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Alkaline-earth metal monolayers on fivefold i-Al-Pd-Mn surface:

Influence of adatom size on quasiperiodic ordering

M. KRAJČ́I1†‡ and J. HAFNER†
† Faculty of Physics, CCMS, University of Vienna,

Sensengasse 8/12, A-1090 Vienna, Austria
‡ Institute of Physics, Slovak Academy of Sciences,

Dúbravská cesta 9, SK-84511 Bratislava, Slovak Republic

The structure and stability of a quasiperiodic alkaline-earth metal monolayers
formed on a five-fold surface of an icosahedral Al-Pd-Mn quasicrystal have been in-
vestigated using ab-initio density-functional methods. We study an influence of the
size of adatom on the regularity of the quasiperiodic ordering. It was found that Ca
adatoms at the coverage 0.066 atoms /Å2 (Θ=0.5) form on the i-Al-Pd-Mn surface
a highly regular quasiperiodic monolayer with an ordering described by a decagonal
DHBS tiling of decagons, hexagons, boats and pentagonal stars.

Keywords: quasicrystals; surfaces; ab-initio; Al-Pd-Mn; alkaline-earth metals

1. Introduction

In our previous works [1, 2, 3, 4] we have investigated the structure and stability of
quasiperiodic monolayers by ab initio density-functional methods. One of the impor-
tant results was an observation that an unsupported quasiperiodic monolayer is not a
structurally stable system. A quasiperiodic ordering in a monolayer can be stabilized
only when it is supported by a quasicrystalline substrate. A decisive factor determining
the structure of an adsorbed monolayer is the density of atoms in the monolayer, or
coverage of the surface. The coverage is usually expressed by the parameter Θ defined
as a ratio of the number of adatoms to the number of substrate atoms in the first
substrate layer. Depending on the density of the adsorbed adatoms different surface
structures are formed. For instance alkali metal atoms on a simple metal surface such
as, e.g., Al(111) can form several phases with complex structures [5]. One can expect
even richer variety of adsorbate phases formed on the quasicrystalline substrate. The
subject of our interest is an arrangement of atoms in a monolayer with the coverage
close to the saturation. The most important factor limiting the atomic density of the
adlayer is the size of the adatoms.

In Ref. [3, 4] we studied a formation of alkali metal monolayers and multilayers
on the fivefold i-Al-Pd-Mn surface. We have found that Na and K adatoms at the
coverage Θ=0.50 (0.066 atoms /Å2) spontaneously arranged in a structure with a
quasiperiodic ordering. In the present contribution we extend the study to alkaline-
earth metals Be, Mg, Ca, Sr and Ba. These atoms exhibit similar chemical properties
but differ significantly in their size. The size of alkaline-earth atoms ranges from the
smallest size of Be atom of 2.30 Å to the largest Ba atom with the size of 4.35 Å. The
sequence of the alkaline-earth atoms is thus a suitable system for studying the effect of
the density of adatoms on the regularity of the quasiperiodic ordering in the monolayer.
For a characterization how dense the monolayer is we introduce also a parameter κ
expressing the packing of atoms in the monolayer in comparison to the densest planar
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packing the hexagonal close packing. The parameter κ for atoms of a given size is
calculated as a ratio of the density of atoms in the monolayer to the density of atoms of
the same size in a monolayer with the hexagonal close packing. The sizes of atoms are
estimated from the nearest-neighbor distances in crystalline low-temperature phases.
For hard spheres in a plane with the closest hexagonal packing κ=1.0. As atoms do
not behave as hard spheres and as a monolayer always has certain corrugation, values
of κ >1 are also possible.

(a) (b)

Figure 1: A comparison of the equilibrium arrangements of atoms in Be (a) and
Mg (b) monolayers on a fivefold i-Al-Pd-Mn surface. The quasiperiodic ordering
in the monolayers can be described by the DHBS tiling. Both monolayers are
underpacked.

2. The fivefold surface of i-Al-Pd-Mn

A model of the atomic structure of the surface is based on a structural model of bulk
i-Al-Pd-Mn. A construction of the structural model of the bulk and the fivefold surface
derived from periodic approximants to the quasicrystal has been presented in detail in
our previous works [6, 7]. An ideal structure of the fivefold i-Al-Pd-Mn surface consists
[8] of two closely spaced atomic planes separated by a vertical distance of 0.48 Å. The
top plane of the surface is occupied only by Al atoms and a few percent of Mn atoms
[9, 10]. Pd atoms from the plane located 0.48 Å below the top layer also contribute
to the surface charge density. The corrugated surface is thus composed by the atoms
from the two top-most planes. A quasiperiodic ordering in the top atomic plane is most
naturally described by a DHBS tiling consisting of decagons (D), squashed hexagons
(H), boat tiles (B) and pentagonal stars (S). The edge of the DHBS tiling measures
4.079 Å. The vertices of the DHBS tiling are hollows sites surrounded by complete or
incomplete Al pentagons. The total surface atomic density of the model is ns=0.132
atoms/Å2. This value is in a very good agreement with the experimental value of
0.136 atoms/Å2 reported by Gierer et al. [9].

All studies of ordering of atoms in monolayers adsorbed on the fivefold surface of
i-Al-Pd-Mn were preformed on the model of the 3/2 approximant [6]. The structural
model of the surface used in our adsorption studies has a form of a slab. The slab
consists of 5 atomic planes and includes 357 atoms. The size of the slab is 38.63
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Å×32.86 Å×4.08 Å. The computational cell has an orthorhombic shape. In addition
to the slab of atoms it includes a 14 Å thick vacuum layer. The binding energies
and the interatomic forces have been calculated using the Vienna ab-initio simulation
package VASP [11, 12].

Very helpful in the search for the structure of the adlayer is a mapping of the energetic
landscape of the surface, searching for the most stable positions of adsorbed atoms.
As a probe we have chosen a single atom bound to specific sites on the surface. We
calculated the binding energy of adsorbed alkaline-earth metal atoms. A systematic
repetition of this procedure for selected points on the surface makes it possible to
identify the most stable positions for the adsorbed atoms. An equilibrium structure
of the adsorbed monolayer has been obtained by relaxing all interatomic forces in the
system.

3. Alkaline-earth monolayers

Be atom with its size of 2.30 Å is a small atom. A Be monolayer on the fivefold
i-Al-Pd-Mn surface at the coverage of Θ=0.50 with the parameter κ=0.30 is thus
clearly underpacked. An ordering of Be atoms on the i-Al-Pd-Mn surface at higher
coverages can be very complex. In this work we restrict our study to the case the
coverage Θ=0.50 only. The behavior of Be atoms in this underpacked monolayer is
remarkable. The lateral cohesive interaction between atoms leads to clustering and
chaining the atoms. The equilibrium positions substantially deviate from the ideal
positions. Nevertheless, the diffraction pattern shows that the structure still posses a
substantial degree of the decagonal symmetry. The diffraction peaks with higher |~k|
have reduced amplitudes. The deviations of the positions of Be atoms from the ideal
ones has on the diffraction pattern an analogous effect as the Debye-Waller factor
expressing the thermal disorder in ordinary crystals.

(a)

(b)

Figure 2: (a) The atomic structure of the Ca monolayer adsorbed on the fivefold
i-Al-Pd-Mn surface. The positions of atoms are displayed by circles: Ca - large
shaded circles, Al - small open circles, Pd - small shaded circles, Mn - small solid
circles. The surface is covered by the DHBS tiling. Part (b) is a side view on the
corresponding structural model demonstrating a corrugation of the Ca monolayer.
The centers of Ca adatoms are represented by small circles.
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A Mg atom with its size of 3.20 Å is substantially bigger than Be. However, the

parameter κ of 0.59 indicates that the Mg monolayer is still underpacked. Some of the
Mg adatoms are off their ideal positions. Although the quasiperiodic DHBS distribution
of adatoms exhibits a rather high regularity in reality such underpacked structure can
be easily distorted by intersticials. The size of Ca atom of 3.95 Å is similar to that
of Na. One can therefore expect a similar highly regular DHBS ordering. Fig. 2(a)
shows an equilibrium structure of Ca monolayer on the i-Al-Pd-Mn substrate. The
quasiperiodic ordering at Θ=0.50 and κ=0.89 is indeed highly regular. The reason
why Ca adatoms spontaneously arrange in a monolayer with the DHBS ordering is
possible to understand. The surface plane is Al rich. The top plane consists almost
entirely (96%) of Al atoms. Their geometrical arrangement can be described by the
DHBS tiling. It was also found that the top of Al atoms (ALx sites) are the least
attractive adsorption sites. While the binding energies of majority of adsorption sites
(with an exception of the strongly attractive sites inside surface vacancies) ranges from
−2.7 eV to −2.2 eV the binding energies of the ALx sites is ≈ −1.35 eV. Adatoms
thus prefer to occupy all other sites except the ALx ones. This forces the adatoms
to correlate their ordering with the ordering of the distribution of the Al atoms in the
top atomic plane and hence to adopt the DHBS ordering. In Fig. 2 it is seen that Ca
adatoms avoid the positions on top of Al atoms with lowest binding energies.

(a) (b)

Figure 3: A comparison of the equilibrium arrangements of atoms in Sr (a) and Ba
(b) monolayers on a fivefold i-Al-Pd-Mn surface. The quasiperiodic ordering in the
monolayers can be described by the DHBS tiling. Both Sr and Ba monolayer are
overpacked. A larger size of Sr and Ba atoms leads to a breaking of pentagonal
symmetry of the atomic packing inside of some of the decagonal tiles. One Ba
adatom drifted off the monolayer plane.

The size of Sr and Ba atoms of 4.30 Å and 4.35 Å, respectively, leads at the cover-
age Θ=0.50 to the packing κ=1.06 and 1.08, respectively, i.e. to a slight overpacking.
The overpacking results to a higher corrugation of the monolayer and to distortion of
the pentagonal symmetry of the internal decoration of the D tiles. One adatom in
the Ba monolayer drifted off the monolayer plane. There is one interesting detail in
the DHBS tiling. When one compares the DHBS tiling in the Mg, Ca, Sr, and Ba
monolayers in Figs. 1 to 3 it is seen that while the ordering of Mg atoms near the
center of the figure is described by one H and two S tiles the ordering of Sr and Ba
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atoms in that area is described by one S and two B tiles. This can be understood as
a phason flip (dashed lines in Fig. 2(a)) in the tiling caused by shift of positions of
two atoms between two close sites. In the Ca monolayer the corresponding adatoms
remain in a “midway” between these two positions.

2.0 2.5 3.0 3.5 4.0 4.5 5.0
size of adatom

0
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Figure 4:
A corrugation of the quasiperiodic monolayer expressed by mean deviation σ [Å]
for various adatoms, see Tab. 1. The horizontal axis is the size of adatoms in Å.

4. Discussion

The size of the adatoms and the coverage density have appeared to be the most
important factors determining regularity of the monolayer. An optimal size of the
adatoms can lead to a sufficiently high packing density enforcing a regular arrangement
of atoms. In an underpacked monolayer one can expect formation of interstitial sites
that spoil regularity of the ideal quasiperiodic structure. A good measure of regularity
of the monolayer is its corrugation. The corrugation is expressed as a mean deviation σ
of the vertical positions of adatoms from their average height above the surface plane.
The corrugations of monolayers consisting of small adatoms like Be or Mg copy the
corrugation of the substrate. The amplitude of this corrugation can be estimated as
σ ≈0.22 Å. On the other hand a large size of the adatoms leads to an overpacking of
the monolayer and its corrugation also increases, e.g. σ ≈0.25 Å in the Ba monolayer.
The corrugation is the lowest at certain “optimal” size of adatom, see Fig. 4. The Ca
monolayer with the size of adatoms of 3.95 Å exhibits the lowest corrugation σ=0.12
Å. The size of Ca adatoms is most compatible with the geometrical distribution of
adsorption sites on the fivefold i-Al-Pd-Mn surface and hence the quasiperiodic ordering
in the Ca monolayer is most regular.

Page 5 of 10

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
Table 1: Structural data of the studied monolayers: Size of adatom d, an aver-
age height h of the atoms in the adsorbed monolayer above the surface plane, a
corrugation of the monolayer σ, a relative corrugation σ/h, and the parameter κ
expressing the packing of adatoms in the monolayer in comparison to the densest
hexagonal close packing.
Monolayer d [Å] h [Å] σ [Å] σ/h κ see Fig.
Be 2.30 1.14 0.219 0.192 0.30 1(a)
Mg 3.20 1.79 0.217 0.121 0.59 1(b)
Ca 3.95 2.20 0.124 0.056 0.89 2
Sr 4.30 2.44 0.160 0.066 1.06 3(a)
Ba 4.35 2.55 0.246 0.096 1.08 3(b)
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