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Introduction

The positions of the vertices in a Penrose pattern can be described in several ways. In the rhombic tiling model there are two kinds of basic structural units -thick and thin rhombs; they are joined to each other according to matching rules.

In the cluster model the pattern is constructed as a covering (rather that a tiling) by a single structural unit -a cluster. There are several types of clusters such as, for instance, Gummelt's decagonal cluster [1]. Here we focus on kite-clusters and their inflation that is related to the inflation of rhombs [2][3][4].

We consider cases in which an adequate description of the structure requires either more inflationary divisions or decorating the clusters at points other than the vertices. In the first instance one needs to know how to transform a cluster by repeated inflation until the resulting cluster sufficiently well approximates the entire tiling. The second situation requires a good understanding of the rules of overlap.

In order to describe the structure of decagonal quasicrystals we study an infinite sequence of kite-clusters. In previous papers [2][3][4] the first three clusters were denoted by K4, K7 and K17, where the numeral stood for the number of atoms decorating the cluster. In this paper we analyze an infinite sequence of clusters C n where n is the inflation stage. The correspondence is as follows: K4 C 0 , K7 C 1 . K17 C 2 . These new clusters are axially symmetric kites in shape, and unlike the K's have two additional points on the lateral vertices. These two points make the algorithm for inflating the clusters easier to use.

Rules of overlap

Figure 1(a) shows a kite-cluster. Its structure can be described as consisting of six Robinson (golden) triangles, four large (acute angled) ones and two small (obtuse angled) ones. In terms of rhombs, the cluster consists of a thick rhomb and two halves of a thin one adjacent to two of its sides spanning an acute angle. Areas, edges and points allowed to overlap according to the rules are distinguished by different shades of gray, different line patterns and different symbols for vertices: a small circle and a star. The areas are denoted by capital letters: A, A', B, B'; the edges by lower case letters: a, b, c, d. When these letters are printed in italics they stand for the number of atoms that decorate the respective area or edge. Although the overlap rules do not impose any kind of symmetry on the kite-clusters we will concentrate only on axially symmetric ones, i.e. we assume that A A' and B B'. shows all possible vertex configurations of the rhombic Penrose tiling (fat lines) and the equivalent configurations of kite-clusters (thin lines). Analysis of this picture leads to the overlap rules presented in Fig. 1(a). These rules limit the number of independent species of atom which can decorate a cluster. An atom put somewhere within an area B must occur in all B's, hence four times within the cluster.

According to the overlap rules and the definition of the kite cluster implicit in Fig. 1(a) the total number of N c of atoms decorating a cluster is

N c = 2A + 4B + 2a + 5b + 4c + d + 7 . (1)
The number of independent atoms N ind atoms is

N ind = A + B + a + b + c + d + 2 .
(2)

One of the most important properties of the clusters is the concentration of decorating atoms j . It is defined as the number of atoms of a certain species j divided by the number of all atoms. It is well known that for open sets the number of thick rhombs N L is times the number of thin rhombs N S : N L = N S (here is the golden ratio: = (1 + 5)/2 = 1.618…). Let j L n and j S n be the number of atoms of species j in a thick and thin rhomb, respectively. Then, the total number of atoms of species j in the Penrose tiling will be

N j = N S j S n + N L j L n = N S ( j S n + j L n ) .
By the same procedure we obtain the total number of all decorated atoms in the Penrose tiling as equal to N S ( S n + L n ), where n S and n L are the total number of atoms decorating the thin and thick rhombs, respectively. The concentration j of atoms of species j can be calculated as

L S j L j S L S j j j n n n n N N N N N + + = + = = (3) 
In the rhombic tiling, to use Eq. ( 3) properly, only the part proportional to the angle occupied by the atom should be taken as the number of the atom. For example: only 1/2 of the atom belongs to the rhomb when the atom lies on its edge and only 1/10 when the atom occupies an acute vertex in a thin rhomb. Hence, for an atom on edge b (Fig. 1(a)), the numerator in Eq.( 3) equals 1 + 2 since there are two atoms of this species in a thick rhomb (one inside the rhomb and

) 2 1 ( 2 ×
on the edges). By the same token, for a thin rhomb that number is 1 since the atoms occupy two of the edges. The numerators of the concentration j (Eq.( 3)) for atoms decorating any place within a kite-cluster are given in Table 1. The value of the denominator is quoted in the caption of Table 1.

Inflation of kite-clusters

The three smallest kite-clusters are C 0 , C 1 and C 2 . Their geometrical properties were studied in [2][3][4]. There it was shown that the basis of C 0 is an irreducible thick rhomb. In the case of C 1 the basis is a thick rhomb divided once while for C 2 it is a thick rhomb divided twice according to the rules of inflation. The inflation algorithm for rhombs described in [5] implies the relations presented in Eq.( 4). As shown in Fig. 1, a kite-cluster is built of Robinson (golden) triangles. To obtain an inflated cluster one has to arrange these triangles as shown in Fig. 2(a The primed symbols relate to the new generation of clusters C n+1 , e.g.

1 + n A A
, while the non-primed ones relate to C n , e.g.

n A A .
The recursive relations (4) can be applied to all generations of kite-clusters except for C 0 which is equivalent to the cluster K4. It is, however, possible to extend the validity of (4) to C 0 as well. In that case, d 0 must be assigned the value 1 0 = d ; that can be interpreted as removing the vertex at the intersection of edges b and d. This point is not present in the cluster C 0 . There are three new points on edges b' in the kite-cluster of the new generation -they are denoted by open circles.

Eqs. ( 1) and ( 2) together with the recursion relations (4) allow us to calculate the number of all atoms as well as the number of independent ones that decorate the kitecluster C n at any stage of the inflation process. The results are collected in Table 1.

Asymptotic values a) Geometric relations

When clusters are inflated both the number N ind of independent points and the number N c of all points decorating the cluster increase. When the size of the cluster tends to infinity the ratio of the number of atoms decorating the edges and vertices to the number of all atoms tends to zero. Let us, moreover, assume that the density of the covering of the plane is homogeneous (that is, indeed, approximately true at large scales) and that the ratio of areas B/A equals . When the inflation stages tend to infinity we obtain the asymptotic relation

K 309 . 0 2 1 4 2 : c ind = = + + B A B A N N n . (5) 
In very large clusters around 30.9% of the atoms are independent. This value is reached with good accuracy even for C 4 (30.2%) (see The Penrose tiling can be fully covered by clusters C n at any given stage, subject to the rules of overlap. It would be, however, interesting to check the degree of similarity between the diffraction patterns calculated for the whole Penrose tiling and those calculated only for the points decorating a finite cluster C n . The similarity can be characterized by the R-factor. Our final results can be found in Table 1 and in Fig. 3(a). The R-factor as a function of the inflation stage n decreases approximately exponentially.

c) Energy per atom

The current structural models of decagonal Al-TM quasicrystals (TM -transition metal) assume that the atoms occupy two separate layers (cf. [8]). When added up, this two-layer structure forms a Penrose tiling. The simplest model has all atoms on level z = 0 if the sum of their 4D indices equals 1 or 2 and on level z = c/2 if the sum equals 3 or 4. (Here c is the period along the z axis.) Another assumption concerns the atomic species: the atom is Al if the sum of 4D indices is 2 or 3 and TM if the sum is 1 or 4. In terms of a multidimensional structure model these assumptions are equivalent to decoration of the small pentagons of the atomic surface with TM atoms and the large pentagons with Al atoms.

We have calculated the total potential energy for various cluster arrangements and studied the stability of a large number of atoms. In the computer simulations we used the pair potentials given by Mihalkovi [6]. The pair potential between TM atoms is taken as the weighted average of the Co and Ni potentials. To avoid surface effects we added two extra layers above and below the layer for which we calculated the energy. The middle layer interacted with these two additional layers but the potential energy was summed only over the atoms within the middle layer. The lattice constants a (edge length of the rhomb) and c were calculated from the equilibrium positions of atoms in the largest cluster considered, namely C 8 . Their values are a = 2.38 and c = 3.9 ; they differ slightly from the experimentally determined ones, a = 2.43 and c = 4.09 [7]. The lattice constants calculated for C 8 .were used for all analyzed atoms for calculating the energy per atom in the cluster. The results are presented in Fig. 3(b). Starting from the fourth generation the energy stabilizes and for very large clusters approaches the value of -39 eV per atom.

Conclusions

We analyzed the sequence of kite-clusters obtained by successive inflation. A kite-cluster comprises four large and two small Robinson (golden) triangles, four different edges and seven vertices. With the aid of the algorithm for generating inflated rhombs (as described in Ref. 5) we proposed a similar procedure for kite-clusters. The procedure allows for establishing the number of atoms that can decorate a kite-cluster C n . We have shown that for n tending to infinity the fraction of independent atoms is about 30.95% of all atoms.

We have also calculated additional physical properties such as the diffraction pattern and the energy per atom for clusters C n and we compared them to those of very large structures. For all n > 3 the values of all parameters (R-factor, potential energy per atom, concentration of independent atoms) closely approach those found for the entire Penrose tiling. This result shows that the overlap rules matter only for the smallest kite-clusters such as C 0 , C 1 , C 2 and C 3 . The equivalents of the first three clusters, i.e. K4, K7 and K17, have been studied in previous papers; they appear to be important for modeling quasicrystalline structures. The present study indicates that the cluster K43 (equivalent of C 3 ) might be useful for the refining process as well. From the experimental point of view, it seems that larger kite-clusters are virtually 
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 1 Figure1(b) shows all possible vertex configurations of the rhombic Penrose tiling (fat lines) and the equivalent configurations of kite-clusters (thin lines). Analysis of this picture leads to the overlap rules presented in Fig.1(a). These rules limit the number of independent species of atom which can decorate a cluster. An atom put somewhere within an area B must occur in all B's, hence four times within the cluster.According to the overlap rules and the definition of the kite cluster implicit in Fig.1(a) the total number of N c of atoms decorating a cluster is

  ). Comparison of the rearranged triangles (top of Fig.2(a)) with their original arrangement (bottom of Fig.2(a)) leads to the following recursive relations for the number of atoms decorating the areas and the edges of kite-clusters:
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 1 Figure 1. -(a) A kite-cluster and its division into 6 Robinson (golden) triangles, 4 different edges and 7 vertices. Areas of the same shade of gray or of the same line pattern may overlap. (b) All possible vertex configurations of the rhombic Penrose tiling (fat lines) and the equivalent configurations of kite-clusters (thin lines).
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 2 Figure 2. -(a) Relation between consecutive generations of rhombs. (b) First four generations of kite-clusters.
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  Figure3. -(a) R-factor function; comparison of diffraction patterns of kite-clusters C n and the entire Penrose tiling. (b) Potential energy per atom calculated for eight generations of kite-clusters.
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 1 -Maximum number of all atoms and concentration of a single species decorating areas and edges of kite-clusters. The number of all toms in a kite-cluster is . The three columns from the right show values of the energy per atom, the R-factor and N ind /N C . For n > 3, clusters approximate with good accuracy the whole Penrose tiling.
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						A		B			a			b		c		d		N C N ind		C ind N N	( ) %	R-fac (%)	E	atom eV
		n				2			2 +2		+1 2 +1 2 +1																
		C 0			0		0			0			0		0		-1		6			1		16.7		65.7	-0.104
		C 1			0		0			1			0		0		0		9			3		33.3		44.9	-0,124
		C 2			0		1			1			1		0		1		19			6		31.5		26.2	-0,246
		C 3			1		3			2			3		1		1		45			13		28.9		10.9	-0,327
		C 4			5		10			5			5		3		2		106		32		30.2		6.8	-0,365
		C 5			18		33			9			8		5		5		258		80		31.0		4.5	-0,372
		C 6			56		98			14		14		8		9		650 201		30.9		2.5	-0,380
		C 7		162 274		23		24		14		14 1663 513		30.8		1.4	-0,388
		C 8		450 747		39		39		24		23 4287 1324 30.9		0.8	-0,392
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