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Abstract

Coloured periodic and quasiperiodic patterns with 25 colours and colour-symmetry were described for four-
fold, six-fold, eight-fold, ten-fold, and twelve-fold symmetries. Eight-fold, twelve-fold and some four-fold 
patterns are related to coincidence site lattices (CSL). The procedures of delineation of coloured patterns with 
25 colours must consider the property of a square number. Procedures for ten-fold patterns need special 
considerations and allow the description of superstructures.
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1 Introduction

   Colour symmetry was known before the discovery of quasicrystals in 1982 by D. Shechtman (published in 

1984) [1].  In particular, black-and-white symmetry (combined with the symmetry operation of time 

inversion) was used to describe spin orientations ‘up’ and ‘down’ in magnetic materials.  The black-and-white 

symmetry groups have been listed in the literature for periodic materials.  The subject was dealt with in the 

textbook by Shubnikov and Koptsik [2] and other remarkable papers [3-7].  Coloured periodic patterns and 

colour groups can also be found in the standard textbook on tilings [8].  Shechtman’s discovery revived the 

interest in colour symmetry in the context of aperiodic structures.
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   ‘Colour’ in colour symmetry stands for any property, such as level or label, nucleus or numeral, atom or 

adornment, and, of course, colour as well. ‘Symmetry’ means that a crystallographic symmetry operation on 

some object may be accompanied by a global permutation of colours.  The object may be a tiling, a crystal, a 

quasicrystal, a model or something else.  Therefore all colours should be equivalent, and their fractions 

(relative frequencies) should be equal. Colour symmetry is strongly related to chemical and magnetic 

superstructures and to coincidence site lattices. 

   The number 25 has several properties which make the decoration of patterns attractive. There are several 

rotational symmetries which allow a symmetric decoration with 25 colours.  They are 4-, 5-, 6-, 8-, 10-, 12-, 

15-, 20-, 24-, 25-, 40-, and 60-fold symmetry as described by M. Baake et al. [9-13], who derived the numbers 

and its multiplicities by Direclet series and Dedekind zeta-functions.  25 is a square of a prime number, which 

means that almost all decorations are based on the rank 2 as described by R. Lifshitz [14-19] in extensive 

group theoretical descriptions including those of magnetic superstructures [17-19].  The rank describes the 

dimensionality of the numbers indicating the colour.  25 is the square of the number 5, and thus is associated 

with five-fold symmetry which is essential for icosahedral and decagonal quasicrystals.  Some examples of 

colour symmetry with rank 1 are described in the literature: 2 colours in ten-fold patterns [20], 11 colours in 

ten-fold patterns [21], 17 colours in eight-fold patterns [22 ] and 13 colours in twelve-fold patterns [23].  An 

example of rank 4 is described in [24] where the decoration with 16 colours of a ten-fold tiling is used to 

model a superstructure of decagonal AlCoNi, and an example for rank 3 with 8 colours in seven-fold patterns 

is discussed in [13].

   This paper is organized as follows:  In Section 2 I briefly review some features of four-fold and six-fold 

periodic patterns with 5 and 25 colours.  This is followed (Section 3) by a discussion of 25 colours in eight-

and twelve-fold quasiperiodic patterns.  The ten-(five-)fold symmetry requires a discussion in more detail.  

Finally, some remarks on the decoration of various quasiperiodic four-fold grids and six-fold quasiperiodic 

patterns will be made.  Subsets are considered in Section 4, some general comments are added (Section 5).  

The terms used in the present paper are defined or explained in the Appendix.

2 Periodic patterns

   The decoration of a square lattice with 5 colours is based on a well-known example for Pythagorean 

Numbers [25].  The decoration is strongly related to a coincidence site lattice (CSL) with Σ5.  There exist two 

enantiomorphic decorations.  The procedure can be repeated for the derived sublattices to eventually end up 

with 25 colours.  The different combinations result in three decorations [9].  Two enantiomorphic colourings 
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correspond to CSL decorations of the Σ25 type; these two are the examples which are not based on rank 2.  

The third one is really based on rank 2; for instance, the first digit may count the horizontal progression (0 

through 4) and the second one the vertical progression (0 through 4 as well).  Decoration of vertices with 5 or 

25 colours uses the operation mod 5, for 25 it is used for both digits.  Only the CSL decoration of the square 

lattice with Σ25 is based on mod 25.  Translation is based on adding numbers, rotation is based on 

multiplication of the additive number by (well-defined) numbers; in case of rank 2 (and higher) it is based on 

multiplication of the additive vector by matrices.  However, there exists a variety of possibilities for the 

numbers and matrices if a special colour symmetry is considered.. 

   Figure 1 represents simultaneously numbers 0 through 24 and the corresponding colours. The numbers form 

a so-called Devil’s Magic Square.  That means that in every 5×5 square of the tiling the sum of columns, rows

and diagonals is identical; it is 60 in the present case. 

‘[Insert Figure 1 about here]’ 

   The six-fold periodic symmetry allows a single decoration with 25 colours which is not related to any CSL 

and which is not very different from the decoration of the square lattice.

3 Quasiperiodic patterns

   The multiplicity for eight-fold and twelve-fold patterns is 2 for both, while the rank of decoration is 2. 

Vertices and tiles can be decorated as well.  The decoration of tiles is based on the average of the numbers of 

adjacent vertices using the mod 5 operation for both digits.  Both decorations, of vertices and of tiles, are 

related to CSL and have two enantiomorphic solutions.  As in any other CSL related coloured (two-

dimensional) pattern, there are no colour mirror symmetries.  First empirical investigations on CSLs of 

quasicrystals were published in [26-28].  The CSLs were put on a systematic basis [29, 30], more publications 

[31-37] followed.  Figure 2 is a decoration of an eight-fold quasiperiodic pattern with a decoration of  ‘one of 

twentyfive’ corresponding to a CSL lattice Σ25. Decoration is shown for vertices and tiles as well.  The 

corresponding illustration for a twelve-fold quasiperiodic pattern is given in Fig. 3. 

‘[Insert figures 2 and 3 about here]’
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   The multiplicity for ten-fold patterns is 1.  The colouring is not related to a CSL and mirror symmetries for 

colours do exist.  Problems arise from the fact that vertices and tiles cannot be coloured simultaneously with 5 

or 25 colours.  It is empirically found that patterns with a single translation class can be decorated with 5 and 

therefore also with 25 colours at vertices.  The decoration of the Penrose pentagon pattern (PPP) with 5 

colours at vertices was demonstrated in 1987, published with numbers [38] and as a coloured figure 

afterwards [14, 15].  The sublattice of each one of the five colours forms a tiling [38-40] which is now called  

the Tübingen triangle tiling (TTT).  As the TTT is formed by a single translation class, it can be decorated 

with 5 colours as well.  This procedure can be performed again and again.  Table 1 shows this hierarchy; the 

first column is dedicated to the parent tiling and its subsets of 5, 52, 53,...colours.  Their acceptance domain in 

internal space is a decagon.  The second and the third columns refer to tilings with different acceptance 

domains, these can be derived from the decagons by stellated extensions [41].

‘[Insert Table 1 about here]’

   There are other decagonal patterns formed by a single translation class, such as e.g. Kepler’s Aa patterns 

[42, 23], and all patterns formed by the zero-level of ‘Γ = ½’ patterns, including the so-called anti-Penrose 

pattern described by Kléman and Pavlovitch [43], the tA and tB patterns by Ingalls [44], and the ‘three-level’ 

binary tiling formed by rhombi [39].

   The centres of decagons of Ingalls’ tC [44] pattern form the zero-level of the anti-Penrose pattern.  

Therefore, its decagons can be decorated with 25 colours and with full colour symmetry (Fig. 4).  Colouring 

of tiles in ten-fold patterns with 5 and 25 colours is not a simple procedure.  The Penrose rhombus pattern is 

derivable from PPP; the PPP can be decorated at vertices as mentioned above.  The fat rhombi are decorated 

by a vertex of the PPP, its colour can be taken for the decoration of the fat rhombus, the thin rhombi may be 

decorated according to the colour symmetry of the surroundings.  Such coloured patterns with 5 colours were 

published in the literature [45, 23]. 

   The centres of rhombi of the mentioned three-level tiling are at the zero-level and can therefore be decorated 

with 5 and 25 colours.  The tiles may be coloured with the colour of the centre (see Fig. 5).  The centres of all 

rhombi or of fat rhombi form novel tilings in the same manner as other special points of the Penrose rhombus 

pattern form the PPP.  The novel tilings have a single translation class and are composed of different tiles 

including pentagons, ten-fold stars and large rhombi; the centres of the ten-fold stars form the TTT. 
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   A third type of special points within the rhombi is determined by crossing points of Ammann bar pentagrids.  

Several five-colour symmetries were determined for different rhombus patterns from Ammann bar pentagrids 

coloured with 5 colours, but no analogous solution for 25 colours has been found.

‘[Insert figure 4 and figure 5 as a coloured figure about here]’

   Four-fold (τ-related) Fibonacci-based and (σ-related) Octonacci-based (see e.g. [46-48]) grids and their 

colourings have been discussed in the literature and at several meetings.  Posters dealing with colour-

symmetry patterns were presented but not published.  Hence, slightly different ideas concerning the definition 

of colour symmetry exist.  Any quasiperiodic sequence − including those with an integer scaling factor or 

integer ratio of two lengths – can be used to construct a grid with four-fold symmetry.  Several examples were 

tested for the number 25 in the present work.  It turned out that for all quasiperiodic patterns decorations 

according to CSL Σ25 (with multiplicity 2) do exist.  However, an ‘unrotated’ decoration with 25 colours as in 

the periodic case was only found for Fibonacci-based grids and for those with an integer ratio of lengths; this 

was especially found for the ‘Copper Mean’ with the ratio 2.

   There are also six-fold quasiperiodic patterns.  A six-fold Fibonacci related tiling was constructed based 

upon dualisation of Ammann bar tria-grids, 4 different LI (local isomorphism or local indistinguishability) 

classes resulted [49].  A different method based on substitution of two equilateral triangles and two 

enantiomorphic parallelograms was presented later [50].  In any case, the six-fold Fibonacci related patterns 

can be coloured with 25 colours with multiplicity 1.  As in the periodic case (Section 2), no CSL related 

decoration exists for 25 colours.  Other six-fold quasiperiodic grids and their duals decorated with 25 colours 

are a challenge.

4 Subsets with five colours

   All decorations with 25 colours based upon rank 2 can be subdivided into 5 subsets of 5 colours each.  In all 

cases there are 6 systems of formation.  In the simple case of a periodic square lattice, these subsets are rows, 

columns, 2 diagonals and two enantiomorphic sets related to a CSL with Σ5.  This is based on the fact that the 

field of 5×5 numbers can be separated by the additive vectors into 5 sets of 5 numbers each. Single sets are 

formed by the additive vectors (0,1); (1,0); (1,1); (1,4); (1,2); and (2,1).  All other pairs of numbers will result 

in one of these sets due to the mod 5 argument. 
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   The correlation of these sets with with coloured patterns was checked.  A similar result as for periodic 

patters was found for all quasiperiodic four-fold lattices which are not related to Σ25.  In case of six-fold 

periodic and Fibonacci related patterns these are 3 + 3 lines in different orientations.  For ten-fold patterns 

based on a single translation class 5 lines according to symmetry and one superstructure [38] are found.  Only 

lines and no superstructures were found for eight-fold, twelve-fold and Σ25 related four-fold patterns.

5 Concluding remarks

   The present synopsis summarizes some key points for coloured periodic and quasiperiodic tilings in 

Euclidean 2D geometry.  There is no general problem to extend colour symmetry to higher dimensions; 

visualisation may be more difficult.  Extension to spherical geometry is almost trivial, whereas extension to 

hyperbolic geometry opens a new field.  Some colour symmetries are known from M. Escher’s coloured wood 

engravings ‘Circle limit I – IV’; in recent papers [51, 52] special hyperbolic tilings and its colourings are 

discussed.  A symmetric decoration with 25 colours in hyperbolic space should be possible.

In all cases, superstructures of one or more colours are related to chemically or magnetically ordered (quasi-) 

crystals.  Sublattices formed by colour symmetry bear the opportunity to build up novel tilings.

   The problems described for 25 (and 5) colours are similar for 49 (and 7) colours in eight-, twelve- and 

fourteen-(seven-)fold patterns. Features of 9 colours in eight-fold patterns are similar to those of 25 colours in 

eight-fold patterns; however, the problem of 9 colours in twelve-fold patterns is similar to that of 25 (5) 

colours in ten-fold patterns.  Vertices can be decorated with 9 colours provided there is a single translation 

class.

   The permutation of colours caused by a symmetry operation is assigned to so-called orbits [51].  Colours 

permute cyclically or do not change within an orbit.  A twelve-fold rotation separates 25 colours into 3 orbits, 

one orbit with a single colour and two orbits with 12 colours each.  In case of eight-fold rotation, 25 colours 

are distributed on 4 orbits, one with a single colour and three with 8 colours.  The separation at a ten-fold 

centre is more complex, there are five orbits, one with a single colour, two with 2 colours and two with 10 

colours.  If there is no orbit with a single colour, the rotation centre can not be coloured, this was found for 

five-fold centres and 25 colours; there are five orbits with 5 colours each.  The distribution of 25 colours on 

the orbits and the sequence of colours within an orbit follows the rules of forming subsets (Section 4) and 

depends on the rotation centre. 

   A question concerning the relation of colouring and projection may arise. In order to investigate this issue, 

the coloured vertices should be lifted to superspace.  Lifting is not a simple process; results are often not 
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unique; it depends on the number of dimensions of the selected superspace.  Even for a well-defined 

superspace different lattices can result.  The colouring of vertices is generally connected with a formation of 

superlattices in superspace.  In most cases the symmetry of superlattices is reduced with respect to the 

symmetry of the superspace lattice.  However, the symmetry along the projection direction survives. For 

instance., each one of five colours may form a separated level in superspace. Colouring Ammann bar 

pentagrids is based on the projection of a coloured square lattice with five colours of the Σ5 type.
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Appendix

In the following a glossary of a few used terms is listed.

Coincidence site lattice (CSL) [26-37].  The common lattice points of two lattices of the same type after a 

rigid rotation about a common lattice point.  The fraction of common points of periodic lattices is given by 

1/Σ.  Σ5 indicates that 1/5 of lattice points coincide.  The Σ index is used to characterize coincidence grain 

boundaries.  In case of quasiperiodic lattices, the fraction of common points is additionally influenced by the 

common area of the two acceptance domains in internal space.  Several colour symmetries are characterized 

by a relationship to CSL, the fraction of each colour is 1/Σ. The CSL related colourings occur as 

enantiomophic pairs and do not have a colour mirror symmetry, whereas the non-CSL type colourings have.

Colour Group [15, 51].  A symmetry group of an uncoloured pattern is subdivided into several subgroups: 

(i) operations leaving all colours unchanged; (ii) operations permuting systematically at least some colours 

depending on the involved orbits; (iii) operations not being symmetry operations of the coloured pattern, these 

can be mirror operations as found for several CLS type colourings.

Page 7 of 29

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Colour Symmetry Operation [15, 51].  A symmetry operation which permutes systematically at least some 

colours, some others may be unchanged.

Enantiomorphic Pairs.  If the mirror symmetry of the uncoloured crystal is broken by colouring (c.f. CSL), 

the pattern appears in right-handed and left-handed versions.

Multiplicity [9].  Number of different coloured versions of a pattern for a fixed number of colours.

PPP.  Penrose pentagon pattern [8, 38].

Orbits of Colours [51].  Orbits are formed by symmetry operations and the number of different orbits is 

determined by the number of colours.  Colours permute cyclically or do not change within a single orbit. 

Pythagorean Numbers [25].  A set of natural numbers which fulfil the condition 

a2 + b2 + c2 ... = d2 , depending on the number of dimensions.

Rank.  According to R. Lifshitz [15] it is the smallest number of permutations that can generate the colour 

permution group.  For the present purpose, it is used for the dimensionality of the numbers indicating the 

colour [13, 24].

Sigma Index Σ [25-37]. 1/Σ indicates the fraction (or relative frequency) of common lattice points of a CSL. 

Σ=5 is usually written as Σ5.

Single Translation Class.  The acceptance domain occupies only a single level in internal space.

Sublattice, Superstructure.  A subset of lattice points (vertices) forms a novel lattice different from the parent 

lattice.  All sublattices of a parent lattice form a superstructure.  A single colour of a coloured lattice forms a 

sublattice. 

TTT.  Tübingen triangle tiling [38-49].
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Figure Captions

Fig. 1  Periodic square tiling simultaneously decorated with numbers 0 through 24 and corresponding colours. The numbers form a 
so-called Devil’s Magic Square, in every 5×5 square of the tiling the sum of columns, rows and diagonals is 60. 

Fig. 2  Eight-fold quasiperiodic pattern  with a colour decoration ‘one of twentyfive’ at vertices and tiles.  This corresponds to a 

coincidence lattice with Σ25. 

Fig. 3  Twelve-fold quasiperiodic pattern with a colour decoration ‘one of twentyfive’ to a CLS with Σ25. 

Fig. 4  Ingalls’ ten-fold tC pattern [44] decorated at decagons with 25 colours.

Fig. 5  A ten-fold quasiperiodic ‘three-level-tiling’ decorated with 25 colours.

Table Caption

Table 1.  Hierarchy of ten-fold tilings with a single translation class and its subsets of 5, 52, 53,...colours.  The second and third 

columns are designated to tilings of stellated extensions of acceptance domains.  The dotted lines at the top and at the bottom 

indicate that the table can be extended in both directions to an infinitely large number of classes which have, however, a decreasing 

significance. 

Table 1.  Hierachy of 5n colour sublattices

........... ........... ...........
Undetermined pattern 1st stellation of undet. pat. 2nd stellation of undet. pat.
Penrose Pentagon Pattern (PPP)
= 5-colour sublattice of 
undetermined pattern.

1st stellation of PPP 2nd stellation of PPP

TTT, 5-colour sublattice of PPP 1st stellation of TTT 2nd stellation of TTT
25-colour sublattice of PPP 
= 5-colour sublattice of TTT

1st stellation of 25 c.s. PPP 2nd stellation of 25 c.s. PPP

125-colour sublattice of PPP
= 25-colour sublattice of TTT

1st stellation of 25c.s. TTT 2nd stellation of 25 c.s. TTT

.............. .............. ..............

Acceptance domains are decagons Acceptance domains are stars Acceptance domains are pointed stars
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Abstract

Coloured periodic and quasiperiodic patterns with 25 colours and colour-symmetry were described for four-
fold, six-fold, eight-fold, ten-fold, and twelve-fold symmetries. Eight-fold, twelve-fold and some four-fold 
patterns are related to coincidence site lattices (CSL). The procedures of delineation of coloured patterns with 
25 colours must consider the property of a square number. Procedures for ten-fold patterns need special 
considerations and allow the description of superstructures.

Keywords: Quasicrystals, Colour Symmetry, Superstructure, Coincidence site lattice.

AMS Subject Classification:

1 Introduction

Colour symmetry was known before the discovery of quasicrystals in 1982 by D. Shechtman (published in 

1984) [1].  In particular, black-and-white symmetry (combined with the symmetry operation of time 

inversion) was used to describe spin orientations ‘up’ and ‘down’ in magnetic materials.  The black-and-white 

symmetry groups have been listed in the literature for periodic materials.  The subject was dealt within the 

textbook by Shubnikov and Koptsik [2] and other remarkable papers [3-7].  Coloured periodic patterns and 

colour groups can also be found in the standard textbook on tilings [8].  Shechtman’s discovery revived the 

interest in colour symmetry in the context of aperiodic structures.
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‘Colour’ in colour symmetry stands for any property, such as level or label, nucleus or numeral, atom or 

adornment, and, of course, colour as well. ‘Symmetry’ means that a crystallographic symmetry operation on 

some object may be accompanied by a global permutation of colours.  The object may be a tiling, a crystal, a 

quasicrystal, a model or something else.  Therefore all colours should be equivalent, and their fractions 

(relative frequencies) should be equal. Colour symmetry is strongly related to chemical and magnetic 

superstructures and to coincidence site lattices. 

The number 25 has several properties which make the decoration of patterns attractive. There are several 

rotational symmetries which allow a symmetric decoration with 25 colours.  They are 4-, 5-, 6-, 8-, 10-, 12-, 

15-, 20-, 24-, 25-, 40-, and 60-fold symmetry as described by M. Baake et al. [9-13], who derived the numbers 

and its multiplicities by Direclet series and Dedekind zeta-functions. 25 is a square of a prime number, which 

means that almost all decorations are based on the rank 2 as described by R. Lifshitz [14-19] in extensive 

group theoretical descriptions including those of magnetic superstructures [17-19]. The rank describes the 

dimensionality of the numbers indicating the colour. 25 is the square of the number 5, and thus is associated 

with five-fold symmetry which is essential for icosahedral and decagonal quasicrystals. Some examples of 

colour symmetry with rank 1 are described in the literature: 2 colours in ten-fold patterns [20], 11 colours in 

ten-fold patterns [21], 17 colours in eight-fold patterns [22 ] and 13 colours in twelve-fold patterns [23]. An 

example of rank 4 is described in [24] where the decoration with 16 colours of a ten-fold tiling is used to 

model a superstructure of decagonal AlCoNi, and an example for rank 3 with 8 colours in seven-fold patterns 

is discussed in [13].

   This paper is organized as follows: In Section 2 I briefly review some features of four-fold and six-fold 

periodic patterns with 5 and 25 colours. This is followed (Section 3) by a discussion of 25 colours in eight-

and twelve-fold quasiperiodic patterns. The ten-(five-)fold symmetry requires a discussion in more detail.

Finally, some remarks on the decoration of various quasiperiodic four-fold grids and six-fold quasiperiodic 

patterns will be made. Subsets are considered in Section 4, some general comments are added (Section 5). 

The terms used in the present paper are defined or explained in the Appendix.

2 Periodic patterns

The decoration of a square lattice with 5 colours is based on a well-known example for Pythagorean 

Numbers [25]. The decoration is strongly related to a coincidence site lattice (CSL) with Σ5.  There exist two 

enantiomorphic decorations. The procedure can be repeated for the derived sublattices to eventually end up 

with 25 colours.  The different combinations result in three decorations [9]. Two enantiomorphic colourings 

Formatted: Font color: Blue

Deleted: − including colours −

Deleted: . ‘Symmetry’ means that a 
colour keeps identical or changes strictly 
from one to the other for a symmetry 
operation on the subject. This 

Deleted: , these

Deleted: where 

Deleted: The 

Deleted: ¶
For the understanding the colour 
symmetry

Deleted: will be discussed for

Deleted: different

Deleted:  The significance of some 
used terms is explained in an appendix.

Deleted: ¶

Page 18 of 29

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

correspond to CSL decorations of the Σ25 type; these two are the examples which are not based on rank 2.

The third one is really based on rank 2; for instance, the first digit may count the horizontal progression (0 

through 4) and the second one the vertical progression (0 through 4 as well).  Decoration of vertices with 5 or 

25 colours uses the operation mod 5, for 25 it is used for both digits.  Only the CSL decoration of the square 

lattice with Σ25 is based on mod 25. Translation is based on adding numbers, rotation is based on 

multiplication of the additive number by (well-defined) numbers; in case of rank 2 (and higher) it is based on 

multiplication of the additive vector by matrices. However, there exists a variety of possibilities for the 

numbers and matrices if a special colour symmetry is considered.. 

Figure 1 represents simultaneously numbers 0 through 24 and the corresponding colours. The numbers form 

a so-called Devil’s Magic Square. That means that in every 5×5 square of the tiling the sum of columns, rows 

and diagonals is identical; it is 60 in the present case.

‘[Insert Figure 1 about here]’ 

The six-fold periodic symmetry allows a single decoration with 25 colours which is not related to any CSL 

and which is not very different from the decoration of the square lattice.

3 Quasiperiodic patterns

The multiplicity for eight-fold and twelve-fold patterns is 2 for both, while the rank of decoration is 2. 

Vertices and tiles can be decorated as well. The decoration of tiles is based on the average of the numbers of 

adjacent vertices using the mod 5 operation for both digits. Both decorations, of vertices and of tiles, are 

related to CSL and have two enantiomorphic solutions. As in any other CSL related coloured (two-

dimensional) pattern, there are no colour mirror symmetries. First empirical investigations on CSLs of 

quasicrystals were published in [26-28].  The CSLs were put on a systematic basis [29, 30], more publications 

[31-37] followed. Figure 2 is a decoration of an eight-fold quasiperiodic pattern with a decoration of ‘one of 

twentyfive’ corresponding to a CSL lattice Σ25. Decoration is shown for vertices and tiles as well. The 

corresponding illustration for a twelve-fold quasiperiodic pattern is given in Fig. 3. 

‘[Insert figures 2 and 3 about here]’
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The multiplicity for ten-fold patterns is 1. The colouring is not related to a CSL and mirror symmetries for 

colours do exist. Problems arise from the fact that vertices and tiles cannot be coloured simultaneously with 5 

or 25 colours.  It is empirically found that patterns with a single translation class can be decorated with 5 and 

therefore also with 25 colours at vertices.  The decoration of the Penrose pentagon pattern (PPP) with 5 

colours at vertices was demonstrated in 1987, published with numbers [38] and as a coloured figure 

afterwards [14, 15].  The sublattice of each one of the five colours forms a tiling [38-40] which is now called

the Tübingen triangle tiling (TTT). As the TTT is formed by a single translation class, it can be decorated 

with 5 colours as well. This procedure can be performed again and again.  Table 1 shows this hierarchy; the 

first column is dedicated to the parent tiling and its subsets of 5, 52, 53,...colours.  Their acceptance domain in 

internal space is a decagon. The second and the third columns refer to tilings with different acceptance 

domains, these can be derived from the decagons by stellated extensions [41].

‘[Insert Table 1 about here]’

There are other decagonal patterns formed by a single translation class, such as e.g. Kepler’s Aa patterns 

[42, 23], and all patterns formed by the zero-level of ‘Γ = ½’ patterns, including the so-called anti-Penrose 

pattern described by Kléman and Pavlovitch [43], the tA and tB patterns by Ingalls [44], and the ‘three-level’ 

binary tiling formed by rhombi [39].

The centres of decagons of Ingalls’ tC [44] pattern form the zero-level of the anti-Penrose pattern.

Therefore, its decagons can be decorated with 25 colours and with full colour symmetry (Fig. 4). Colouring 

of tiles in ten-fold patterns with 5 and 25 colours is not a simple procedure.  The Penrose rhombus pattern is 

derivable from PPP; the PPP can be decorated at vertices as mentioned above. The fat rhombi are decorated 

by a vertex of the PPP, its colour can be taken for the decoration of the fat rhombus, the thin rhombi may be 

decorated according to the colour symmetry of the surroundings.  Such coloured patterns with 5 colours were 

published in the literature [45, 23]. 

The centres of rhombi of the mentioned three-level tiling are at the zero-level and can therefore be decorated 

with 5 and 25 colours.  The tiles may be coloured with the colour of the centre (see Fig. 5). The centres of all 

rhombi or of fat rhombi form novel tilings in the same manner as other special points of the Penrose rhombus

pattern form the PPP. The novel tilings have a single translation class and are composed of different tiles 

including pentagons, ten-fold stars and large rhombi; the centres of the ten-fold stars form the TTT. 
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A third type of special points within the rhombi is determined by crossing points of Ammann bar pentagrids.

Several five-colour symmetries were determined for different rhombus patterns from Ammann bar pentagrids 

coloured with 5 colours, but no analogous solution for 25 colours has been found.

‘[Insert figure 4 and figure 5 as a coloured figure about here]’

Four-fold (τ-related) Fibonacci-based and (σ-related) Octonacci-based (see e.g. [46-48]) grids and their 

colourings have been discussed in the literature and at several meetings.  Posters dealing with colour-

symmetry patterns were presented but not published.  Hence, slightly different ideas concerning the definition 

of colour symmetry exist. Any quasiperiodic sequence − including those with an integer scaling factor or 

integer ratio of two lengths – can be used to construct a grid with four-fold symmetry. Several examples were 

tested for the number 25 in the present work.  It turned out that for all quasiperiodic patterns decorations 

according to CSL Σ25 (with multiplicity 2) do exist.  However, an ‘unrotated’ decoration with 25 colours as in 

the periodic case was only found for Fibonacci-based grids and for those with an integer ratio of lengths; this 

was especially found for the ‘Copper Mean’ with the ratio 2.

There are also six-fold quasiperiodic patterns. A six-fold Fibonacci related tiling was constructed based 

upon dualisation of Ammann bar tria-grids, 4 different LI (local isomorphism or local indistinguishability) 

classes resulted [49].  A different method based on substitution of two equilateral triangles and two 

enantiomorphic parallelograms was presented later [50]. In any case, the six-fold Fibonacci related patterns 

can be coloured with 25 colours with multiplicity 1.  As in the periodic case (Section 2), no CSL related 

decoration exists for 25 colours. Other six-fold quasiperiodic grids and their duals decorated with 25 colours 

are a challenge.

4 Subsets with five colours

All decorations with 25 colours based upon rank 2 can be subdivided into 5 subsets of 5 colours each. In all 

cases there are 6 systems of formation.  In the simple case of a periodic square lattice, these subsets are rows, 

columns, 2 diagonals and two enantiomorphic sets related to a CSL with Σ5. This is based on the fact that the 

field of 5×5 numbers can be separated by the additive vectors into 5 sets of 5 numbers each. Single sets are 

formed by the additive vectors (0,1); (1,0); (1,1); (1,4); (1,2); and (2,1). All other pairs of numbers will result 

in one of these sets due to the mod 5 argument. 
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The correlation of these sets with with coloured patterns was checked. A similar result as for periodic 

patters was found for all quasiperiodic four-fold lattices which are not related to Σ25.  In case of six-fold 

periodic and Fibonacci related patterns these are 3 + 3 lines in different orientations. For ten-fold patterns 

based on a single translation class 5 lines according to symmetry and one superstructure [38] are found. Only 

lines and no superstructures were found for eight-fold, twelve-fold and Σ25 related four-fold patterns.

5 Concluding remarks

The present synopsis summarizes some key points for coloured periodic and quasiperiodic tilings in 

Euclidean 2D geometry. There is no general problem to extend colour symmetry to higher dimensions; 

visualisation may be more difficult.  Extension to spherical geometry is almost trivial, whereas extension to 

hyperbolic geometry opens a new field. Some colour symmetries are known from M. Escher’s coloured wood 

engravings ‘Circle limit I – IV’; in recent papers [51, 52] special hyperbolic tilings and its colourings are 

discussed. A symmetric decoration with 25 colours in hyperbolic space should be possible.

In all cases, superstructures of one or more colours are related to chemically or magnetically ordered (quasi-) 

crystals. Sublattices formed by colour symmetry bear the opportunity to build up novel tilings.

The problems described for 25 (and 5) colours are similar for 49 (and 7) colours in eight-, twelve- and 

fourteen-(seven-)fold patterns. Features of 9 colours in eight-fold patterns are similar to those of 25 colours in 

eight-fold patterns; however, the problem of 9 colours in twelve-fold patterns is similar to that of 25 (5) 

colours in ten-fold patterns. Vertices can be decorated with 9 colours provided there is a single translation 

class.

The permutation of colours caused by a symmetry operation is assigned to so-called orbits [51].  Colours 

permute cyclically or do not change within an orbit. A twelve-fold rotation separates 25 colours into 3 orbits, 

one orbit with a single colour and two orbits with 12 colours each.  In case of eight-fold rotation, 25 colours 

are distributed on 4 orbits, one with a single colour and three with 8 colours. The separation at a ten-fold 

centre is more complex, there are five orbits, one with a single colour, two with 2 colours and two with 10 

colours.  If there is no orbit with a single colour, the rotation centre can not be coloured, this was found for 

five-fold centres and 25 colours; there are five orbits with 5 colours each. The distribution of 25 colours on 

the orbits and the sequence of colours within an orbit follows the rules of forming subsets (Section 4) and 

depends on the rotation centre. 

A question concerning the relation of colouring and projection may arise. In order to investigate this issue,

the coloured vertices should be lifted to superspace.  Lifting is not a simple process; results are often not 
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unique; it depends on the number of dimensions of the selected superspace. Even for a well-defined 

superspace different lattices can result.  The colouring of vertices is generally connected with a formation of 

superlattices in superspace.  In most cases the symmetry of superlattices is reduced with respect to the 

symmetry of the superspace lattice.  However, the symmetry along the projection direction survives. For 

instance., each one of five colours may form a separated level in superspace. Colouring Ammann bar 

pentagrids is based on the projection of a coloured square lattice with five colours of the Σ5 type.
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Appendix

In the following a glossary of a few used terms is listed.

Coincidence site lattice (CSL) [26-37].  The common lattice points of two lattices of the same type after a 

rigid rotation about a common lattice point. The fraction of common points of periodic lattices is given by 

1/Σ. Σ5 indicates that 1/5 of lattice points coincide. The Σ index is used to characterize coincidence grain 

boundaries. In case of quasiperiodic lattices, the fraction of common points is additionally influenced by the 

common area of the two acceptance domains in internal space. Several colour symmetries are characterized 

by a relationship to CSL, the fraction of each colour is 1/Σ. The CSL related colourings occur as 

enantiomophic pairs and do not have a colour mirror symmetry, whereas the non-CSL type colourings have.

Colour Group [15, 51]. A symmetry group of an uncoloured pattern is subdivided into several subgroups: 

(i) operations leaving all colours unchanged; (ii) operations permuting systematically at least some colours 

depending on the involved orbits; (iii) operations not being symmetry operations of the coloured pattern, these 

can be mirror operations as found for several CLS type colourings.

Colour Symmetry Operation [15, 51].  A symmetry operation which permutes systematically at least some 

colours, some others may be unchanged.
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Appendix¶
In the following a glossary of a few used 
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characterize coincidence grain 
boundaries. In case of quasiperiodic 
lattices, the fraction of common points is 
additionally influenced by the common 
area of the two acceptance domains in 
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Enantiomorphic Pairs.  If the mirror symmetry of the uncoloured crystal is broken by colouring (c.f. CSL), 

the pattern appears in right-handed and left-handed versions.

Multiplicity [9].  Number of different coloured versions of a pattern for a fixed number of colours.

PPP. Penrose pentagon pattern [8, 38].

Orbits of Colours [51].  Orbits are formed by symmetry operations and the number of different orbits is 

determined by the number of colours. Colours permute cyclically or do not change within a single orbit. 

Pythagorean Numbers [25]. A set of natural numbers which fulfil the condition 

a2 + b2 + c2 ... = d2 , depending on the number of dimensions.

Rank. According to R. Lifshitz [15] it is the smallest number of permutations that can generate the colour 

permution group. For the present purpose, it is used for the dimensionality of the numbers indicating the 

colour [13, 24].

Sigma Index Σ [25-37]. 1/Σ indicates the fraction (or relative frequency) of common lattice points of a CSL. 

Σ=5 is usually written as Σ5.

Single Translation Class. The acceptance domain occupies only a single level in internal space.

Sublattice, Superstructure. A subset of lattice points (vertices) forms a novel lattice different from the parent 

lattice. All sublattices of a parent lattice form a superstructure. A single colour of a coloured lattice forms a 

sublattice. 

TTT. Tübingen triangle tiling [38-49].
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Figure Captions

Fig. 1 Periodic square tiling simultaneously decorated with numbers 0 through 24 and corresponding colours. The numbers form a 
so-called Devil’s Magic Square, in every 5×5 square of the tiling the sum of columns, rows and diagonals is 60.

Fig. 2 Eight-fold quasiperiodic pattern  with a colour decoration ‘one of twentyfive’ at vertices and tiles. This corresponds to a 

coincidence lattice with Σ25. 

Fig. 3 Twelve-fold quasiperiodic pattern with a colour decoration ‘one of twentyfive’ to a CLS with Σ25.

Fig. 4 Ingalls’ ten-fold tC pattern [44] decorated at decagons with 25 colours.

Fig. 5 A ten-fold quasiperiodic ‘three-level-tiling’ decorated with 25 colours.

Table Caption

Table 1.  Hierarchy of ten-fold tilings with a single translation class and its subsets of 5, 52, 53,...colours.  The second and third 

columns are designated to tilings of stellated extensions of acceptance domains.  The dotted lines at the top and at the bottom 

indicate that the table can be extended in both directions to an infinitely large number of classes which have, however, a decreasing 

significance. 

Table 1. Hierachy of 5n colour sublattices

........... ........... ...........
Undetermined pattern 1st stellation of undet. pat. 2nd stellation of undet. pat.
Penrose Pentagon Pattern (PPP)
= 5-colour sublattice of 
undetermined pattern.

1st stellation of PPP 2nd stellation of PPP

TTT, 5-colour sublattice of PPP 1st stellation of TTT 2nd stellation of TTT
25-colour sublattice of PPP 
= 5-colour sublattice of TTT

1st stellation of 25 c.s. PPP 2nd stellation of 25 c.s. PPP

125-colour sublattice of PPP
= 25-colour sublattice of TTT

1st stellation of 25c.s. TTT 2nd stellation of 25 c.s. TTT

.............. .............. ..............

Acceptance domains are decagons Acceptance domains are stars Acceptance domains are pointed stars
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