−4s−1 and 1.1 10−5s−1.

Figure 2 compares the overall calculated macroscopic stress–strain curves obtained for the various ap-
plied strain rates. Several types of PLC serrations can be observed depending on the strain rates. Some
characteristics of PLC effects in an Al-3% Mg alloy mentioned in section 2.1 are reproduced in these cal-
culated tensile curves. The slight negative strain rate sensitivity and the type of serrations can be seen.
Comparison between simulation and experiment is shown in figure 3. In figures 2 and 3, but also in figure
5, the simulations curves are stopped at different times because at that points the time steps became too
small due to the strong instabilities.

At ε̇ = 6.2 10−3s−1, the macroscopic curve exhibits type A serrations. Each macro–step on the stress-
strain curve corresponds to the reflection of one plastic strain rate band at one end of the specimen. Such
a plastic strain rate localization band is shown in the finite element mesh of the plate on the left of the
top curve in figure 3.

At ε̇ = 1.1 10−4s−1, type B serrations are observed. The propagation of the plastic strain rate bands is
not continuous. Intermittent propagation of a single band is observed. The contour of plastic strain rate in
the mesh at the left of the middle curve of figure 3 reveals two clearly formed bands and two disappearing
bands.

Then, at ε̇ = 1.1 10−5s−1, mixed type A+B serrations are characterized by well defined successive
irregular serrations followed by strong stress increases. Only hopping bands propagating over a small
number of elements are observed during the tensile test, as shown in the mesh on the left of the bottom
curve. Note that the identified value of ε̇0 is 2.5 larger than the lowest strain rate in the tensile tests
considered in this work. Since an exponential function is used in the model for the viscoplastic flow rule
according to equation (3), instead of a sinh function, the consequence is that the deformation of the
simulated tensile test on a plate cannot be homogeneous and necessarily takes place in the form of PLC
bands in which the strain rate is larger than the overall strain rate. We have also performed the three
tensile tests with the value ε̇0 = 1× 10−5 s−1 without significant change of the tensile curves.

The bands propagate at an angle of about 53◦ with respect to the tensile axis, for purely mechanical
reasons. A detailed description of the band formation and propagation can be found in [24].

The critical strain εc marks the onset of serrations in the tensile curves. In the experimental curves, a
serration can be detected as soon as its amplitude is significantly higher than the measurement intrinsic
fluctuations. In the simulations, two criteria could be adopted that lead to values of the critical strains
that were in good agreement, at least in the case of an homogeneous plate in tension: first serration on
the overall curve on the one hand, and first plastic strain rate localization band where ṗ is at least twice
higher than the overall strain rate. The critical strain is found to be a monotonic function of the applied
strain rate. The obtained values are given in table 2 and compared to the experimental results. A very
good accordance is found for the two highest strain rates. However, the model is not able to reproduce
the higher critical strain for the lowest strain rate. In particular, even with a value ε̇0 = 1 × 10−5 s−1,
the critical strain obtained for the tensile test at ε̇ = 1.1 × 10−5 s−1 is still too small compared to the
experimental results. More elaborate constitutive equations could be taken from the literature to account
for this non monotonic evolution of the critical strain. It has not been undertaken in this work.

Table 2 also gives the value of the plastic strain rate inside the propagating bands in the computed plate
in tension. It is about 20 times higher than the prescribed overall strain rate, except at the lowest strain
rate for which the ratio is even larger. It depends on the width of the band and therefore is, in general,
mesh–dependent.

As a conclusion, the identified strain ageing model is a good candidate for simulating the influence of
particles in AA5754 MMC, even though the “inverse” behavior of the critical strain is not yet accounted
for.
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3 Application to the AA5754 MMC

The AA5754 MMC is made of the matrix material studied in the previous section containing a dispersion of
Al2O3 particles with a given volume fraction f . The objective of this section is to see whether the effective
behavior of the MMC can be predicted from the knowledge of the constitutive law of the matrix and
assuming unshearable and unbreakable elastic particles, based on classical computational homogenization
methods for composites. Two main difficulties arise when applying the mechanics of composites to the
case of the AA5754 MMC. First, the validity and prediction capability of homogenization methods for
composites are ensured only when the behaviour of the constituents is stable. In the presence of local
instabilities like strain localization, the existence of a representative volume element is not even ensured and
an effective behavior may not exist in all cases. This is especially the case in the damage of composites [38].
The second difficulty is due to the relatively small size of the particles, of about 3 µm size, for which classical
continuum mechanics may fail at predicting the real hardening effect.

3.1 Periodic homogenization method

Standard homogenization procedures used for composite materials [29] are applied now to the AA5754
MMC. Periodic homogenization is the most straightforward approach to handle particle composites. It
usually provides a correct approximation of the overall behavior at least for small volume fractions of
particles, even though the actual materials are not periodic [39]. A 2–dimensional unit cell corresponding
to an hexagonal distribution of circular inclusions is adopted. This situation is rather well–suited for fiber
composites with parallel fibers along the third direction. Under plane stress or generalized plane strain
conditions, such 2D simulations usually provide correct estimations of the behaviour of particle composites,
as shown in [40, 41]. Plane stress (resp. generalized plane strain) models generally underestimate (resp.
overestimate) the overall elastoplastic properties of the MMC. Such comparisons between 2D and 3D
models for MMC can be found in [42,43]. In the presence of severe instabilities expected in the simulation
of strain ageing effects in heterogeneous materials and leading to a high computational cost, the first step
consists in performing 2D computations, as proposed in this work. The following computations have been
performed on a single 1.2GHz PC (1Go RAM) under Linux.

Figure 1(b) shows a 1–inclusion unit cell for a particle volume fraction f = 2%. It is based on a periodic
assumption with a honeycomb particle distribution that results in isotropic in–plane elastic properties and
quasi–isotropic elastoplastic in plane behaviour. Plane stress conditions are enforced in the simulations.
The impact of the choice of one unit cell and the influence of randomness are investigated in section 4.

The constitutive model of the parent Al-Mg alloy identified in the previous section is used to describe the
behavior of the matrix (see table 1). The Al2O3 particles are regarded as elastic with a Young’s modulus
equal to 370000 MPa and a Poisson ratio equal to 0.22.

Periodic boundary conditions are applied to the unit cell. The displacement vector ui at each node of
the mesh takes the form:

ui = Eijxj + vi (6)

The node coordinates are xi. The components Eij denote the mean applied strain. The fluctuation vi is
periodic, meaning that it takes the same value at homologous points on opposite sides of the unit cell. The
nodal forces are anti–periodic at homologous points on opposite sides of the unit cell. A classical result of
periodic homogenization is that the mean strain over the unit cell V is:

Eij =
1
V

∫
V

εlocal
ij dv =

1
V

∫
V

1
2
(ui,j + uj,i) dv (7)

The resulting stress is computed as the mean value of the local stresses over the unit cell. The components
Eij are additional degrees of freedom in the FE program. The associated reaction forces are the components
of the mean stress. As a result, it is possible to impose mixed loading conditions, i.e. a prescribed axial
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mean strain E22 and vanishing remaining components of the mean stress tensor. These periodic overall
tensile conditions are used in the next section. The mean tensile strain E22 is simply called ε in the
following and the mean axial stress is called σ.

The simulation of the development of PLC bands in the matrix requires extremely small time steps
to reach a correct description of their local propagation and of the overall serrations on the macroscopic
curve. As a result, computation times of one to six days were necessary to obtain the results presented in
this work, especially for the fine meshes considered in section 4.2.

Simulations of the MMC behaviour were carried out for various overall applied strain rates and volume
fractions of particles.

3.2 Simulation results and comparison with the parent Al-3% Mg alloy

The first objective of this part is to describe the effect of particles on the simulated macroscopic stress–
strain curves, in particular the type of serrations and the critical strain for serrations εc. These results are
compared with the simulations of the parent Al-3% Mg alloy. The main findings are summarized in table
3.

Figure 4 gives the computed stress–strain curves at ε̇ = 6.2 10−3s−1 for various volume fractions of
particles. They are compared with the simulation results of the parent Al-3% Mg alloy. Classically, in
the theory of composites, the addition of Al2O3 particles in the matrix leads to a strengthening of the
macroscopic behavior.

The addition of particles modifies the type of serrations. Serrations are observed on the mean stress–
strain curves but their amplitude and frequency are smaller for the MMC than for the bulk alloy. The
values of the critical strain for serrations εc are smaller for MMCs than for the parent Al-3% Mg alloy for
the same overall applied strain rate as shown in table 3. The critical strain εc is found to increase when
the volume fraction f of particles increases.

The apparent yield stress on the overall curves of figure 4 turns out to be almost independent of the
volume fraction. It is close to the yield stress of the matrix. In contrast, the work hardening of the composite
is higher than that of the bulk material. It is found to increase with increasing volume fraction (see figure
4).

The effect of the applied strain rate on the computed stress–strain curve for f = 2% is shown in figure
5. A negative SRS is observed for the composite. This effect is also shown in figure 2 for the parent Al-3%
Mg alloy but it is more pronounced in the MMC. Figure 5 also shows that the work–hardening of the
MMC increases with decreasing strain rate. The type of serrations observed on the overall stress–strain
curves of the composite is the same for the three tested strain rates, in strong contrast to the case of the
parent alloy (see figure 2) for which type A and B types of serrations could clearly be distinguished. The
amplitude of serrations is found to decrease when the volume fraction increases.

The second objective of this part is to study the plastic strain rate fields inside the unit cell. These obser-
vations provide the explanation for several of the macroscopic effects described previously. The presence of
the inclusion induces stress concentrations around the particle. As a result, the first strain rate localization
bands starts in the close neighbourhood of the inclusion. The fields of plastic strain rate inside the unit
cell are given in figure 6 for different overall strain levels. Several parallel bands are seen to originate at
the inclusion and to propagate further inside the matrix. In contrast to the simulation of homogeneous
plates in tension where single bands could be observed, several bands are always obtained simultaneously
in the case of MMC simulations. Irrespective of strain rate and volume fraction, the computed composite
responses exhibit the same qualitative behaviour in terms of band propagation and serrations. This is
probably due to the intrinsically heterogeneous stress–strain field around the inclusion. It is not possible
at this stage to determine the type of macroscopic PLC bands from the simulations since we obtain multi–
site band initiation and propagation which results, according to the periodic hypothesis, in simultaneous
activation of bands in the entire sample.

The formation of the first plastic strain rate band is found to coincide with the first serration on the
macroscopic curve, i.e. for ε = εc. This explains why the critical strain for serrations is slightly smaller
for the MMC than in the bulk alloy. Two competing effects are responsible for the dependence of εc with
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respect to volume fraction f . On the one hand, the stress concentration effect leads to smaller values of εc.
On the other hand, for a given mean strain rate ε̇, higher volume fractions of particles in the composite
lead to higher mean strain rates in the matrix since the deforming volume is reduced. Table 3 shows that
the plastic strain rate localized in the bands is three times larger for the MMC with f = 2%, five times
larger for the MMC with f = 5% and six times larger for the MMC with f = 10% than for the parent
Al-3%Mg alloy. This effect will postpone the occurrence of strain rate bands in the matrix. As a result of
both effects, the values of εc for the bulk alloy and for the MMC with f = 10% turn out to be very close.

The stress concentration effect is responsible for the fact that the initial yield stress is almost unaffected
by the volume fraction of particles. The increase in work hardening rate with decreasing applied strain
rate is due to DSA: lower strain rates with longer waiting times at obstacles lead to an increase in the
breakaway stress of dislocations.

3.3 Experiment vs. simulation results for MMC

Experiments were performed on flat specimens with a gauge length of 54 mm × 4 mm × 1.5 mm in size
prepared from polycrystalline cold–rolled sheets of Al-3% Mg alloy and reinforced with Al2O3 particles. The
average diameter of particles was about 3 µm. All specimens were heat treated for recovery after rolling (5h
at 673K) and water quenched. Three different volume fractions of particles were tested: f = 2%, f = 5%
and f = 10%. The uniaxial tensile tests were performed at constant strain rate at room temperature.

The experimental study shows that the addition of dispersed particles to the Al-3% Mg alloy affects the
type of serrations as compared with the matrix material [18]. This effect is shown in figure 7 for f = 2%
and f = 5% at ε̇ = 6.2 10−3s−1. Serrations do not disappear in the composite behaviour but they are
significantly reduced. The simulation results reproduce correctly the type of serrations and the decrease
in amplitude of the stress drops. The type of serrations does not depend on the strain rate nor volume
fraction, contrary to the case of the bulk alloy (see figures 4 and 5). This is also a feature correctly predicted
by the simulation.

It can be noted that the strengthening effect of the particles predicted by the homogenization model
is not observed experimentally. Experimental curves for the MMC even lie slightly below the response
of the parent alloy. A discussion of this experimental feature is given in the reference [18]. It is mainly
attributed there to stress concentrations already existing in the composite before testing as a result of
specimen preparation (heat treatments) and to possible damage of the composite.

The general trend observed in the experimental results is a reduction of the critical strain εc in the
MMC as compared to the matrix. A remarkable agreement is obtained between simulation and experiment
regarding the prediction of the critical strain, as shown in table 3, except for f = 10%. The values of the
critical strain for serrations are close for samples with f = 2% and f = 5%. This observation is also made
in [17] for an Al-3% Mg alloy reinforced with Al2O3 particles at ε̇ = 2.10−5s−1 at room temperature.
These authors show also that εc is the lowest for specimens with f = 10%. They correlate this effect with
the clustering of particles. Indeed an increase in the volume fraction of particles favors clustering. The
specimens with a small volume fraction of particles exhibit a more homogeneous distribution of particles.
As a consequence, larger volumes free of particles exist inside a specimen with high volume fraction of
particles so that the mechanical behavior of the specimen on the whole is determined by the matrix
material to a higher degree. It is consistent with the hypothesis that the particles mainly limit the mean
free path of the plastic bands.

4 Discussion

The simple composite model has been shown to provide a correct description of several features of the
experimental MMC behaviour compared to that of the parent alloy. However, several aspects must be
discussed to confirm these predictions. They mainly deal with the assessment of the accuracy of the
numerical simulations, on the one hand, and with the impact of the assumption of periodicity in the
previous model, on the other hand.
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4.1 Mesh sensitivity and impact of periodicity constraint

In the simulation of strain localization phenomena, the analysis of the mesh size sensitivity of the results
is an important issue. For that purpose, two mesh sizes of the considered unit cell were considered: (i)
1–inclusion unit cell with one mesh size of figure 1(b), (ii) 1–inclusion unit cell with a twice finer mesh
size. The macroscopic curves of figure 6(a) result from the simulations of tensile tests at ε̇ = 6.2 10−3s−1

using either mesh sizes. They show that:

(i) The tensile curves are almost identical. In particular, the critical strains for serrations are equal (εc =
0.014).

(ii) The width of the plastic strain rate bands is always equal to about one element. Consequently the
band width is mesh dependent. However it does not affect the mean response. This is also confirmed
by systematic numerical analysis in [27,28].

(iii) The orientation of the band with respect to the tensile axis is mesh–independent (it is about 53◦).

In the presence of strain localization phenomena, the spacial periodicity of the particle distribution is
not necessarily reflected in the strain field. That is why we investigate also the influence of the content of
the simulated unit cell on the predicted response of the MMC. Two different unit cells are investigated:
(i) a 1–inclusion unit cell (see figure 1(b)), (ii) a 9–inclusion unit cell (see figure 8(a)). Periodic conditions
are applied to the outer boundaries in both cases. The results of the simulations clearly indicate that the
number of cells has almost no influence on the macroscopic curves as shown in figure 6(a). However PLC
serrations are slightly less pronounced using the 9–inclusion unit cell than for the 1–inclusion unit cell. The
simulated plastic strain rate patterns inside the 9–inclusion unit cell are shown at four different strain levels
in figure 9. They can be compared to the plastic strain rate fields in the 1–inclusion unit cell of figure 6.
The overall strain levels for which the fields are observed are indicated on the macroscopic curves of figure
6(a). The regions with high plastic strain rates are always located directly close to particles, where local
stress concentrations develop, in the first step of figures 6 and 9, in 1–inclusion unit cell and 9–inclusion
unit cell respectively. For ε = 0.017, the plastic strain rate fields around particles are almost identical
for the 1–inclusion and 9–inclusion unit cells. After a mean strain of about 0.019, the strain rate band
patterns differ significantly for 1 and for 9 inclusions. The number of bands inside the central inclusion of
the 9-inclusion cell is smaller than in the 1-inclusion unit cell. This corresponds to a periodicity breaking
of the strain localization patterns. This shows that, even in the presence of multiple sites for initiation
of instabilities, plastic strain rate tends to localize in a small number of bands. This suggests that strain
localization bands may be observed at the macroscopic scale instead of the multi–site localization patterns
over the whole sample associated with the 1–inclusion unit cell model. This is a strong limitation of the
application of periodic homogenization in the presence of local instabilities. This effect however has no
influence on the type of serrations and the critical strain for serrations, as shown in figure 6(a), at least
for the small number of inclusions considered here.

4.2 Impact of a random distribution of particles

The actual geometrical distribution of particles in real materials is not periodic. The influence of a random
distribution of particles of one single size on the simulation of PLC effects is investigated in this subsection.
Images containing identical circular particles were generated following a Poisson distribution. The mesh
of the corresponding unit cells was made of linear triangular elements. A regular mesh could be used for
the plate and periodic unit cells including quadratic elements with reduced integration as recommended in
plasticity in the presence of localization bands. In the case of random distribution of particles, only a free
meshing technique could be applied. Since the bands cross the entire specimen, the same element size must
be used in the whole sample. This procedure results in a large number of small triangular elements. Due to
the large number of elements, it was not possible to use quadratic triangular elements. Computations on
a regularly meshed plate and a plate with free linear triangles, for a same number of degrees of freedom,
have been performed to check that the overall serrations and the types of bands are very close.

Two volume fractions of particles are considered: f = 2% and f = 5%. The meshes are shown in figure
8 (b), (c) respectively.
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Two mechanical tests were performed: A tensile test at ε̇22 = 6.2 10−3s−1 and a shear test at ε̇12 =
6.2 10−3s−1. The simulation of shear tests makes it possible to obtain different orientations of the PLC
bands and to compare the resulting equivalent stress/equivalent strain curves to the case of tension. These
curves are expected to be close, as a result of the isotropic behaviour of the matrix and in plane isotropic
distribution of particles.

For the tensile test, a vertical displacement is applied at the top of the mesh and the lateral surfaces
are free of forces. Homogeneous strain conditions are applied at the boundary for the shear tests: The
displacement at the boundary is then given by equation (6) with vi = 0.

The macroscopic stress–strain curves for the tensile tests are plotted for both volume fractions in figure
10. It has been checked that the equivalent von Mises stress–strain curves obtained for the shear tests are
almost identical to the tensile curve. This confirms the isotropic character of the distribution of particles
even for the single image of the microstructure considered here. The plastic strain rate maps for the tensile
test are shown in figure 11 and for the shear test in the figures 12 and 13 for f = 2% and f = 5%
respectively, and at different overall strain levels indicated on the macroscopic curve of figure 6.

The overall stress levels are found to be very close for a random distribution and for a periodic one.
However, in contrast to the periodic case, the tensile curves obtained with a random distribution of
particles exhibit almost no serration, although the same small time steps were used in both simulations to
capture possible serrations. Simulations with larger numbers of inclusions and various types of boundary
conditions would be necessary to confirm this point. The scenario for the initiation and the propagation
of plastic strain rate bands is similar in both random and periodic cases. In the case of tension, the PLC
bands are bent in the vicinity of particles and deviate from the usual 54◦ orientation. In the shear tests,
horizontal and vertical PLC bands are observed (see figures 12 and 13), which are in agreement with
the prediction of classical strain localization criteria [36]. In tension and shear, several bands are always
observed simultaneously at different locations showing the multi–site character of the plastic strain rate
localization phenomena. The random distribution seems to promote multiple activation of PLC bands in
contrast to the 9–inclusion cell model investigated previously.

The simulations with a random distribution of particles suggest that it may be possible to reduce or
even suppress overall serrations in the effective behaviour of strain ageing metals by incorporating particles
that act as initiation and scattering sites for strain rate localization bands. The experimental results do
not completely confirm this expectation. This point is important from the industrial point of view and is
discussed in the reference [18]. Such a scattering effect is illustrated by figure 14. A single vertical band,
indicated by an arrow, propagates through the matrix and hits a particle. Two short horizontal bands
form at the poles of the inclusion when the band goes through the obstacle. The vertical band recovers its
initial shape once the obstacle has been overcome.

The structure of plastic deformation in figure 11 to 14 exhibits a clear patterning of strain rate localization
bands with a more of less regular spacing, especially in shear, related to the spacing of particles. On the
one hand, the particles do not disturb significantly the propagation of long localization bands that extend
over the whole width of the microstructure window. On the other hand, the particle spacing seems to
dictate an overall regular patterning of the bands. A thorough statistical analysis is required to conclude
on this question of patterning of localization bands which is out of the scope of this work. In particular,
the effect of boundary conditions (periodic, mixed and strain based, as used in this work) on the structure
of plastic deformation field in the random material must be studied in a systematic way.

5 Conclusions and prospects

The strain ageing model implemented in a FE code was used to predict the influence of a dispersion of
Al2O3 particles in a parent Al-3% Mg alloy, based on classical computational homogenization techniques
for composites. The main features of the PLC effect in the bulk alloy and the influence of particles can be
summarized as follows:

(i) The strain ageing model is able to quantitatively account for the negative SRS in the parent Al-3% Mg
alloy. The simple strain ageing model could be identified to satisfactorily describe several features of the
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experimental behaviour of this alloy. Type A serrations, type B (intermittent propagation) and types
A+B (with very fine serrations followed by sudden larger load jumps) observed on the macroscopic
stress–strain curves are reproduced in a quantitatively accurate manner.

(ii) The simulations results for MMCs show that introducing a dispersion of particles in the material leads
to a decrease of the amplitude of PLC serrations on the macroscopic curve and a reduction of the critical
strain for serrations. The critical strain εc is found to increase with increasing volume fraction f . Two
competing mechanisms were evidenced in the simulations, namely the stress concentration effect close
to the particles and the effect of higher local strain rates induced by the presence of particles. The
same type of serrations was found for the three investigated strain rates.

(iii) The simulation results for a periodic distribution of particles and for a random distribution of particles
give similar and reliable predictions of the overall stress–strain curves for MMC including PLC effects.
The random distribution of particles leads to a significantly lower amplitude of serrations on the
macroscopic curve. However plastic strain rate localization bands still develop and propagate but on a
finer spacial scale than for the bulk material.

(iv) Although the macroscopic curve is identical for both 1–inclusion and 9–inclusion unit cells, the simu-
lation results predict differences in the plastic strain rate band patterns that finally break the spatial
periodicity.

(v) Complex multiple–site strain rate localization phenomena are obtained when the random character of
the microstructure is taken into account. They explain the reduction of load drops on the macroscopic
curves and can give indications for the design of more stable strain ageing MMCs. They deserve a future
systematic computational analysis in relation to random distribution of sizes, spacing and clustering
of particles and size of the considered volume element.

The conventional computational homogenization methods turn out to provide reliable results for compos-
ites in the presence of local viscoplastic instabilities. This is due to a specific feature of DSA constitutive
modeling, namely the fact that the domain of negative strain rate sensitivity remains bounded in a finite
strain rate range. The positive strain rate sensitivity that always exists at sufficiently high strain rates
acts as a stabilizing factor promoting band propagation and band spreading instead of further localization.
Material instability remains therefore only a transient feature of the local material response. This can en-
sure the existence of an effective material response, in contrast to strain softening of damaging materials.
This explains also the quasi–mesh–independence of the overall curves obtained in this work, even though
individual localization bands always are one–element thick.

Complex strain localization phenomena take place in strain ageing MMC even if PLC serrations are
reduced on the macroscopic curve. Accordingly, neglecting them in the design of engineering components
is not without consequences regarding the prediction of fracture processes. The relations between dynamic
strain ageing and fracture mechanisms, revealed by many available experimental results, are currently the
subject of extensive field measurement analyses in [44] for shear banding, and of computational investiga-
tions on the loss of ductility in necking and ductile fracture [45,46].
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[5] A. Ziegenbein, P. Hähner, and H. Neuhäuser. Propagating Portevin–Le Chatelier deformation
bands in Cu–15at.%Al polycrystals: experimental and theoretical description. Materials Science
and Engineering A, 309–310:336–339, 2001.

[6] R. Shabadi, S. Kumar, H.J. Roven, and E.S. Dwarakadasa. Effect of specimen condition, ori-
entation and alloy composition on PLC band parameters. Materials Science and Engineering
A, 382:203–208, 2004.

[7] Q. Zhang, Z. Jiang, H. Jiang, Z. Chen, and X. Wu. On the propagation and pulsation of
Portevin–Le Chatelier deformation bands: an experimental study with digital speckle pattern
metrology. International Journal of Plasticity, 21:2150–2173, 2005.

[8] H. Jiang, Q. Zhang, X. Chen, Z. Chen, Z. Jiang, X. Wu, and J. Fan. Three types of Portevin–Le
Chatelier effects: Experiment and modelling. Acta Materialia, 55:2219–2228, 2007.

[9] N. Ranc and D. Wagner. Experimental study by pyrometry of Portevin–Le Chatelier plastic
instabilities–Type A to type B transition. Materials Science and Engineering A, in press, 2007.

[10] F.B. Klose, A. Ziegenbein, J. Weidenmüller, H. Neuhäuser, and P. Hähner. Portevin–Le Chate-
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Table 1. Parameters of the strain ageing model for the parent Al-3% Mg alloy at room temperature.

Parameters Units Al-3% Mg alloy
R0 MPa 73
Q MPa 165
b - 16
P1 MPa 34
Cm - 1
P2 s−n 3.91
n - 0.33
α - 0.44
ω - 10−4

ε̇0 s−1 2.5×10−5

K (MPa) 0.615
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Table 2. Critical conditions for the occurrence of PLC instabilities in the simulation results according to different applied strain rates for the

parent Al-3% Mg alloy.

Influence of the applied strain rate Critical strain for Plastic strain rate Type of serrations
ε̇ onset of serrations localized in the band

(s−1) εc (-) (s−1)
simulations / experiments

6.2 10−3 0.018 / 0.017 0.03 A
1.1 10−4 0.006 / 0.007 0.0018 B
1.1 10−5 0.005 / 0.051 0.0018 A+B
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Table 3. Critical strain for serrations in the simulation results at ε̇ = 6.2 10−3s−1 according to the volume fraction of particles for the AA5754

MMC and comparison with the parent Al-3%Mg alloy.

Influence of Critical strain Plastic strain rate Type of serrations
the volume of serrations localized in the band

fraction of particles εc (-) (s−1)
f simulations / experiments

Al-3%Mg alloy 0.018 / 0.017 0.03 A
f = 2% 0.014 / 0.015 0.09 indeterminate
f = 5% 0.015 / 0.015 0.14 indeterminate
f = 10% 0.017 / 0.008 0.19 indeterminate
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(a) (b)

Figure 1. Finite element mesh for two specimen geometries: (a) straight plate specimen, (b) 1–inclusion unit cell for periodic
homogenization with f = 2%.
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Figure 2. Influence of the applied strain rate on the computed stress–strain curves for the parent Al-3% Mg alloy.
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Figure 3. Comparison of the experimental and simulated stress–strain curves for the parent Al-3% Mg alloy at different applied strain
rates: (a) ε̇ = 6.2 10−3s−1, (b) ε̇ = 1.1 10−4s−1, (c) ε̇ = 1.1 10−5s−1. The experimental curves are in dotted lines. For each strain rate,
a typical distribution of the plastic strain rate ṗ in the tensile plate is given. The red color corresponds to strain rates five times higher

than the overall prescribed strain rate.
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Figure 4. Influence of the volume fraction of particles on the computed stress–strain curves at ε̇ = 6.2 10−3s−1 for the AA5754 MMC.
From the lower to the upper curves we have successively: the parent Al-3% Mg alloy, the AA5754 MMC with f = 2%, the AA5754

MMC with f = 5%, and the AA5754 MMC with f = 10%.
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Figure 5. Influence of the applied strain rate on the computed stress–strain curves for the AA5754 MMC with f = 2%.
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Figure 6. (a) Influence of mesh refinement and of the choice of the unit cell on the stress–strain curves for the AA5754 MMC with
f = 2% at ε̇ = 6.2 10−3s−1; (b) maps of plastic strain rate (in s−1) in the 1–inclusion cell (f = 2%), at different mean strain levels

which are indicated on the macroscopic curve (a).
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Figure 7. Comparison of the experimental and simulated stress–strain curves between the parent Al-3% Mg alloy and the AA5754
MMC at room temperature at ε̇ = 6.2 10−3s−1 with: (a) f = 2%, (b) f = 5%.
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Figure 8. FE meshes for periodic and random distributions of particles: (a) periodic mesh with 9–inclusion unit cell with f = 2%, (b)
mesh with a random distribution of particles with f = 2%, (c) mesh with a random distribution of particles with f = 5%. The axes

indicated in (a) are also valid for (b) and (c).
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Figure 9. Maps of plastic strain rate (s−1) in the 9–inclusion unit cell with the periodic distribution of particles for f = 2%. at
different mean strain levels indicated by symbols on the macroscopic curve of figure 6(a). The tensile axis is vertical.
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Figure 10. Influence of particle volume fraction f on the computed stress–strain curves for the AA5754 MMC in tension at
ε̇ = 6.2 10−3s−1. Simulation with a random distribution of particles. The symbols indicate the strain levels corresponding to the plastic

strain rate maps given in figure 11.
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Figure 11. Maps of plastic strain rate (s−1) in a random distribution of particles (f = 2%) loaded in tension at different strain levels
indicated by symbols on the macroscopic curve of figure 10. The tensile axis is vertical.
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Figure 12. Maps of plastic strain rate (s−1) in a random distribution of particles (f = 2%) loaded in shear at different strain levels.
The shearing axes are horizontal and vertical respectively.
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Figure 13. Maps of plastic strain rate (s−1) in a random distribution of particles (f = 5%) loaded in shear at different strain levels.
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Figure 14. Overcoming of obstacles by the PLC band in a MMC with f =2% subjected to shear loading conditions. The arrow
indicates the location of a particle for which the scattering of the band is clearly visible when it hits the obstacle.
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